1
|
Shen Y, Chen B, Wang S, Li A, Ji B. Necessity of stirring for outdoor microalgal-bacterial granular sludge process. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 345:118816. [PMID: 37598492 DOI: 10.1016/j.jenvman.2023.118816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2023] [Revised: 08/02/2023] [Accepted: 08/12/2023] [Indexed: 08/22/2023]
Abstract
As a green process, microalgal-bacterial granular sludge (MBGS) process shows talents in achieving pollutant removal, resource recovery and carbon neutralization. However, when it comes to application, the adequate mixing of MBGS and substrate should be adopted theoretically. Therefore, this study devoted to address the necessity of stirring for MBGS in municipal wastewater treatment. Outdoor performances showed that stirring significantly enhanced both of the photosynthetic efficiency and biomass productivity of MBGS with almost 2-fold increase as compared to non-stirred MBGS, while the average pore size and microalgae-to-bacteria ratio also increased. Consequently, stirring acted as a pivotal role in accelerating pollutants removal, with removals of organics (89.89% COD) and nutrients (99.22% NH4+-N, 92.15% PO43--P) reaching peak levels at 2 h and 6 h, respectively, while removals of organics (87.50% COD) and nutrients (86.11% NH4+-N, 86.76% PO43--P) removal peaked at 8 h for non-stirred MBGS. The improved granule characteristics and microbial compositions due to the stirring were found to be favorable for MBGS to adapting to the changeable weather. Based on the above results, the possible underlying mechanisms of stirring for improving MBGS were illustrated. Overall, stirring positively impacted the photosynthetic efficiency, biomass productivity, pollutant removal and microbial structure for MBGS. This study gains knowledge on stirred MBGS process under outdoor conditions for its future practical application.
Collapse
Affiliation(s)
- Yao Shen
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Bingheng Chen
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China
| | - Shuo Wang
- Jiangsu Key Laboratory of Anaerobic Biotechnology, School of Environment and Civil Engineering, Jiangnan University, Wuxi, 214122, China
| | - Anjie Li
- Key Laboratory of Water and Sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, 100875, China
| | - Bin Ji
- Department of Water and Wastewater Engineering, Wuhan University of Science and Technology, Wuhan, 430065, China; Hubei Provincial Engineering Research Center of Urban Regeneration, Wuhan University of Science and Technology, Wuhan, 430065, China.
| |
Collapse
|
2
|
Ahangar AK, Yaqoubnejad P, Divsalar K, Mousavi S, Taghavijeloudar M. Design a novel internally illuminated mirror photobioreactor to improve microalgae production through homogeneous light distribution. BIORESOURCE TECHNOLOGY 2023; 387:129577. [PMID: 37517708 DOI: 10.1016/j.biortech.2023.129577] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Revised: 07/24/2023] [Accepted: 07/25/2023] [Indexed: 08/01/2023]
Abstract
In this study, a novel internally illuminated mirror photobioreactor (IIM-PBR) was designed to improve microalgae biomass production through providing a homogenous light distribution in cultivation medium. The performance of the IIM-PBR was compared with internally illuminated control photobioreactor (IIC-PBR) and externally illuminated control photobioreactor (EIC-PBR) in terms of cell growth, wastewater treatment and bioproducts generation. Compared with the IIC-PBR and EIC-PBR, the IIM-PBR increased microalgae growth rate up to 60 % and 30%, respectively. Municipal wastewater treatment revealed that the IIM-PBR could significantly improve nutrients removal as the final removal efficiencies of 90%, 95% and 90% were obtained for nitrate, phosphate and COD, respectively. Moreover, the IIM-PBR increased the total bioproducts production by 89% and 46% compared to in the IIC-PBR and EIC-PBR, respectively. Based on the energy consumption calculation, the mirror's light-reflective properties of the IIM-PBR resulted in a significant reduction of total energy consumption (∼10 times).
Collapse
Affiliation(s)
- Alireza Khaleghzadeh Ahangar
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Poone Yaqoubnejad
- Department of Environmental Engineering, Faculty of Civil Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Keyhan Divsalar
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Shokouh Mousavi
- Faculty of Chemical Engineering, Babol Noshirvani University of Technology, 47148-71167 Babol, Iran
| | - Mohsen Taghavijeloudar
- Department of Civil and Environmental Engineering, Seoul National University, 151-744 Seoul, South Korea.
| |
Collapse
|
3
|
Bosman CE, Pott RWM, Bradshaw SM. Modelling and testing of a light reflector system for the enhancement of biohydrogen production in a thermosiphon photobioreactor. J Biotechnol 2023; 361:57-65. [PMID: 36462618 DOI: 10.1016/j.jbiotec.2022.11.016] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 09/21/2022] [Accepted: 11/28/2022] [Indexed: 12/02/2022]
Abstract
One of the main factors affecting hydrogen production and growth of photofermentative microorganisms is light; low light penetration and utilization are significant bottlenecks in photofermentative hydrogen production systems. In this study, light distribution in a thermosiphon photobioreactor operated with Rhodopseudomonas palustris was investigated. Radiation fields were modelled and simulated using computational fluid dynamics (ANSYS® Fluent, 2019 R2) and a reflector system was evaluated for the enhancement of light distribution in a thermosiphon photobioreactor. The effect of the reflector system was investigated experimentally in terms of hydrogen production, carbon substrate consumption and biomass circulation in the reactor. With the addition of the reflector system, hydrogen production was increased by 48% while glycerol consumption was increased from approximately 24% to 32%. After 336 h, the concentration of R. palustris cells still in suspension ranged from 0.13 to 0.18 g∙L-1, with no discernible difference in concentration between the systems with and without reflectors. Collectively, the reflector system was shown to be a viable option in enhancing light distribution in photobioreactors, with an associated increase in both hydrogen production as well as glycerol consumption.
