1
|
Shen J, Dan M, Li Y, Tao X, Zhao G, Wang D. Controllable and complete conversion of agarose into oligosaccharides and monosaccharides by microwave-assisted hydrothermal and enzymatic hydrolysis and antibacterial activity of agaro-oligosaccharides. Int J Biol Macromol 2023; 251:126319. [PMID: 37582437 DOI: 10.1016/j.ijbiomac.2023.126319] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 07/28/2023] [Accepted: 08/08/2023] [Indexed: 08/17/2023]
Abstract
Hydrolysis of agar or agarose can yield two types of oligosaccharides: agaro-oligosaccharides (AOS) and neoagaro-oligosaccharides (NAOS). These oligosaccharides have various biological activities and promising applications in the future food industry and pharmaceuticals. In this study, we prepared AOS from agarose by microwave-assisted hydrothermal hydrolysis and then used a commercial β-galactosidase to treat AOS for producing NAOS. A complete conversion from agarose to AOS or NAOS can be achieved by microwave hydrothermal treatment and one-step enzyme reaction, and the production process was completely green. In addition, we combined β-galactosidase and α-neoagarobiose hydrolase from Saccharophagus degradans 2-40 (SdNABH) to treat AOS, and AOS was completely converted into monosaccharides. Then the results of the inhibitory activity of AOS on the growth of Streptococcus mutans showed that AOS might be a good potential sugar substitute for dental caries prevention. This study provides an efficient approach for the production of multiple mixed degrees of polymerization (DP) of pure AOS and NAOS without requiring acid catalyst and agarases while simplifying the production processes and reducing costs.
Collapse
Affiliation(s)
- Ji Shen
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China
| | - Meiling Dan
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Yanping Li
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Xiaoqi Tao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Guohua Zhao
- College of Food Science, Southwest University, Chongqing 400715, China
| | - Damao Wang
- College of Food Science, Southwest University, Chongqing 400715, China; Guangxi Key Lab of Agricultural Resources Chemistry and Biotechnology, College of Chemistry and Food Science, Yulin Normal University, Yulin, Guangxi 537000, PR China.
| |
Collapse
|
2
|
Lee SH, Yun EJ, Han NR, Jung I, Pelton JG, Lee JE, Kang NJ, Jin YS, Kim KH. Production of Ethyl-agarobioside, a Novel Skin Moisturizer, by Mimicking the Alcoholysis from the Japanese Sake-Brewing Process. Mar Drugs 2023; 21:341. [PMID: 37367665 DOI: 10.3390/md21060341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2023] [Revised: 05/26/2023] [Accepted: 05/30/2023] [Indexed: 06/28/2023] Open
Abstract
Agarobiose (AB; d-galactose-β-1,4-AHG), produced by one-step acid hydrolysis of agarose of red seaweed, is considered a promising cosmetic ingredient due to its skin-moisturizing activity. In this study, the use of AB as a cosmetic ingredient was found to be hampered due to its instability at high temperature and alkaline pH. Therefore, to increase the chemical stability of AB, we devised a novel process to synthesize ethyl-agarobioside (ethyl-AB) from the acid-catalyzed alcoholysis of agarose. This process mimics the generation of ethyl α-glucoside and glyceryl α-glucoside by alcoholysis in the presence of ethanol and glycerol during the traditional Japanese sake-brewing process. Ethyl-AB also showed in vitro skin-moisturizing activity similar to that of AB, but showed higher thermal and pH stability than AB. This is the first report of ethyl-AB, a novel compound produced from red seaweed, as a functional cosmetic ingredient with high chemical stability.
Collapse
Affiliation(s)
- Sun-Hee Lee
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Eun Ju Yun
- Division of Biotechnology, Jeonbuk National University, Iksan 54596, Republic of Korea
| | - Na Ree Han
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| | - Inho Jung
- Korea Forestry Promotion Institute, Daejeon 34215, Republic of Korea
| | - Jeffrey G Pelton
- QB3 Institute, University of California, Berkeley, CA 94720, USA
| | - Jae-Eun Lee
- School of Food Science and Biotechnology, Kyungpook National University, Daegu 41566, Republic of Korea
| | - Nam Joo Kang
- Department of Biotechnology, The Catholic University of Korea, Bucheon 14662, Republic of Korea
| | - Yong-Su Jin
- Department of Food Science and Human Nutrition, University of Illinois at Urbana-Champaign, Urbana, IL 61801, USA
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 02841, Republic of Korea
| |
Collapse
|
3
|
Hamid A, Zafar A, Latif S, Peng L, Wang Y, Liaqat I, Afzal MS, ul-Haq I, Aftab MN. Enzymatic hydrolysis of low temperature alkali pretreated wheat straw using immobilized β-xylanase nanoparticles. RSC Adv 2023; 13:1434-1445. [PMID: 36686938 PMCID: PMC9814908 DOI: 10.1039/d2ra07231a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2022] [Accepted: 12/15/2022] [Indexed: 01/07/2023] Open
Abstract
A low temperature alkali (LTA) pretreatment method was used to treat wheat straw. In order to obtain good results, different factors like temperature, incubation time, NaOH concentration and solid to liquid ratio for the pretreatment process were optimized. Wheat straw is a potential biomass for the production of monomeric sugars. The objective of the current study was to observe the saccharification (%) of wheat straw with immobilized magnetic nanoparticles (MNPs). For this purpose, immobilized MNPs of purified β-xylanase enzyme was used for hydrolysis of pretreated wheat straw. Wheat straw was pretreated using the LTA method and analyzed by SEM analysis. After completion of the saccharification process, saccharification% was calculated by using a DNS method. Scanning electron micrographs revealed that the hemicellulose, cellulose and lignin were partially removed and changes in the cell wall structure of the wheat straw had caused it to become deformed, increasing the specific surface area, so more fibers of the wheat straw were exposed to the immobilized β-xylanase enzyme after alkali pretreatment. The maximum saccharification potential of wheat straw was about 20.61% obtained after pretreatment with optimized conditions of 6% NaOH, 1/10 S/L, 30 °C and 72 hours. Our results indicate the reusability of the β-xylanase enzyme immobilized magnetic nanoparticles and showed a 15% residual activity after the 11th cycle. HPLC analysis of the enzyme-hydrolyzed filtrate also revealed the presence of sugars like xylose, arabinose, xylobiose, xylotriose and xylotetrose. The time duration of the pretreatment has an important effect on thermal energy consumption for the low-temperature alkali method.