Collapse
Affiliation(s)
- Catharine Elizabeth Bosman
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch 7600, South Africa.
| | | | - Steven Martin Bradshaw
- Department of Process Engineering, Stellenbosch University, Banghoek Road, Stellenbosch 7600, South Africa.
| |
Collapse
|
4
|
Guo X, Xia A, Zhang W, Huang Y, Zhu X, Zhu X, Liao Q. Photoenzymatic decarboxylation: A promising way to produce sustainable aviation fuels and fine chemicals. BIORESOURCE TECHNOLOGY 2023; 367:128232. [PMID: 36332862 DOI: 10.1016/j.biortech.2022.128232] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/25/2022] [Accepted: 10/26/2022] [Indexed: 06/16/2023]
Abstract
As one of the fastest-growing carbon emission sources, the aviation sector is severely restricted by carbon emission reduction targets. Sustainable aviation fuel (SAF) has emerged as the most potential alternative to traditional aviation fuel, but harsh production technologies limit its commercialization. Fatty acids photodecarboxylase from Chlorella variabilis NC64A (CvFAP), the latest discovered photoenzyme, provides promising approaches to produce various carbon-neutral biofuels and fine chemicals. This review highlights the state-of-the-art strategies to enhance the application of CvFAP in carbon-neutral biofuel and fine chemicals production, including supplementing alkane as decoy molecular, screening efficient CvFAP variants with directed evolution, constructing genetic strains, employing biphasic catalytic system, and immobilizing CvFAP in an efficient photobioreactor. Furthermore, future opportunities are suggested to enhance photoenzymatic decarboxylation and explore the catalytic mechanism of CvFAP. This review provides a broad context to improve CvFAP catalysis and advance its potential applications.
Collapse
Affiliation(s)
- Xiaobo Guo
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China.
| | - Wuyuan Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin 300308, PR China; National Center of Technology Innovation for Synthetic Biology, Tianjin 300308, PR China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, PR China; Institute of Engineering Thermophysics, College of Energy and Power Engineering, Chongqing University, Chongqing 400044, PR China
| |
Collapse
|
5
|
Sun Y, Hu D, Chang H, Li S, Ho SH. Recent progress on converting CO 2 into microalgal biomass using suspended photobioreactors. BIORESOURCE TECHNOLOGY 2022; 363:127991. [PMID: 36262000 DOI: 10.1016/j.biortech.2022.127991] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Revised: 09/13/2022] [Accepted: 09/15/2022] [Indexed: 06/16/2023]
Abstract
Inhomogeneous light distribution and poor CO2 transfer capacity are two critical concerns impeding microalgal photosynthesis in practical suspended photobioreactors (PBRs). To provide valuable guidance on designing high-performance PBRs, recent progress on enhancing light and CO2 availabilities is systematically summarized in this review. Particularly, for the first time, the strategies on elevating light availability are classified and discussed from the perspectives of increasing incident light intensity, introducing internal illumination, optimizing flow field, regulating biomass concentrations, and enlarging illumination surface areas. Meanwhile, the strategies on enhancing CO2 light availability are outlined from the aspects of generating smaller bubbles, extending bubbles residence time, and facilitating CO2 dissolution using extra additives. Given the microalgal biomass production using current PBRs are still suffering from low productivity and economic feasibility, the possible future directions for PBRs implementation and development are presented. Altogether, this review is beneficial to furthering development of PBRs as a practical technology.
Collapse
Affiliation(s)
- Yahui Sun
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; Hebei Provincial Lab of Water Environmental Sciences, Hebei Provincial Academy of Ecological and Environmental Sciences, Shijiazhuang 050037, China
| | - Deshen Hu
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Shengnan Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
6
|
Shevelyuhina A, Babich O, Sukhikh S, Ivanova S, Kashirskih E, Smirnov V, Michaud P, Chupakhin E. Antioxidant and Antimicrobial Activity of Microalgae of the Filinskaya Bay (Baltic Sea). PLANTS 2022; 11:plants11172264. [PMID: 36079646 PMCID: PMC9460415 DOI: 10.3390/plants11172264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2022] [Revised: 08/08/2022] [Accepted: 08/27/2022] [Indexed: 11/25/2022]
Abstract
Microalgae are rich in proteins, carbohydrates, lipids, polyunsaturated fatty acids, vitamins, pigments, enzymes, and other biologically active substances. This research aimed to study the composition and antioxidant and antimicrobial activity of proteins, lipids, and carbohydrates of microalgae found in the Filinskaya Bay of the Kaliningrad region. The chemical composition of Scenedesmus intermedius and Scenedesmus obliquus microalgae biomass was studied. Ultrasound was used to isolate valuable components of microalgae. It was found that microalgae are rich in protein and contain lipids and reducing sugars. To confirm the accuracy of the determination, the protein content was measured using two methods (Kjeldahl and Bradford). Protein content in S. intermedius and S. obliquus microalgae samples did not differ significantly when measured using different methods. Protein extraction by the Kjeldahl method was found to be 63.27% for S. intermedius microalgae samples and 60.11% for S. obliquus microalgae samples. Protein content in S. intermedius samples was 63.46%, compared to 60.07% in S. obliquus samples, as determined by the Bradford method. Lipids were 8.0–8.2 times less abundant than protein in both types of microalgae samples. It was determined that the content of reducing sugars in the samples of the studied microalgae was 5.9 times less than the protein content. The presence of biological activity (antioxidant) in proteins and lipids obtained from biomass samples of the studied microscopic algae was established, which opens up some possibilities for their application in the food, chemical, and pharmaceutical industries (as enzymes, hormones, vitamins, growth substances, antibiotics, and other biologically active compounds).
Collapse
Affiliation(s)
- Alexandra Shevelyuhina
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Olga Babich
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Stanislav Sukhikh
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| | - Svetlana Ivanova
- Natural Nutraceutical Biotesting Laboratory, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Department of General Mathematics and Informatics, Kemerovo State University, Krasnaya Street 6, Kemerovo 650043, Russia
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Egor Kashirskih
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
- Rusextract, Tereshkovoy Street 51, Kemerovo 650070, Russia
| | - Vitaliy Smirnov
- Sodrugestvo Group, Gagarina Street 65, Svetly, Kaliningrad 238340, Russia
| | - Philippe Michaud
- Institut Pascal, Université Clermont Auvergne, CNRS, Clermont Auvergne INP, 63000 Clermont-Ferrand, France
- Correspondence: (S.I.); (P.M.); Tel.: +7-384-239-6832 (S.I.); +33-473407425 (P.M.)
| | - Evgeny Chupakhin
- Institute of Living Systems, Immanuel Kant Baltic Federal University, A. Nevskogo Street 14, Kaliningrad 236016, Russia
| |
Collapse
|
7
|
Singh V, Mishra V. A review on the current application of light-emitting diodes for microalgae cultivation and its fiscal analysis. Crit Rev Biotechnol 2022:1-15. [PMID: 35658771 DOI: 10.1080/07388551.2022.2057274] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
Microalgae are the promising source of products having a low and high economic value that include feedstock and vitamin supplements. Presently, their cultivation is being carried out by using sunlight in the open raceway ponds. However, this process has disadvantages like fluctuations in irradiance of the sunlight due to climatic changes and bad weather. Artificial lights, exploiting light-emitting diodes are beneficial in increasing the volumetric productivity of the microalgal biomass as it provides continuous illumination in the photobioreactors and assist in the external and internal design. However, the application of light-emitting diodes accrues high input costs. Though the cost of light-emitting diodes was estimated long ago, there is no recent economic analysis of the same. This study aims to enlist the applications of light-emitting diodes in microalgal cultivation with reference to internally illuminated photobioreactors coupled with the evaluation of the cost and energy balance of the artificial lights. The calculation shows that the electrical energy cost incurred during the application of light-emitting diodes for microalgae cultivation is approximately USD 15.19 kg-1 DW. The collective fraction of electrical energy transformed into chemical energy (microalgae biomass) is around 6-8%. The cost of the light-emitting diodes can be decreased by the application of an Arduino-based automated control system to control the power supply to LEDs, photovoltaic powered photobioreactors and additional light. These techniques of input cost reduction have also been explored deeply in the present study. As estimated, they can reduce the cost of light-emitting diodes by 50%.HighlightsDiscussion on the current application of light-emitting diodes for microalgae cultivationA broad discussion on internally illuminated photobioreactors and their modificationsMicroalgae cultivation cost exploiting LEDs' is around USD 15.19 kg-1 DWNet conservation of electrical energy during the cultivation process is 6-8%Photovoltaic powered PBRs and Arduino microcontrollers will decrease cultivation cost.
Collapse
Affiliation(s)
- Vishal Singh
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| | - Vishal Mishra
- School of Biochemical Engineering, Indian Institute of Technology (Banaras Hindu University), Varanasi, India
| |
Collapse
|
8
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
9
|
Shankar U, Lenka SK, Leigh Ackland M, Callahan DL. Review of the structures and functions of algal photoreceptors to optimize bioproduct production with novel bioreactor designs for strain improvement. Biotechnol Bioeng 2022; 119:2031-2045. [PMID: 35441370 DOI: 10.1002/bit.28116] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Revised: 04/15/2022] [Accepted: 04/15/2022] [Indexed: 11/11/2022]
Abstract
Microalgae are important renewable feedstock to produce biodiesel and high-value chemicals. Different wavelengths of light influence the growth and metabolic activities of algae. Recent research has identified the light-sensing proteins called photoreceptors that respond to blue or red light. Structural elucidations of algal photoreceptors have gained momentum over recent years. These include channelrhodopsins, PHOT proteins, animal-like cryptochromes, blue-light sensors utilizing flavin-adenine dinucleotide (BLUF) proteins. Pulsing light has also been investigated as a means to optimize energy inputs into bioreactors. This review summarizes the current structural and functional basis of photoreceptor modulation to optimize the growth, production of carotenoids and other high-value metabolites from microalgae. The review also encompasses novel photobioreactor designs that implement different light regimes including light wavelengths and time to optimize algal growth and desired metabolite profiles for high-value products. This article is protected by copyright. All rights reserved.
Collapse
Affiliation(s)
- Uttara Shankar
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Sangram K Lenka
- TERI-Deakin Nanobiotechnology Centre, The Energy and Resources Institute, Gurugram, Haryana, 122001, India.,Gujarat Biotechnology University, Gandhinagar, Gujarat, 382355, India
| | - M Leigh Ackland
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| | - Damien L Callahan
- Deakin University, Geelong, Australia. School of Life and Environmental Sciences, (Burwood Campus), Centre for Cellular and Molecular biology. 221 Burwood Highway, Burwood, VIC, 3125, Australia
| |
Collapse
|
10
|
Effect of hydrodynamic parameters on hydrogen production by Anabaena sp. in an internal-loop airlift photobioreactor. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00245-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
11
|
Wang Q, Wei D, Luo X, Zhu J, Rong J. Ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella-based photo-fermentation with optimal light-emitting diode illumination: From laboratory to pilot plant. BIORESOURCE TECHNOLOGY 2022; 348:126779. [PMID: 35104651 DOI: 10.1016/j.biortech.2022.126779] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 01/21/2022] [Accepted: 01/22/2022] [Indexed: 06/14/2023]
Abstract
To achieve ultrahigh recovery rate of nitrate from synthetic wastewater by Chlorella pyrenoidosa-based photo-fermentation, light-emitting diode (LED) spectrum was firstly evaluated in 5-L glass photo-fermenter with surrounding LED panels. Results showed that warm white LED was favorable to improve biomass yield and recovery rate of nutrients than mixed white LED. When scaling up from laboratory (50-L, 500-L) to pilot scale photo-fermenter with inner LED panels, the maximum recovery rates of NO3- (5.77 g L-1 d-1) and PO43- (0.44 g L-1 d-1) were achieved in 10,000-L photo-fermenter, along with high productivity of biomass (11.06 g L-1 d-1), protein (3.95 g L-1 d-1) and lipids (3.79 g L-1 d-1), respectively. This study demonstrated that photo-fermenter with inner warm white LED illumination is a superhigh-efficient system for nitrate and phosphate recovery with algal biomass coproduction, providing a promising application in pilot demonstration of wastewater bioremediation and facilitating novel facility development for green manufacturing.