Collapse
Affiliation(s)
- Attia Hamid
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Asma Zafar
- Faculty of Science and Technology, University of Central PunjabLahorePakistan
| | | | - Liangcai Peng
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Yanting Wang
- Biomass and Bioenergy Research Center, Huazhong Agriculture UniversityWuhanChina
| | - Iram Liaqat
- Microbiology Lab, Department of Zoology, Government College UniversityLahorePakistan
| | - Muhammad Sohail Afzal
- Department of Life Sciences, School of Science, University of Management and Technology (UMT)LahorePakistan
| | - Ikram ul-Haq
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| | - Muhammad Nauman Aftab
- Institute of Industrial Biotechnology, Govt. College UniversityLahore 54000Pakistan+924299213341+923444704190
| |
Collapse
|
4
|
Dan M, Shen J, Zhao G, Wang D. Complete conversion of agarose into water soluble agaro-oligosaccharides by microwave assisted hydrothermal hydrolysis. Food Chem 2022; 395:133622. [DOI: 10.1016/j.foodchem.2022.133622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 06/27/2022] [Accepted: 06/30/2022] [Indexed: 11/04/2022]
|
5
|
Liu G, Duan Y, Yang S, Yu M, Lv Z. Simultaneous quantification of marine neutral neoagaro-oligosaccharides and agar-oligosaccharides by the UHPLC-MS/MS method: application to the intestinal transport study by using the Caco-2 cell monolayer. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:2227-2234. [PMID: 35616101 DOI: 10.1039/d2ay00700b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
A sensitive and robust ultra-high performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was established for the first time to simultaneously quantify marine neutral neoagaro-oligosaccharides (NAOS) and agar-oligosaccharides (AOS) with different degrees of polymerization (DP) in Hanks' balanced salt solution (HBSS). The separation was achieved on a BEH amide column using a mobile phase of acetonitrile-10 mmol L-1 ammonium acetate (58 : 42, v/v) with an isocratic elution program. The total analysis time was 3.5 min. The mass spectra were acquired in the multiple reaction monitoring (MRM) pattern by using a heated-electrospray ionization (H-ESI) source operating in the positive ionization mode. The linear range was 40-20 000 nmol L-1. The accuracy and precision ranged from 91.5 to 110.0% and 0.9 to 10.4%, respectively. The extraction recovery was consistent and reproducible. The stability was within 90.3-110.8%. The matrix effect, carryover, and dilution integrity were all satisfactory. Moreover, the validated method was successfully applied to the intestinal transport study by using the Caco-2 cell monolayer in vitro. The results revealed that neoagarobiose, neoagarotetraose, neoagarohexaose, agarotriose, agaropentose, and agaroheptose were transported by a paracellular pathway.
Collapse
Affiliation(s)
- Guilin Liu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Yunhai Duan
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
| | - Shuang Yang
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Mingming Yu
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| | - Zhihua Lv
- School of Medicine and Pharmacy, Ocean University of China, Qingdao 266003, People's Republic of China.
- Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266003, People's Republic of China
- Key Laboratory of Glycoscience & Glycotechnology of Shandong Province, Qingdao 266003, People's Republic of China
- Key Laboratory of Marine Drugs, Ministry of Education of China, Qingdao 266003, People's Republic of China
| |
Collapse
|
6
|
Zhang K, Hong Y, Chen C, Wu YR. Unraveling the unique butyrate re-assimilation mechanism of Clostridium sp. strain WK and the application of butanol production from red seaweed Gelidium amansii through a distinct acidolytic pretreatment. BIORESOURCE TECHNOLOGY 2021; 342:125939. [PMID: 34555752 DOI: 10.1016/j.biortech.2021.125939] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Exploration of the algae-derived biobutanol synthesis has become one of the hotspots due to its highly cost-effective and environment-friendly features. In this study, a solventogenic strain Clostridium sp. strain WK produced 13.96 g/L butanol with a maximal yield of 0.41 g/g from glucose in the presence of 24 g/L butyrate. Transcriptional analysis indicated that the acid re-assimilation of this strain was predominantly regulated by genes buk-ptb rather than ctfAB, explaining its special phenotypes including high butyrate tolerance and the pH-independent fermentation. In addition, a butyric acid-mediated hydrolytic system was established for the first time to release a maximal yield of 0.35 g/g reducing sugars from the red algal biomass (Gelidium amansii). Moreover, 4.48 g/L of butanol was finally achieved with a significant enhancement by 29.9 folds. This work reveals an unconventional metabolic pathway for butanol synthesis in strain WK, and demonstrates the feasibility to develop renewable biofuels from marine resources.
Collapse
Affiliation(s)
- Kan Zhang
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Ying Hong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Chaoyang Chen
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Beijing Tidetron Bioworks Company, Beijing 100190, China.
| |
Collapse
|
7
|
Zhao J, Yang Y, Zhang M, Wang D. Minimizing water consumption for sugar and lignin recovery via the integration of acid and alkali pretreated biomass and their mixed filtrate without post-washing. BIORESOURCE TECHNOLOGY 2021; 337:125389. [PMID: 34134052 DOI: 10.1016/j.biortech.2021.125389] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/03/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
Excessive post-washing of pretreated biomass leads to huge water consumption and chemical loss. To address this issue, parallel HOAc and NaOH pretreatments of biomass followed by integration of their biomass and filtrate were investigated. Pretreatment effectiveness including morphology, crystallinity, and component recovery, were elucidated. Results showed that HOAc and NaOH in the mixed filtrate were neutralized to achieve a pH of around 4.80 prompting the alkali lignin precipitation. Lignin (46.01 and 48.38 g/kg-biomass for hemp and poplar, respectively) exhibiting comparable FTIR characteristics with the commercial alkali lignin was recovered. Compared to sodium acetate buffer as a control, integrating HOAc and NaOH pretreated biomass and their mixed filtrate for enzymatic hydrolysis boosted total sugar concentration (hemp: 42.90 vs. 38.27 g/L; poplar: 43.18 vs. 38.76 g/L) without compromising glucose yield (hemp: 70.86 vs. 70.69%; poplar: 66.48 vs. 69.48%) but improving xylose yield (hemp: 60.10 vs. 35.92%; poplar: 56.90 vs. 29.39%).
Collapse
Affiliation(s)
- Jikai Zhao
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Yang Yang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Meng Zhang
- Department of Industrial and Manufacturing Systems Engineering, Kansas State University, Manhattan, KS 66506, USA
| | - Donghai Wang
- Department of Biological and Agricultural Engineering, Kansas State University, Manhattan, KS 66506, USA.
| |
Collapse
|
8
|
Jiang C, Cheng D, Liu Z, Sun J, Mao X. Advances in agaro-oligosaccharides preparation and bioactivities for revealing the structure-function relationship. Food Res Int 2021; 145:110408. [PMID: 34112411 DOI: 10.1016/j.foodres.2021.110408] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Revised: 04/13/2021] [Accepted: 05/06/2021] [Indexed: 11/24/2022]
Abstract
Agaro-oligosaccharides originating from red algae have attracted increasing attention in both basic theoretical research and applied fields due to their excellent bioactivities, which indicates the wide prospects of agaro-oligosaccharides for application in the food, pharmaceutical and cosmetic industries. Thus, a considerable number of studies regarding functional agaro-oligosaccharides preparation as well as the bioactivities exploration have been carried out. Based on these studies, this review first introduced different methods that have been used in agar extraction from red algae, and further provided research progress on arylsulfatase. Then, different methods used for agaro-oligosaccharides production were summarized. Moreover, the abundant bioactivities of agaro-oligosaccharides were described in detail. Finally, this review has discussed current research problems and further provided critical aspects, which may be helpful for revealing the structure-function relationship of agaro-oligosaccharide.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Danyang Cheng
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China.