Collapse
Affiliation(s)
- Qingke Wang
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Dong Wei
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China.
| | - Xiaoying Luo
- School of Food Science and Engineering, Guangdong Province Key Laboratory for Green Processing of Natural Products and Product Safety, Engineering Research Center of Starch and Vegetable Protein Processing Ministry of Education, South China University of Technology, Guangzhou 510640, PR China
| | - Junying Zhu
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| | - Junfeng Rong
- Research Center of Renewable Energy, Sinopec Research Institute of Petroleum Processing, College Road 18, Haidian district, Beijing 100083, PR China
| |
Collapse
|
12
|
Kilbane JJ. Shining a Light on Wastewater Treatment with Microalgae. ARABIAN JOURNAL FOR SCIENCE AND ENGINEERING 2022; 47:45-56. [PMID: 35036288 PMCID: PMC8752175 DOI: 10.1007/s13369-021-06444-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 07/28/2021] [Accepted: 11/25/2021] [Indexed: 12/28/2022]
Abstract
Microalgae can produce biofuels, nutriceuticals, pigments and many other products, but commercialization has been limited by the cost of growing, harvesting and processing algal biomass. Nutrients, chiefly nitrogen and phosphorus, are a key cost for growing microalgae, but these nutrients are present in abundance in municipal wastewater where they pose environmental problems if not removed. This is not a traditional review article; rather, it is a fact-based set of suggestions that will have to be investigated by scientists and engineers. It is suggested that if microalgae were grown as biofilms rather than as planktonic cells, and if internal illumination rather than external illumination were employed, then the use of microalgae may provide useful improvements to the wastewater treatment process. The use of microalgae to remove nutrients from wastewater has been demonstrated, but has not yet been widely implemented due to cost, and because microalgae derived from wastewater treatment has not yet been demonstrated as a commercial source for value-added products. Future facilities are likely to be called Municipal Resource Recovery Facilities as wastewater will increasingly be viewed as a resource for water, biofuels, fertilizer, monitoring public health and value-added products. Advances in photonics will accelerate this transition.
Collapse
|
13
|
Udayan A, Sirohi R, Sreekumar N, Sang BI, Sim SJ. Mass cultivation and harvesting of microalgal biomass: Current trends and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126406. [PMID: 34826565 DOI: 10.1016/j.biortech.2021.126406] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2021] [Revised: 11/16/2021] [Accepted: 11/18/2021] [Indexed: 06/13/2023]
Abstract
Microalgae are unicellular photosynthetic organisms capable of producing high-value metabolites like carbohydrates, lipids, proteins, polyunsaturated fatty acids, vitamins, pigments, and other high-value metabolites. Microalgal biomass gained more interest for the production of nutraceuticals, pharmaceuticals, therapeutics, food supplements, feed, biofuel, bio-fertilizers, etc. due to its high lipid and other high-value metabolite content. Microalgal biomass has the potential to convert trapped solar energy to organic materials and potential metabolites of nutraceutical and industrial interest. They have higher efficiency to fix carbon dioxide (CO2) and subsequently convert it into biomass and compounds of potential interest. However, to make microalgae a potential industrial candidate, cost-effective cultivation systems and harvesting methods for increasing biomass yield and reducing the cost of downstream processing have become extremely urgent and important. In this review, the current development in different microalgal cultivation systems and harvesting methods has been discussed.
Collapse
Affiliation(s)
- Aswathy Udayan
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Ranjna Sirohi
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea; Centre for Energy and Environmental Sustainability, Lucknow 226 029, Uttar Pradesh, India
| | - Nidhin Sreekumar
- Accubits Invent, Accubits Technologies Inc., Thiruvananthapuram 695 004, Kerala, India
| | - Byoung-In Sang
- Department of Chemical Engineering, Hanyang University, Seoul, South Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, Seoul South Korea.
| |
Collapse
|
14
|
Fu J, Huang Y, Liao Q, Zhu X, Xia A, Zhu X, Chang JS. Boosting photo-biochemical conversion and carbon dioxide bio-fixation of Chlorella vulgaris in an optimized photobioreactor with airfoil-shaped deflectors. BIORESOURCE TECHNOLOGY 2021; 337:125355. [PMID: 34120064 DOI: 10.1016/j.biortech.2021.125355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/12/2023]
Abstract
Aiming at ameliorating the poor hydrodynamic regimes and uneven light distribution in the conventional airlift flat-plate photobioreactor (AFP-PBR), a novel PBR with static airfoil-shaped deflectors (ASD-PBR) is proposed in this study to boost the microalgal biomass manipulation and hence the photo-biochemical conversion. The ASD module accelerated the circulation of microalgal suspension from the center to two sides with the help of bubbling so that the microalgal cells got more opportunities to access the light source. Compared with the control PBR, the solution velocity along the incident light direction increased by 114.8% in the newly-proposed ASD-PBR. Furthermore, the ASD module also served as a static mixer, which resulted in an increment of 11.5% in mass transfer coefficient and a decrement of 21.4% in mixing time. The amended hydrodynamic characteristics eventually contributed to an improvement of 18.3% and 10.9% in the maximum algal biomass yield and CO2 fixation rate, respectively.
Collapse
Affiliation(s)
- Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China.
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Xianqing Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, School of Energy and Power Engineering, Chongqing University, Chongqing 400044, China
| | - Jo-Shu Chang
- Department of Chemical and Materials Engineering, Tunghai University, Taichung 407, Taiwan; Research Center for Smart Sustainable Circular Economy, Tunghai University, Taichung 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan 701, Taiwan
| |
Collapse
|
15
|
Zhang H, Chen P, Russel M, Tang J, Jin P, Daroch M. Debottlenecking Thermophilic Cyanobacteria Cultivation and Harvesting through the Application of Inner-Light Photobioreactor and Chitosan. PLANTS (BASEL, SWITZERLAND) 2021; 10:plants10081540. [PMID: 34451585 PMCID: PMC8400073 DOI: 10.3390/plants10081540] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/05/2021] [Revised: 07/23/2021] [Accepted: 07/26/2021] [Indexed: 06/13/2023]
Abstract
Thermophilic cyanobacteria are a low-carbon environmental resource with high potential thanks to their innate temperature tolerance and thermostable pigment, phycocyanin, which enhances light utilisation efficiency and generates a high-value product. However, large-scale cultivation and harvesting have always been bottlenecks in unicellular cyanobacteria cultivation due to their micrometric size. In this study, a 40-litre inner-light photobioreactor (PBR) was designed for scaled-up cultivation of Thermosynechococcus elongatus E542. By analysing light transmission and attenuation in the PBR and describing it via mathematical models, the supply of light energy to the reactor was optimised. It was found that the hyperbolic model describes the light attenuation characteristics of the cyanobacterial culture more accurately than the Lambert-Beer model. The internal illumination mode was applied for strain cultivation and showed a two-fold better growth rate and four-fold higher biomass concentration than the same strain grown in an externally illuminated photobioreactor. Finally, the downstream harvesting process was explored. A mixture of chitosan solutions was used as a flocculant to facilitate biomass collection. The effect of the following parameters on biomass harvesting was analysed: solution concentration, flocculation time and flocculant concentration. The analysis revealed that a 4 mg L-1 chitosan solution is optimal for harvesting the strain. The proposed solutions can improve large-scale cyanobacterial biomass cultivation and processing.
Collapse
Affiliation(s)
- Hairuo Zhang
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Pengyu Chen
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Mohammad Russel
- School of Ocean Science and Technology, Dalian University of Technology, Panjin 124221, China;
| | - Jie Tang
- School of Food and Bioengineering, Chengdu University, Chengdu 610052, China;
| | - Peng Jin
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| | - Maurycy Daroch
- School of Environment and Energy, Peking University Shenzhen Graduate School, 2199 Lishui Rd., Shenzhen 518055, China; (H.Z.); (P.C.); (P.J.)
| |
Collapse
|
16
|
Enhancing CO 2 utilization by a physical absorption-based technique in microalgae culture. Bioprocess Biosyst Eng 2021; 44:1901-1912. [PMID: 33864126 DOI: 10.1007/s00449-021-02570-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2021] [Accepted: 04/08/2021] [Indexed: 10/21/2022]
Abstract
Carbon dioxide supplementation is significant for cell growth in autotrophic cultures of microalgae. However, the CO2 utilization efficiency is quite low in most processes. Aimed at this problem, six kinds of physical absorption enhancers were investigated to enhance the biological carbon sequestration of microalgae. By the addition of a small amount of CO2 absorption enhancer, the total inorganic carbon concentration of the medium was significantly increased. In addition, the biomass productivity of Scenedesmus dimorphus was maximally increased by 63% by the addition of propylene carbonate in flask cultures. In cultures using an air-lift photobioreactor equipped with a pH-feedback control system to supply CO2, the CO2 consumption was maximally reduced by 71% with added polyethylene glycol dimethyl ether. This study indicates that the incorporation of physical absorption enhancers could be a promising approach to overcome the problems of low CO2 utilization efficiency and high carbon source cost in algal biomass production.
Collapse
|
17
|
Sun Y, Yu G, Xiao G, Duan Z, Dai C, Hu J, Wang Y, Yang Y, Jiang X. Enhancing CO 2 photo-biochemical conversion in a newly-designed attached photobioreactor characterized by stacked horizontal planar waveguide modules. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 760:144041. [PMID: 33341632 DOI: 10.1016/j.scitotenv.2020.144041] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2020] [Revised: 11/15/2020] [Accepted: 11/19/2020] [Indexed: 06/12/2023]
Abstract
Aiming at alleviating the adverse effects on attached microalgae biofilm growth caused by heterogeneous spatial light distributions within the attached cultivation photobioreactors (PBRs), an innovative PBR integrated with stacked horizontal planar waveguide modules (SHPW-PBR) was proposed in this work. Different from the conventional PBR, the emergent light from the external LED light bars were guided and evenly redistributed within the SHPW-PBR by the planar waveguides and hence provided light energy for microalgae cells photoautotrophic growth. In comparison with the control PBR, the average light intensity illuminating the attached Chlorella vulgaris biofilm in the SHPW-PBR was elevated by 204.11% and contributed to a 145.20% improvement on areal C. vulgaris biofilm production. Thereafter, responses of attached C. vulgaris biofilm growth in the SHPW-PBR to various light intensities were evaluated and the maximum areal C. vulgaris biofilm density reached 90.43 g m-2 under the light intensity of 136 μmol m-2 s-1 after 9 days cultivation. Furthermore, the SHPW-PBR can be easily scaled-up by increasing the quantity of the stacked planar waveguide modules and thus shows great potential in biofilm-based biomass production.