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao 266003, China; Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao 266237, China
| |
Collapse
|
9
|
Hong Y, Wu YR. Acidolysis as a biorefinery approach to producing advanced bioenergy from macroalgal biomass: A state-of-the-art review. BIORESOURCE TECHNOLOGY 2020; 318:124080. [PMID: 32927316 DOI: 10.1016/j.biortech.2020.124080] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2020] [Revised: 08/30/2020] [Accepted: 09/01/2020] [Indexed: 06/11/2023]
Abstract
Facing fossil fuels consumption and its accompanying environmental pollution, macroalgae, as a major part of the third-generation (3G) biomass, has great potential for bioenergy development due to its species-abundant, renewable and carbohydrate-rich properties. Diluted acid treatment is one of the most effective approaches to releasing fermentable sugars from macroalgal biomass in a short period, but the optimal conditions need to be explored to maximize the hydrolytic yield for the subsequent microbial conversion. Therefore, this review aims to summarize the latest advances in various acids and other auxiliary methods adopted to increase the hydrolytic efficiency of macroalgae. Following an overview of the strategies of different algal types, methods involved in the bioconversion of biofuels and microbial fuel cells (MFC) from algal hydrolysates are also described. For the 3G biorefinery development, the review further discusses key challenges and trends for future utilizing marine biomass to achieve the large-scale industrial production.
Collapse
Affiliation(s)
- Ying Hong
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China
| | - Yi-Rui Wu
- Department of Biology, Shantou University, Shantou, Guangdong 515063, China; Guangdong Provincial Key Laboratory of Marine Biotechnology, Shantou University, Shantou, Guangdong 515063, China; Institute of Marine Sciences, Shantou University, Shantou, Guangdong 515063, China.
| |
Collapse
|
10
|
Seo JW, Tsevelkhorloo M, Lee CR, Kim SH, Kang DK, Asghar S, Hong SK. Molecular Characterization of a Novel 1,3-α-3,6-Anhydro-L-Galactosidase, Ahg943, with Cold- and High-Salt-Tolerance from Gayadomonas joobiniege G7. J Microbiol Biotechnol 2020; 30:1659-1669. [PMID: 32876074 PMCID: PMC9728383 DOI: 10.4014/jmb.2008.08017] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2020] [Revised: 08/25/2020] [Accepted: 08/27/2020] [Indexed: 12/15/2022]
Abstract
1,3-α-3,6-anhydro-L-galactosidase (α-neoagarooligosaccharide hydrolase) catalyzes the last step of agar degradation by hydrolyzing neoagarobiose into monomers, D-galactose, and 3,6-anhydro-Lgalactose, which is important for the bioindustrial application of algal biomass. Ahg943, from the agarolytic marine bacterium Gayadomonas joobiniege G7, is composed of 423 amino acids (47.96 kDa), including a 22-amino acid signal peptide. It was found to have 67% identity with the α-neoagarooligosaccharide hydrolase ZgAhgA, from Zobellia galactanivorans, but low identity (< 40%) with the other α-neoagarooligosaccharide hydrolases reported. The recombinant Ahg943 (rAhg943, 47.89 kDa), purified from Escherichia coli, was estimated to be a monomer upon gel filtration chromatography, making it quite distinct from other α-neoagarooligosaccharide hydrolases. The rAhg943 hydrolyzed neoagarobiose, neoagarotetraose, and neoagarohexaose into D-galactose, neoagarotriose, and neoagaropentaose, respectively, with a common product, 3,6- anhydro-L-galactose, indicating that it is an exo-acting α-neoagarooligosaccharide hydrolase that releases 3,6-anhydro-L-galactose by hydrolyzing α-1,3 glycosidic bonds from the nonreducing ends of neoagarooligosaccharides. The optimum pH and temperature of Ahg943 activity were 6.0 and 20°C, respectively. In particular, rAhg943 could maintain enzyme activity at 10°C (71% of the maximum). Complete inhibition of rAhg943 activity by 0.5 mM EDTA was restored and even, remarkably, enhanced by Ca2+ ions. rAhg943 activity was at maximum at 0.5 M NaCl and maintained above 73% of the maximum at 3M NaCl. Km and Vmax of rAhg943 toward neoagarobiose were 9.7 mg/ml and 250 μM/min (3 U/mg), respectively. Therefore, Ahg943 is a unique α-neoagarooligosaccharide hydrolase that has cold- and high-salt-adapted features, and possibly exists as a monomer.
Collapse
Affiliation(s)
- Ju Won Seo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Maral Tsevelkhorloo
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Chang-Ro Lee
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Sang Hoon Kim
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Dae-Kyung Kang
- Department of Animal Resources Science, Dankook University, Cheonan 31116, Republic of Korea
| | - Sajida Asghar
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Bioscience and Bioinformatics, Myongji University, Yongin 7058, Republic of Korea,Corresponding author Phone: 82-31-330-6198 Fax: 82-31-335-8249 E-mail:
| |
Collapse
|
11
|
Agarose degradation for utilization: Enzymes, pathways, metabolic engineering methods and products. Biotechnol Adv 2020; 45:107641. [PMID: 33035614 DOI: 10.1016/j.biotechadv.2020.107641] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 09/27/2020] [Accepted: 10/03/2020] [Indexed: 12/14/2022]
Abstract
Red algae are important renewable bioresources with very large annual outputs. Agarose is the major carbohydrate component of many red algae and has potential to be of value in the production of agaro-oligosaccharides, biofuels and other chemicals. In this review, we summarize the degradation pathway of agarose, which includes an upstream part involving transformation of agarose into its two monomers, D-galactose (D-Gal) and 3,6-anhydro-α-L-galactose (L-AHG), and a downstream part involving monosaccharide degradation pathways. The upstream part involves agarolytic enzymes such as α-agarase, β-agarase, α-neoagarobiose hydrolase, and agarolytic β-galactosidase. The downstream part includes the degradation pathways of D-Gal and L-AHG. In addition, the production of functional agaro-oligosaccharides such as neoagarobiose and monosaccharides such as L-AHG with different agarolytic enzymes is reviewed. Third, techniques for the setup, regulation and optimization of agarose degradation to increase utilization efficiency of agarose are summarized. Although heterologous construction of the whole agarose degradation pathway in an engineered strain has not been reported, biotechnologies applied to improve D-Gal utilization efficiency and construct L-AHG catalytic routes are reviewed. Finally, critical aspects that may aid in the construction of engineered microorganisms that can fully utilize agarose to produce agaro-oligosaccharides or as carbon sources for production of biofuels or other value-adding chemicals are discussed.
Collapse
|
12
|
Wang Y, Li PY, Zhang Y, Cao HY, Wang YJ, Li CY, Wang P, Su HN, Chen Y, Chen XL, Zhang YZ. 3,6-Anhydro-L-Galactose Dehydrogenase VvAHGD is a Member of a New Aldehyde Dehydrogenase Family and Catalyzes by a Novel Mechanism with Conformational Switch of Two Catalytic Residues Cysteine 282 and Glutamate 248. J Mol Biol 2020; 432:2186-2203. [PMID: 32087198 DOI: 10.1016/j.jmb.2020.02.008] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2019] [Revised: 02/05/2020] [Accepted: 02/06/2020] [Indexed: 12/26/2022]
Abstract
3,6-anhydro-α-L-galactose (L-AHG) is one of the main monosaccharide constituents of red macroalgae. In the recently discovered bacterial L-AHG catabolic pathway, L-AHG is first oxidized by a NAD(P)+-dependent dehydrogenase (AHGD), which is a key step of this pathway. However, the catalytic mechanism(s) of AHGDs is still unclear. Here, we identified and characterized an AHGD from marine bacterium Vibrio variabilis JCM 19239 (VvAHGD). The NADP+-dependent VvAHGD could efficiently oxidize L-AHG. Phylogenetic analysis suggested that VvAHGD and its homologs represent a new aldehyde dehydrogenase (ALDH) family with different substrate preferences from reported ALDH families, named the L-AHGDH family. To explain the catalytic mechanism of VvAHGD, we solved the structures of VvAHGD in the apo form and complex with NADP+ and modeled its structure with L-AHG. Based on structural, mutational, and biochemical analyses, the cofactor channel and the substrate channel of VvAHGD are identified, and the key residues involved in the binding of NADP+ and L-AHG and the catalysis are revealed. VvAHGD performs catalysis by controlling the consecutive connection and interruption of the cofactor channel and the substrate channel via the conformational changes of its two catalytic residues Cys282 and Glu248. Comparative analyses of structures and enzyme kinetics revealed that differences in the substrate channels (in shape, size, electrostatic surface, and residue composition) lead to the different substrate preferences of VvAHGD from other ALDHs. This study on VvAHGD sheds light on the diversified catalytic mechanisms and evolution of NAD(P)+-dependent ALDHs.
Collapse
Affiliation(s)
- Yue Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Ping-Yi Li
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yi Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Hai-Yan Cao
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yan-Jun Wang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Chun-Yang Li
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China
| | - Peng Wang
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China
| | - Hai-Nan Su
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China
| | - Yin Chen
- College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; School of Life Sciences, University of Warwick, Coventry, CV4 7AL, United Kingdom
| | - Xiu-Lan Chen
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| | - Yu-Zhong Zhang
- State Key Laboratory of Microbial Technology, Marine Biotechnology Research Center, Shandong University, Qingdao, 266237, China; College of Marine Life Sciences, and Frontiers Science Center for Deep Ocean Multispheres and Earth System, Ocean University of China, Qingdao, 266003, China; Laboratory for Marine Biology and Biotechnology, Qingdao National Laboratory for Marine Science and Technology, Qingdao, 266237, China.
| |
Collapse
|
13
|
Park SH, Lee CR, Hong SK. Implications of agar and agarase in industrial applications of sustainable marine biomass. Appl Microbiol Biotechnol 2020; 104:2815-2832. [PMID: 32036436 DOI: 10.1007/s00253-020-10412-6] [Citation(s) in RCA: 39] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2019] [Revised: 01/17/2020] [Accepted: 01/23/2020] [Indexed: 12/20/2022]
Abstract
Agar, a major component of the cell wall of red algae, is an interesting heteropolysaccharide containing an unusual sugar, 3,6-anhydro-L-galactose. It is widely used as a valuable material in various industrial and experimental applications due to its characteristic gelling and stabilizing properties. Agar-derived oligosaccharides or mono-sugars produced by various agarases have become a promising subject for research owing to their unique biological activities, including anti-obesity, anti-diabetic, immunomodulatory, anti-tumor, antioxidant, skin-whitening, skin-moisturizing, anti-fatigue, and anti-cariogenic activities. Agar is also considered as an alternative sustainable source of biomass for chemical feedstock and biofuel production to substitute for the fossil resource. In this review, we summarize various biochemically characterized agarases, which are useful for industrial applications, such as neoagarooligosaccharide or agarooligosaccharide production and saccharification of agar. Additionally, we succinctly discuss various recent studies that have been conducted to investigate the versatile biological activities of agar-derived saccharides and biofuel production from agar biomass. This review provides a basic framework for understanding the importance of agarases and agar-derived saccharides with broad applications in pharmaceutical, cosmetic, food, and bioenergy industries.
Collapse
Affiliation(s)
- Si Hyoung Park
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Chang-Ro Lee
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea
| | - Soon-Kwang Hong
- Department of Biological Sciences, Myongji University, Yongin, Gyeonggido, 17058, Republic of Korea.
| |
Collapse
|
14
|
|
15
|
Jiang C, Liu Z, Sun J, Mao X. Characterization of a Novel α-Neoagarobiose Hydrolase Capable of Preparation of Medium- and Long-Chain Agarooligosaccharides. Front Bioeng Biotechnol 2020; 7:470. [PMID: 32064255 PMCID: PMC7000632 DOI: 10.3389/fbioe.2019.00470] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Accepted: 12/23/2019] [Indexed: 12/04/2022] Open
Abstract
α-Neoagarobiose hydrolase plays an important role in saccharification processes of marine biomass. In this study, an α-neoagarobiose hydrolase from Streptomyces coelicolor A3(2), designated as ScJC117, was identified, purified, and characterized. It has a sequence of 370 amino acids and belongs to the GH117 family. ScJC117 exhibited good activity under optimal hydrolysis conditions of pH 6.0 and 30°C, where it showed the Km and kcat for neoagarobiose of 11.57 mM and 0.48 s–1, respectively. ScJC117 showed the ability to hydrolyze neoagarooligosaccharides with the polymerization degrees of 2–14. A basis of catalytic activity toward the first α-1,3-glycosidic bond of the neoagarooligosaccharides from the non-reducing end, ScJC117 can be classified as an exo-type α-neoagarobiose hydrolase. These results suggested that ScJC117 could be used in the preparation of odd agarooligosaccharides (especially agaroheptaose-agaroundecaose) and 3,6-anhydro-L-galactose, which has a functional food additive potential. Moreover, ScJC117 can be used for comprehensive utilization of red algae.