Collapse
Affiliation(s)
- Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China; School of Life Sciences, Nanjing Normal University, Nanjing 210023, China; Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education of China, Chongqing University, Chongqing 400044, China
| | - Guotao Yu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Gang Xiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ziyang Duan
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Chuanchao Dai
- School of Life Sciences, Nanjing Normal University, Nanjing 210023, China
| | - Jun Hu
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yunjun Wang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Yu Yang
- College of Mechanical and Power Engineering, Chongqing University of Science & Technology, Chongqing 401331, China
| | - Xiaoxiang Jiang
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China.
| |
Collapse
|
18
|
Sun Y, Duan D, Chang H, Guo C. Optimizing Light Distributions in a Membrane Photobioreactor via Optical Fibers To Enhance CO 2 Photobiochemical Conversion by a Scenedesmus obliquus Biofilm. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.0c03854] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Yahui Sun
- Engineering Laboratory for Energy System Process Conversion & Emission Control Technology of Jiangsu Province, School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210023, China
| | - Danru Duan
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| | - Haixing Chang
- School of Chemistry and Chemical Engineering, Chongqing University of Technology, Chongqing 400054, China
| | - Chenglong Guo
- School of Electrical and Power Engineering, China University of Mining and Technology, Xuzhou 221116, China
| |
Collapse
|
19
|
Assunção J, Malcata FX. Enclosed “non-conventional” photobioreactors for microalga production: A review. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.102107] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
|
20
|
|
21
|
Khoo KS, Chew KW, Yew GY, Leong WH, Chai YH, Show PL, Chen WH. Recent advances in downstream processing of microalgae lipid recovery for biofuel production. BIORESOURCE TECHNOLOGY 2020; 304:122996. [PMID: 32115347 DOI: 10.1016/j.biortech.2020.122996] [Citation(s) in RCA: 114] [Impact Index Per Article: 28.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Revised: 02/07/2020] [Accepted: 02/08/2020] [Indexed: 05/11/2023]
Abstract
The world energy system faces two major challenges: the requirement for more energy and less carbon. It is important to address biofuels production as an alternative to the usage of fossil fuel by utilizing microalgae as the potential feedstock. Yet, the commercialization of microalgae remains contentious caused by factors relating to the life cycle assessment and feasibility of microalgae-based biofuels. This present review starts with an introduction to the benefits of microalgae, followed by intensive elaboration on microalgae cultivation parameters. Subsequently, the fundamental principle along with the advantages and disadvantages of various pretreatment techniques of microalgae were reviewed. In addition, the conventional and recent advances in lipid extraction techniques from microalgae were comprehensively evaluated. Comparative analysis regard to the gaps from previous studies was discussed point-by-point in each section. The effort presented in this review will provide an insight for future researches dealing with microalgae-biofuel production on downstream processing.
Collapse
Affiliation(s)
- Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Kit Wayne Chew
- School of Mathematical Sciences, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Wai Hong Leong
- Department of Fundamental and Applied Sciences, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Yee Ho Chai
- Biomass Processing Laboratory, HICOE - Center for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak Darul Ridzuan, Malaysia
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, Semenyih 43500, Selangor Darul Ehsan, Malaysia
| | - Wei-Hsin Chen
- Department of Aeronautics and Astronautics, National Cheng Kung University, Tainan 701, Taiwan; Department of Chemical and Materials Engineering, College of Engineering, Tunghai University, Taichung 407, Taiwan; Department of Mechanical Engineering, National Chin-Yi University of Technology, Taichung 411, Taiwan; Research Center for Energy Technology and Strategy, National Cheng Kung University, Tainan 701, Taiwan.
| |
Collapse
|
22
|
Raeisossadati M, Moheimani NR, Parlevliet D. Red luminescent solar concentrators to enhance Scenedesmus sp. biomass productivity. ALGAL RES 2020. [DOI: 10.1016/j.algal.2019.101771] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
23
|
Choi SA, Jeong Y, Lee J, Huh YH, Choi SH, Kim HS, Cho DH, Lee JS, Kim H, An HR, Lee S, Park EC, Kim SW, Hwang KR, Moon E, Oh YK, Lee HU. Biocompatible liquid-type carbon nanodots (C-paints) as light delivery materials for cell growth and astaxanthin induction of Haematococcus pluvialis. MATERIALS SCIENCE & ENGINEERING. C, MATERIALS FOR BIOLOGICAL APPLICATIONS 2019; 109:110500. [PMID: 32228981 DOI: 10.1016/j.msec.2019.110500] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2019] [Revised: 11/07/2019] [Accepted: 11/26/2019] [Indexed: 02/06/2023]
Abstract
In this study, we aimed to demonstrate the feasibility of the application of biocompatible liquid type fluorescent carbon nanodots (C-paints) to microalgae by improving microalgae productivity. C-paints were prepared by a simple process of ultrasound irradiation using polyethylene glycol (PEG) as a passivation agent. The resulting C-paints exhibited a carbonyl-rich surface with good uniformity of particle size, excellent water solubility, photo-stability, fluorescence efficiency, and good biocompatibility (<10.0 mg mL-1 of C-paints concentration). In the practical application of C-paints to microalgae culture, the most effective and optimized condition leading to growth promoting effect was observed at a C-paints concentration of 1.0 mg mL-1 (>20% higher than the control cell content). A C-paints concentration of 1-10.0 mg mL-1 induced an approximately >1.8 times higher astaxanthin content than the control cells. The high light delivery effect of non-cytotoxic C-paints was applied as a stress condition for H. pluvialis growth and was found to play a major role in enhancing productivity. Notably, the results from this study are an essential approach to improve astaxanthin production, which can be used in various applications because of its therapeutic effects such as cancer prevention, anti-inflammation, immune stimulation, and treatment of muscle-soreness.
Collapse
Affiliation(s)
- Sun-A Choi
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea; Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yesul Jeong
- Busan Center, Korea Basic Science Institute, Busan 46742, Republic of Korea
| | - Jiye Lee
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Yang Hoon Huh
- Electron Microscopy Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - Sae Hae Choi
- New Drug Development Center, K-BIOHEALTH, Chungbuk 28160, Republic of Korea
| | - Hee-Sik Kim
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Dae-Hyun Cho
- Cell Factory Research Center, Korea Research Institute of Bioscience and Biotechnology (KRIBB), Daejeon 34141, Republic of Korea
| | - Jin-Suk Lee
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Hyeran Kim
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Ha-Rim An
- Center for Research Equipment, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Suok Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea
| | - Edmond Changkyun Park
- Drug and disease target group, Korea Basic Science Institute, Daejeon 34133, Republic of Korea
| | - Seung Wook Kim
- Department of Chemical and Biological Engineering, Korea University, Seoul 02841, Republic of Korea; Department of Chemistry, Faculty of Science and Technology, Universitas Airlangga, 60115, Indonesia
| | - Kyung-Ran Hwang
- Climate Change Research Division, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Eunyoung Moon
- Electron Microscopy Research Center, Korea Basic Science Institute, Ochang 28119, Republic of Korea
| | - You-Kwan Oh
- School of Chemical & Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea..