Collapse
Affiliation(s)
- Chengcheng Jiang
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Zhen Liu
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Jianan Sun
- College of Food Science and Engineering, Ocean University of China, Qingdao, China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, China.,Laboratory for Marine Drugs and Bioproducts of Qingdao National Laboratory for Marine Science and Technology, Qingdao, China
| |
Collapse
|
16
|
Jin M, Gai Y, Guo X, Hou Y, Zeng R. Properties and Applications of Extremozymes from Deep-Sea Extremophilic Microorganisms: A Mini Review. Mar Drugs 2019; 17:md17120656. [PMID: 31766541 PMCID: PMC6950199 DOI: 10.3390/md17120656] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 11/18/2019] [Accepted: 11/19/2019] [Indexed: 01/09/2023] Open
Abstract
The deep sea, which is defined as sea water below a depth of 1000 m, is one of the largest biomes on the Earth, and is recognised as an extreme environment due to its range of challenging physical parameters, such as pressure, salinity, temperature, chemicals and metals (such as hydrogen sulphide, copper and arsenic). For surviving in such extreme conditions, deep-sea extremophilic microorganisms employ a variety of adaptive strategies, such as the production of extremozymes, which exhibit outstanding thermal or cold adaptability, salt tolerance and/or pressure tolerance. Owing to their great stability, deep-sea extremozymes have numerous potential applications in a wide range of industries, such as the agricultural, food, chemical, pharmaceutical and biotechnological sectors. This enormous economic potential combined with recent advances in sampling and molecular and omics technologies has led to the emergence of research regarding deep-sea extremozymes and their primary applications in recent decades. In the present review, we introduced recent advances in research regarding deep-sea extremophiles and the enzymes they produce and discussed their potential industrial applications, with special emphasis on thermophilic, psychrophilic, halophilic and piezophilic enzymes.
Collapse
Affiliation(s)
- Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
| | - Yingbao Gai
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Xun Guo
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Yanping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
| | - Runying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, Ministry of Natural Resources, Xiamen 361000, China; (M.J.); (Y.G.); (X.G.); (Y.H.)
- Southern Marine Science and Engineering Guangdong Laboratory (Zhuhai), Zhuhai 519000, China
- Correspondence: ; Tel.: +86-592-2195323
| |
Collapse
|
17
|
Molecular Cloning and Characterization of a Novel Cold-Adapted Alkaline 1,3-α-3,6-Anhydro-l-galactosidase, Ahg558, from Gayadomonas joobiniege G7. Appl Biochem Biotechnol 2019; 188:1077-1095. [DOI: 10.1007/s12010-019-02963-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2018] [Accepted: 01/30/2019] [Indexed: 01/25/2023]
|
18
|
Kim DH, Yun EJ, Lee SH, Kim KH. Novel Two-Step Process Utilizing a Single Enzyme for the Production of High-Titer 3,6-Anhydro-l-galactose from Agarose Derived from Red Macroalgae. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:12249-12256. [PMID: 30354118 DOI: 10.1021/acs.jafc.8b04144] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/08/2023]
Abstract
3,6-Anhydro-l-galactose (l-AHG), a major component of agarose derived from red macroalgae, has excellent potential for industrial applications based on its physiological activities such as skin whitening, moisturizing, anticariogenicity, and anti-inflammation. However, l-AHG is not yet commercially available due to the complexity, inefficiency, and high cost of the current processes for producing l-AHG. Currently, l-AHG production depends on a multistep process requiring several enzymes. Here, we designed and tested a novel two-step process for obtaining high-titer l-AHG by using a single enzyme. First, to depolymerize agarose preferentially into agarobiose (AB) at a high titer, the agarose prehydrolysis using phosphoric acid as a catalyst was optimized at a 30.7% (w/v) agarose loading, which is the highest agarose or agar loading reported so far. Then AB produced by the prehydrolysis was hydrolyzed into l-AHG and d-galactose (d-Gal) by using a recently discovered enzyme, Bgl1B. We suggest that this simple and efficient process could be a feasible solution for the commercialization and mass production of l-AHG.
Collapse
Affiliation(s)
- Dong Hyun Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Sang-Hyun Lee
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School , Korea University , Seoul 02841 , South Korea
| |
Collapse
|
19
|
Wang Q, Sun J, Liu Z, Huang W, Xue C, Mao X. Coimmobilization of β-Agarase and α-Neoagarobiose Hydrolase for Enhancing the Production of 3,6-Anhydro-l-galactose. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2018; 66:7087-7095. [PMID: 29893561 DOI: 10.1021/acs.jafc.8b01974] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
Here we report a simple and efficient method to produce 3,6-anhydro-l-galactose (l-AHG) and agarotriose (AO3) in one step by a multienzyme system with the coimmobilized β-agarase AgWH50B and α-neoagarobiose hydrolase K134D. K134D was obtained by AgaWH117 mutagenesis and showed improved thermal stability when immobilized via covalent bonds on functionalized magnetic nanoparticles. The obtained multienzyme biocatalyst was characterized by Fourier transform infrared spectroscopy (FTIR). Compared with free agarases, the coimmobilized agarases exhibited a relatively higher agarose-to-l-AHG conversion efficiency. The yield of l-AHG obtained with the coimmobilized agarases was 40.6%, which was 6.5% higher than that obtained with free agarases. After eight cycles, the multienzyme biocatalyst still preserved 46.4% of the initial activity. To the best of our knowledge, this is the first report where two different agarases were coimmobilized. These results demonstrated the feasibility of the new method to fabricate a new multienzyme system onto magnetic nanoparticles via covalent bonds to produce l-AHG.
Collapse
Affiliation(s)
- Qidong Wang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Jianan Sun
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Zhen Liu
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Wencan Huang
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
| | - Changhu Xue
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| | - Xiangzhao Mao
- College of Food Science and Engineering , Ocean University of China , Qingdao 266003 , China
- Laboratory for Marine Drugs and Bioproducts , Qingdao National Laboratory for Marine Science and Technology , Qingdao 266237 , China
| |
Collapse
|
20
|
Rajkumar P, Venkatesan R, Sasikumar S, Ramprasath T, Karuppiah PS, Ramu A, Selvam GS. Characterization of agarolytic enzymes of Arthrobacter spp. AG-1 for the whole cell conversion of agar into 3,6-anhydro-α- l -galactose in one pot. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.03.017] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
21
|
Kim SW, Kim YW, Hong CH, Lyo IW, Lim HD, Kim GJ, Shin HJ. Recombinant agarase increases the production of reducing sugars from HCl-treated Gracilaria verrucosa, a red algae. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.01.008] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
22
|
Yun EJ, Yu S, Kim KH. Current knowledge on agarolytic enzymes and the industrial potential of agar-derived sugars. Appl Microbiol Biotechnol 2017; 101:5581-5589. [DOI: 10.1007/s00253-017-8383-5] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/05/2017] [Accepted: 06/09/2017] [Indexed: 10/19/2022]
|
23
|
Fusion of agarase and neoagarobiose hydrolase for mono-sugar production from agar. Appl Microbiol Biotechnol 2016; 101:1573-1580. [PMID: 27888333 DOI: 10.1007/s00253-016-8011-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/18/2016] [Revised: 11/11/2016] [Accepted: 11/14/2016] [Indexed: 10/20/2022]
Abstract
In enzymatic saccharification of agar, endo- and exo-agarases together with neoagarobiose hydrolase (NABH) are important key enzymes for the sequential hydrolysis reactions. In this study, a bifunctional endo/exo-agarase was fused with NABH for production of mono-sugars (D-galactose and 3,6-anhydro-L-galactose) from agar using only one fusion enzyme. Two fusion enzymes with either bifunctional agarase (Sco3476) or NABH (Zg4663) at the N-terminus, Sco3476-Zg4663 (SZ) and Zg4663-Sco3476 (ZS), were constructed. Both fusion enzymes exhibited their optimal agarase and NABH activities at 40 and 35 °C, respectively. Fusions SZ and ZS enhanced the thermostability of the NABH activity, while only fusion SZ showed a slight enhancement in the NABH catalytic efficiency (K cat/K M) from 14.8 (mg/mL)-1 s-1 to 15.8 (mg/mL)-1 s-1. Saccharification of agar using fusion SZ resulted in 2-fold higher mono-sugar production and 3-fold lower neoagarobiose accumulation when compared to the physical mixture of Sco3476 and Zg4663. Therefore, this fusion has the potential to reduce enzyme production cost, decrease intermediate accumulation, and increase mono-sugar yield in agar saccharification.
Collapse
|
24
|
Effective production of fermentable sugars from brown macroalgae biomass. Appl Microbiol Biotechnol 2016; 100:9439-9450. [DOI: 10.1007/s00253-016-7857-1] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2016] [Revised: 09/06/2016] [Accepted: 09/13/2016] [Indexed: 01/30/2023]
|
25
|
Chen XL, Hou YP, Jin M, Zeng RY, Lin HT. Expression and Characterization of a Novel Thermostable and pH-Stable β-Agarase from Deep-Sea Bacterium Flammeovirga Sp. OC4. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2016; 64:7251-7258. [PMID: 27594377 DOI: 10.1021/acs.jafc.6b02998] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/06/2023]
Abstract
A novel gene (aga4436), encoding a potential agarase of 456 amino acids, was identified in the genome of deep-sea bacterium Flammeovirga sp. OC4. Aga4436 belongs to the glycoside hydrolase 16 β-agarase family. Aga4436 was expressed in Escherichia coli as a fusion protein and purified. Recombinant Aga4436 showed an optimum agarase activity at 50-55 °C and pH 6.5, with a wide active range of temperatures (30-80 °C) and pHs (5.0-10.0). Notably, Aga4436 retained more than 90%, 80%, and 35% of its maximum activity after incubation at 30 °C, 40 °C, and 50 °C for 144 h, respectively, which exhibited an excellent thermostability in medium-high temperatures. Besides, Aga4436 displayed a remarkable tolerance to acid and alkaline environments, as it retained more than 70% of its maximum activity at a wide range of pHs from 3.0 to 10.0 after incubation in tested pHs for 60 min. These desirable properties of Aga4436 could make Aga4436 attractive in the food and nutraceutical industries.
Collapse
Affiliation(s)
- Xing-Lin Chen
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, China
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, State Oceanic Administration , Xiamen, Fujian 361005, China
| | - Yan-Ping Hou
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, State Oceanic Administration , Xiamen, Fujian 361005, China
| | - Min Jin
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, State Oceanic Administration , Xiamen, Fujian 361005, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou, Guangdong 510000, China
| | - Run-Ying Zeng
- State Key Laboratory Breeding Base of Marine Genetic Resource, Third Institute of Oceanography, State Oceanic Administration , Xiamen, Fujian 361005, China
- South China Sea Bio-Resource Exploitation and Utilization Collaborative Innovation Center , Guangzhou, Guangdong 510000, China
| | - He-Tong Lin
- College of Food Science, Fujian Agriculture and Forestry University , Fuzhou, Fujian 350002, China
| |
Collapse
|
26
|
Kim JH, Yun EJ, Seo N, Yu S, Kim DH, Cho KM, An HJ, Kim JH, Choi IG, Kim KH. Enzymatic liquefaction of agarose above the sol–gel transition temperature using a thermostable endo-type β-agarase, Aga16B. Appl Microbiol Biotechnol 2016; 101:1111-1120. [DOI: 10.1007/s00253-016-7831-y] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2016] [Revised: 08/14/2016] [Accepted: 08/21/2016] [Indexed: 11/30/2022]
|
27
|
Alkotaini B, Han NS, Kim BS. Enhanced catalytic efficiency of endo-β-agarase I by fusion of carbohydrate-binding modules for agar prehydrolysis. Enzyme Microb Technol 2016; 93-94:142-149. [PMID: 27702474 DOI: 10.1016/j.enzmictec.2016.08.010] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2016] [Revised: 07/23/2016] [Accepted: 08/17/2016] [Indexed: 11/16/2022]
Abstract
Recently, Microbulbifer thermotolerans JAMB-A94 endo-β-agarase I was expressed as catalytic domain (GH16) without a carbohydrate-binding module (CBM). In this study, we successfully constructed different fusions of GH16 with its original CBM6 and CBM13 derived from Catenovulum agarivorans. The optimum temperature and pH for fusions GH16-CBM6, GH16-CBM13, GH16-CBM6-CBM13 and GH16-CBM13-CBM6 were similar to GH16, at 55°C and pH 7. All the constructed fusions significantly enhanced the GH16 affinity (Km) and the catalytic efficiency (Kcat/Km) toward agar. Among them, GH16-CBM6-CBM13 exhibited the highest agarolytic activity, for which Km decreased from 3.67 to 2.11mg/mL and Kcat/Km increased from 98.6 (mg/mL)-1sec-1 to 400.6 (mg/mL)-1sec-1. Moreover, all fusions selectively increased GH16 binding ability to agar, in which the highest binding ability of 95% was obtained with fusion GH16-CBM6-CBM13. Melted agar was prehydrolyzed with GH16-CBM6-CBM13, resulting in a degree of liquefaction of 45.3% and reducing sugar yield of 14.2%. Further addition of Saccharophagus degradans agarolytic enzymes resulted in mono-sugar yields of 35.4% for galactose and 31.5% for 3,6-anhydro-l-galactose. There was no pH neutralization step required and no 5-hydroxymethylfurfural detected, suggesting the potential of a new enzymatic prehydrolysis process for efficient production of bio-products such as biofuels.