| | - Hyun Uk Lee
- Division of Material Analysis and Research, Korea Basic Science Institute, Daejeon 305-333, Republic of Korea.
| |
Collapse
|
24
|
Raeisossadati M, Moheimani NR, Parlevliet D. Red and blue luminescent solar concentrators for increasing Arthrospira platensis biomass and phycocyanin productivity in outdoor raceway ponds. BIORESOURCE TECHNOLOGY 2019; 291:121801. [PMID: 31326685 DOI: 10.1016/j.biortech.2019.121801] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2019] [Revised: 07/10/2019] [Accepted: 07/11/2019] [Indexed: 06/10/2023]
Abstract
Achieving high biomass productivity is critical for establishing a successful large-scale algal facility. Microalgae cultures in raceway ponds are normally light limited. To achieve high biomass productivity, there is a need to develop a system to deliver light into the depth of microalgal cultures in raceway ponds. We investigated red and blue luminescent solar concentrators (LSCs) in outdoor raceway ponds to downgrade the sunlight, re-emit and, deliver it into the depth of Arthrospira platensis culture operated at 21 cm depth. When red LSCs were used, the biomass productivity (12.2 g m-2 d-1) and phycocyanin productivity (8.5 mg L-1 d-1) of A. platensis increased 26% and 44%, respectively. However, using blue LSCs resulted in no significant increase in A. platensis biomass productivity. Therefore, for generating same phycocyanin productivity using red LSCs, 44% less cultivation area would be required. This can lead to a significant reduction in the cost of phycocyanin production.
Collapse
Affiliation(s)
| | - Navid Reza Moheimani
- Algae R&D Centre, Murdoch University, Murdoch, Western Australia 6150, Australia; Centre for Sustainable Aquatic Ecosystems, Harry Butler Institute, Murdoch University, 6150, Australia.
| | - David Parlevliet
- School of Engineering and Information Technology, Physics and Energy, Murdoch University, Murdoch, Western Australia 6150, Australia
| |
Collapse
|
25
|
Design and Bench-Scale Hydrodynamic Testing of Thin-Layer Wavy Photobioreactors. WATER 2019. [DOI: 10.3390/w11071521] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
In a thin-volume photobioreactor where a concentrated suspension of microalgae is circulated throughout the established spatial irradiance gradient, microalgal cells experience a time-variable irradiance. Deploying this feature is the most convenient way of obtaining the so-called “flashing light” effect, improving biomass production in high irradiance. This work investigates the light flashing features of sloping wavy photobioreactors, a recently proposed type, by introducing and validating a computational fluid dynamics (CFD) model. Two characteristic flow zones (straight top-to-bottom stream and local recirculation stream), both effective toward light flashing, have been found and characterized: a recirculation-induced frequency of 3.7 Hz and straight flow-induced frequency of 5.6 Hz were estimated. If the channel slope is increased, the recirculation area becomes less stable while the recirculation frequency is nearly constant with flow rate. The validated CFD model is a mighty tool that could be reliably used to further increase the flashing frequency by optimizing the design, dimensions, installation, and operational parameters of the sloping wavy photobioreactor.
Collapse
|
26
|
Wondraczek L, Gründler A, Reupert A, Wondraczek K, Schmidt MA, Pohnert G, Nolte S. Biomimetic light dilution using side-emitting optical fiber for enhancing the productivity of microalgae reactors. Sci Rep 2019; 9:9600. [PMID: 31270355 PMCID: PMC6610090 DOI: 10.1038/s41598-019-45955-w] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Accepted: 06/19/2019] [Indexed: 12/31/2022] Open
Abstract
Photoautotrophic microbes present vast opportunities for sustainable lipid production, CO2 storage and green chemistry, for example, using microalgae beds to generate biofuels. A major challenge of microalgae cultivation and other photochemical reactors is the efficiency of light delivery. In order to break even on large scale, dedicated photon management will be required across all levels of reactor hierarchy – from the harvesting of light and its efficient injection and distribution inside of the reactor to the design of optical antenna and pathways of energy transfer on molecular scale. Here, we discuss a biomimetic approach for light dilution which enables homogeneous illumination of large reactor volumes with high optical density. We show that the immersion of side-emitting optical fiber within the reactor can enhance the fraction of illuminated volume by more than two orders of magnitude already at cell densities as low as ~5 104 ml−1. Using the green algae Haematococcus pluvialis as a model system, we demonstrate an increase in the rate of reproduction by up to 93%. Beyond micoralgae, the versatile properties of side-emitting fiber enable the injection and dilution of light with tailored spectral and temporal characteristics into virtually any reactor containment.
Collapse
Affiliation(s)
- Lothar Wondraczek
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743, Jena, Germany. .,Abbe Center of Photonics, University of Jena, Albert-Einstein-Strasse 6, 07745, Jena, Germany. .,Center of Energy and Environmental Chemistry, University of Jena, Philosophenweg 7, 07743, Jena, Germany.