Collapse
Affiliation(s)
- Bassam Alkotaini
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea
| | - Nam Soo Han
- Department of Food Science and Biotechnology, Chungbuk National University, Cheongju, Chungbuk, 28644, Republic of Korea
| | - Beom Soo Kim
- Department of Chemical Engineering, Chungbuk National University, Cheongju, Chungbuk 28644, Republic of Korea.
| |
Collapse
|
28
|
Biochemical Characteristics and Substrate Degradation Pattern of a Novel Exo-Type β-Agarase from the Polysaccharide-Degrading Marine Bacterium Flammeovirga sp. Strain MY04. Appl Environ Microbiol 2016; 82:4944-54. [PMID: 27260364 DOI: 10.1128/aem.00393-16] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2016] [Accepted: 06/01/2016] [Indexed: 11/20/2022] Open
Abstract
UNLABELLED Exo-type agarases release disaccharide units (3,6-anhydro-l-galactopyranose-α-1,3-d-galactose) from the agarose chain and, in combination with endo-type agarases, play important roles in the processive degradation of agarose. Several exo-agarases have been identified. However, their substrate-degrading patterns and corresponding mechanisms are still unclear because of a lack of proper technologies for sugar chain analysis. Herein, we report the novel properties of AgaO, a disaccharide-producing agarase identified from the genus Flammeovirga AgaO is a 705-amino-acid protein that is unique to strain MY04. It shares sequence identities of less than 40% with reported GH50 β-agarases. Recombinant AgaO (rAgaO) yields disaccharides as the sole final product when degrading agarose and associated oligosaccharides. Its smallest substrate is a neoagarotetraose, and its disaccharide/agarose conversion ratio is 0.5. Using fluorescence labeling and two-stage mass spectrometry analysis, we demonstrate that the disaccharide products are neoagarobiose products instead of agarobiose products, as verified by (13)C nuclear magnetic resonance spectrum analysis. Therefore, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. Moreover, AgaO produces neoagarobiose products by gradually cleaving the units from the nonreducing end of fluorescently labeled sugar chains, and so our method represents a novel biochemical visualization of the exolytic pattern of an agarase. Various truncated AgaO proteins lost their disaccharide-producing capabilities, indicating a strict structure-function relationship for the whole enzyme. This study provides insights into the novel catalytic mechanism and enzymatic properties of an exo-type β-agarase for the benefit of potential future applications. IMPORTANCE Exo-type agarases can degrade agarose to yield disaccharides almost exclusively, and therefore, they are important tools for disaccharide preparation. However, their enzymatic mechanisms and agarose degradation patterns are still unclear due to the lack of proper technologies for sugar chain analysis. In this study, AgaO was identified as an exo-type agarase of agarose-degrading Flammeovirga bacteria, representing a novel branch of glycoside hydrolase family 50. Using fluorescence labeling, high-performance liquid chromatography, and mass spectrum analysis technologies, we provide a useful oligosaccharide sequencing method to determine the patterns of enzyme cleavage of glycosidic bonds. We also demonstrate that AgaO produces neoagarobiose by gradually cleaving disaccharides from the nonreducing end of fluorescently labeled sugars. This study will benefit future enzyme applications and oligosaccharide studies.
Collapse
|
29
|
Wang D, Yun EJ, Kim S, Kim DH, Seo N, An HJ, Kim JH, Cheong NY, Kim KH. Efficacy of acidic pretreatment for the saccharification and fermentation of alginate from brown macroalgae. Bioprocess Biosyst Eng 2016; 39:959-66. [PMID: 26923145 DOI: 10.1007/s00449-016-1575-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/25/2015] [Accepted: 02/16/2016] [Indexed: 11/24/2022]
Abstract
This study was performed to evaluate the effectiveness of acidic pretreatment in increasing the enzymatic digestibility of alginate from brown macroalgae. Pretreatment with 1 % (w/v) sulfuric acid at 120 °C for 30 min produced oligosaccharides, mannuronic acid, and guluronic acid. Enzymatic saccharification of pretreated alginate by alginate lyases produced 52.2 % of the theoretical maximal sugar yield, which was only 7.5 % higher than the sugar yield obtained with unpretreated alginate. Mass spectrometric analyses of products of the two reactions revealed that acidic pretreatment and enzymatic saccharification produced saturated monomers (i.e., mannuronic and guluronic acid) with saturated oligosaccharides and unsaturated monomers (i.e., 4-deoxy-L-erythro-5-hexoseulose uronic acid; DEH), respectively. While DEH is further metabolized by microorganisms, mannuronic acid and guluronic acid are not metabolizable. Because of the poor efficacy in increasing enzymatic digestibility and owing to the formation of non-fermentable saturated monomers, acidic pretreatment cannot be recommended for enzymatic saccharification and fermentation of alginate.
Collapse
Affiliation(s)
- Damao Wang
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Do Hyoung Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea
| | - Nari Seo
- Graduate School of Analytical Science and Technology, Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Hyun Joo An
- Graduate School of Analytical Science and Technology, Asia-Pacific Glycomics Reference Site, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Jae-Han Kim
- Department of Food and Nutrition, Chungnam National University, Daejeon, 34134, Republic of Korea
| | - Nam Yong Cheong
- Environmental Analysis Division, Korea Apparel Testing & Research Institute, Seoul, 02579, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul, 02841, Republic of Korea.
| |
Collapse
|
30
|
Direct production of ethanol from neoagarobiose using recombinant yeast that secretes α-neoagarooligosaccharide hydrolase. Enzyme Microb Technol 2016; 85:82-9. [DOI: 10.1016/j.enzmictec.2015.08.013] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/03/2015] [Revised: 08/19/2015] [Accepted: 08/20/2015] [Indexed: 11/19/2022]
|
31
|
Yun EJ, Kim HT, Cho KM, Yu S, Kim S, Choi IG, Kim KH. Pretreatment and saccharification of red macroalgae to produce fermentable sugars. BIORESOURCE TECHNOLOGY 2016; 199:311-318. [PMID: 26276401 DOI: 10.1016/j.biortech.2015.08.001] [Citation(s) in RCA: 35] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2015] [Revised: 07/30/2015] [Accepted: 08/01/2015] [Indexed: 05/28/2023]
Abstract
Red macroalgae are currently considered as renewable resources owing to their high carbohydrate and low lignin and hemicellulose contents. However, utilization of red macroalgae has been limited owing to the lack of established methods for pretreatment and an effective saccharification system. Furthermore, marine red macroalgae consist of the non-favorable mixed sugars for industrial microorganisms. In this review, we suggest strategies for converting red macroalgae to bio-based products, focusing on the pretreatment and saccharification of red macroalgae to produce fermentable sugars and the microbial fermentation of these sugars by industrial microorganisms. In particular, some recent breakthroughs for the efficient utilization of red macroalgae include the discovery of key enzymes for the complete monomerization of red macroalgal carbohydrate and the catabolic pathway of 3,6-anhydro-l-galactose, the most abundant sugar in red macroalgae. This review provides a comprehensive perspective for the efficient utilization of red macroalgae as sustainable resources to produce bio-based products.
Collapse
Affiliation(s)
- Eun Ju Yun
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Hee Taek Kim
- Center for Bio-based Chemistry, Korea Research Institute of Chemical Technology, Daejeon 305-600, Republic of Korea
| | - Kyung Mun Cho
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sora Yu
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Sooah Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - In-Geol Choi
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Graduate School, Korea University, Seoul 136-713, Republic of Korea.
| |
Collapse
|
32
|
Lee CH, Yun EJ, Kim HT, Choi IG, Kim KH. Saccharification of agar using hydrothermal pretreatment and enzymes supplemented with agarolytic β-galactosidase. Process Biochem 2015. [DOI: 10.1016/j.procbio.2015.06.017] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
33
|
Lee HJ, Kim SJ, Yoon JJ, Kim KH, Seo JH, Park YC. Evolutionary engineering of Saccharomyces cerevisiae for efficient conversion of red algal biosugars to bioethanol. BIORESOURCE TECHNOLOGY 2015; 191:445-451. [PMID: 25804535 DOI: 10.1016/j.biortech.2015.03.057] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2015] [Revised: 03/09/2015] [Accepted: 03/10/2015] [Indexed: 06/04/2023]
Abstract
The aim of this work was to apply the evolutionary engineering to construct a mutant Saccharomyces cerevisiae HJ7-14 resistant on 2-deoxy-D-glucose and with an enhanced ability of bioethanol production from galactose, a mono-sugar in red algae. In batch and repeated-batch fermentations, HJ7-14 metabolized 5-fold more galactose and produced ethanol 2.1-fold faster than the parental D452-2 strain. Transcriptional analysis of genes involved in the galactose metabolism revealed that moderate relief from the glucose-mediated repression of the transcription of the GAL genes might enable HJ7-14 to metabolize galactose rapidly. HJ7-14 produced 7.4 g/L ethanol from hydrolysates of the red alga Gelidium amansii within 12 h, which was 1.5-times faster than that observed with D452-2. We demonstrate conclusively that evolutionary engineering is a promising tool to manipulate the complex galactose metabolism in S. cerevisiae to produce bioethanol from red alga.
Collapse
Affiliation(s)
- Hye-Jin Lee
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea
| | - Soo-Jung Kim
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea; Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea
| | - Jeong-Jun Yoon
- IT Convergence Materials R&BD Group, Korea Institute of Industrial Technology, Chungnam 330-825, Republic of Korea
| | - Kyoung Heon Kim
- Department of Biotechnology, Korea University, Seoul 136-713, Republic of Korea
| | - Jin-Ho Seo
- Center for Food and Bioconvergence, Seoul National University, Seoul 151-921, Republic of Korea; Department of Agricultural Biotechnology, Seoul National University, Seoul 151-921, Republic of Korea
| | - Yong-Cheol Park
- Department of Bio and Fermentation Convergence Technology, Kookmin University, Seoul 136-702, Republic of Korea.
| |
Collapse
|
34
|
Tan IS, Lee KT. Solid acid catalysts pretreatment and enzymatic hydrolysis of macroalgae cellulosic residue for the production of bioethanol. Carbohydr Polym 2015; 124:311-21. [DOI: 10.1016/j.carbpol.2015.02.046] [Citation(s) in RCA: 26] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2014] [Revised: 02/24/2015] [Accepted: 02/24/2015] [Indexed: 10/23/2022]
|
35
|
Liu N, Yang M, Mao X, Mu B, Wei D. Molecular cloning and expression of a new α-neoagarobiose hydrolase from Agarivorans gilvus WH0801 and enzymatic production of 3,6-anhydro-l-galactose. Biotechnol Appl Biochem 2015; 63:230-7. [PMID: 25676340 DOI: 10.1002/bab.1363] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2014] [Accepted: 02/05/2015] [Indexed: 11/06/2022]
Abstract
A new α-neoagarobiose hydrolase (NABH) called AgaWH117 was cloned from Agarivorans gilvus WH0801. The gene encoding this hydrolase consists of 1,086 bp and encodes a protein containing 361 amino acids. This new NABH showed 74% amino acid sequence identity with other known NABHs. The molecular mass of the recombinant AgaWH117 was estimated to be 41 kDa. Purified AgaWH117 showed endolytic activity during neoagarobiose degradation, yielding 3,6-anhydro-l-galactose (l-AHG) and d-galactose as products. It showed a maximum activity at a temperature of 30 °C and a pH of 6.0 and was stable at temperatures below 30 °C. Its Km and Vmax values were 2.094 mg/mL and 6.982 U/mg, respectively. The cloning strategy used and AgaWH117 isolated in this study will provide information on the saccharification process of marine biomass. This study provides a method to produce l-AHG from agarose by using AgaWH117 without an acid and describes its one-step purification by using Bio-Gel P2 chromatography.
Collapse
Affiliation(s)
- Nan Liu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China.,College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Meng Yang
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Xiangzhao Mao
- College of Food Science and Engineering, Ocean University of China, Qingdao, People's Republic of China
| | - Bozhong Mu
- Laboratory for Advanced Materials and Institute of Applied Chemistry, East China University of Science and Technology, Shanghai, People's Republic of China
| | - Dongzhi Wei
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, People's Republic of China
| |
Collapse
|
36
|
A novel agarolytic β-galactosidase acts on agarooligosaccharides for complete hydrolysis of agarose into monomers. Appl Environ Microbiol 2014; 80:5965-73. [PMID: 25038102 DOI: 10.1128/aem.01577-14] [Citation(s) in RCA: 51] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Marine red macroalgae have emerged to be renewable biomass for the production of chemicals and biofuels, because carbohydrates that form the major component of red macroalgae can be hydrolyzed into fermentable sugars. The main carbohydrate in red algae is agarose, and it is composed of D-galactose and 3,6-anhydro-L-galactose (AHG), which are alternately bonded by β1-4 and α1-3 linkages. In this study, a novel β-galactosidase that can act on agarooligosaccharides (AOSs) to release galactose was discovered in a marine bacterium (Vibrio sp. strain EJY3); the enzyme is annotated as Vibrio sp. EJY3 agarolytic β-galactosidase (VejABG). Unlike the lacZ-encoded β-galactosidase from Escherichia coli, VejABG does not hydrolyze common substrates like lactose and can act only on the galactose moiety at the nonreducing end of AOS. The optimum pH and temperature of VejABG on an agarotriose substrate were 7 and 35°C, respectively. Its catalytic efficiency with agarotriose was also similar to that with agaropentaose or agaroheptaose. Since agarotriose lingers as the unreacted residual oligomer in the currently available saccharification system using β-agarases and acid prehydrolysis, the agarotriose-hydrolyzing capability of this novel β-galactosidase offers an enormous advantage in the saccharification of agarose or agar in red macroalgae for its use as a biomass feedstock for fermentable sugar production.
Collapse
|
37
|
Liang SS, Chen YP, Chen YH, Chiu SH, Liaw LL. Characterization and overexpression of a novel β
-agarase from Thalassomonas agarivorans. J Appl Microbiol 2013; 116:563-72. [DOI: 10.1111/jam.12389] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2013] [Revised: 11/03/2013] [Accepted: 11/07/2013] [Indexed: 11/30/2022]
Affiliation(s)
- S.-S. Liang
- Food Industry Research and Development Institute; Bioresource Collection and Research Center; HsinChu Taiwan
| | - Y.-P. Chen
- Department of Biological Science and Technology; China University of Science and Technology; Taipei Taiwan
| | - Y.-H. Chen
- Food Industry Research and Development Institute; Bioresource Collection and Research Center; HsinChu Taiwan
| | - S.-H. Chiu
- Food Industry Research and Development Institute; Bioresource Collection and Research Center; HsinChu Taiwan
| | - L.-L. Liaw
- Food Industry Research and Development Institute; Bioresource Collection and Research Center; HsinChu Taiwan
| |
Collapse
|