| | - Alexander Gründler
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
| | - Aaron Reupert
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743, Jena, Germany
| | - Katrin Wondraczek
- Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Markus A Schmidt
- Otto Schott Institute of Materials Research, University of Jena, Fraunhoferstrasse 6, 07743, Jena, Germany.,Abbe Center of Photonics, University of Jena, Albert-Einstein-Strasse 6, 07745, Jena, Germany.,Leibniz Institute of Photonic Technology, Albert-Einstein-Strasse 9, 07745, Jena, Germany
| | - Georg Pohnert
- Institute of General and Inorganic Chemistry, University of Jena, Humboldtstrasse 8, 07745, Jena, Germany.,Max Planck Institute for Chemical Ecology, Hans-Knöll-Strasse 8, 07745, Jena, Germany
| | - Stefan Nolte
- Abbe Center of Photonics, University of Jena, Albert-Einstein-Strasse 6, 07745, Jena, Germany.,Institute of Applied Physics, University of Jena, Albert-Einstein-Strasse 15, 07745, Jena, Germany
| |
Collapse
|
27
|
Nwoba EG, Parlevliet DA, Laird DW, Alameh K, Moheimani NR. Light management technologies for increasing algal photobioreactor efficiency. ALGAL RES 2019. [DOI: 10.1016/j.algal.2019.101433] [Citation(s) in RCA: 61] [Impact Index Per Article: 12.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
28
|
Cho C, Nam K, Seo YH, Kim K, Park Y, Han JI, Lee JY. Study of Optical Configurations for Multiple Enhancement of Microalgal Biomass Production. Sci Rep 2019; 9:1723. [PMID: 30742048 PMCID: PMC6370833 DOI: 10.1038/s41598-018-38118-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2018] [Accepted: 12/10/2018] [Indexed: 11/13/2022] Open
Abstract
Microalga is a promising biomass feedstock to restore the global carbon balance and produce sustainable bioenergy. However, the present biomass productivity of microalgae is not high enough to be marketable mainly because of the inefficient utilization of solar energy. Here, we study optical engineering strategies to lead to a breakthrough in the biomass productivity and photosynthesis efficiency of a microalgae cultivation system. Our innovative optical system modelling reveals the theoretical potential (>100 g m−2 day−1) of the biomass productivity and it is used to compare the optical aspects of various photobioreactor designs previously proposed. Based on the optical analysis, the optimized V-shaped configuration experimentally demonstrates an enhancement of biomass productivity from 20.7 m−2 day−1 to 52.0 g m−2 day−1, under the solar-simulating illumination of 7.2 kWh m−2 day−1, through the dilution and trapping of incident energy. The importance of quantitative optical study for microalgal photosynthesis is clearly exhibited with practical demonstration of the doubled light utilization efficiencies.
Collapse
Affiliation(s)
- Changsoon Cho
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Kibok Nam
- Department of Chemical and Biomolecular Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea
| | - Yeong Hwan Seo
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Agency for Defense Development, Daejeon, 34188, Republic of Korea
| | - Kyoohyun Kim
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Biotechnology Center, Technische Universität Dresden, 01307, Dresden, Germany
| | - YongKeun Park
- Department of Physics, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.,Tomocube Inc., Daejeon, 34051, Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering, Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| | - Jung-Yong Lee
- Graduate School of Energy, Environment, Water, and Sustainability (EEWS), Korea Advanced Institute of Science and Technology (KAIST), Daejeon, 34141, Republic of Korea.
| |
Collapse
|
29
|
El-Baz FK, Baky HHAE. Pilot Scale of Microalgal Production Using Photobioreactor. PHOTOSYNTHESIS - FROM ITS EVOLUTION TO FUTURE IMPROVEMENTS IN PHOTOSYNTHETIC EFFICIENCY USING NANOMATERIALS 2018. [DOI: 10.5772/intechopen.78780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/01/2023]
|
30
|
Cheng J, Xu J, Lu H, Ye Q, Liu J, Zhou J. Generating cycle flow between dark and light zones with double paddlewheels to improve microalgal growth in a flat plate photo-bioreactor. BIORESOURCE TECHNOLOGY 2018; 261:151-157. [PMID: 29656228 DOI: 10.1016/j.biortech.2018.04.022] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2018] [Revised: 04/04/2018] [Accepted: 04/05/2018] [Indexed: 06/08/2023]
Abstract
Double paddlewheels were proposed to generate cycle flow for increasing horizontal fluid velocity between dark and light zones in a flat plate photo-bioreactor, which strengthened the mass transfer and the mixing effect to improve microalgal growth with 15% CO2. Numerical fluid dynamics were used to simulate the cycle flow field with double paddlewheels. The local flow field measured with particle image velocimetry fitted well with the numerical simulation results. The horizontal fluid velocity in the photo-bioreactor was markedly increased from 5.8 × 10-5 m/s to 0.45 m/s with the rotation of double paddlewheels, resulting in a decreased dark/light cycle period. Therefore, bubble formation time and diameter reduced by 24.4% and 27.4%, respectively. Meanwhile, solution mixing time reduced by 31.3% and mass transfer coefficient increased by 41.2%. The biomass yield of microalgae Nannochloropsis Oceanic increased by 127.1% with double paddlewheels under 15% CO2 condition.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Junchen Xu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Hongxiang Lu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jianzhong Liu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
31
|
Lanzarini-Lopes M, Delgado AG, Guo Y, Dahlen P, Westerhoff P. Optical fiber-mediated photosynthesis for enhanced subsurface oxygen delivery. CHEMOSPHERE 2018; 195:742-748. [PMID: 29289020 DOI: 10.1016/j.chemosphere.2017.12.089] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2017] [Revised: 12/10/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Remediation of polluted groundwater often requires oxygen delivery into subsurface to sustain aerobic bacteria. Air sparging or injection of oxygen containing solutions (e.g., hydrogen peroxide) into the subsurface are common. In this study visible light was delivered into the subsurface using radially emitting optical fibers. Phototrophic organisms grew near the optical fiber in a saturated sand column. When applying light in on-off cycles, dissolved oxygen (DO) varied from super saturation levels of >15 mg DO/L in presence of light to under-saturation (<5 mg DO/L) in absence of light. Non-photosynthetic bacteria dominated at longer radial distances from the fiber, presumably supported by soluble microbial products produced by the photosynthetic microorganisms. The dissolved oxygen variations alter redox condition changes in response to light demonstrate the potential to biologically deliver oxygen into the subsurface and support a diverse microbial community. The ability to deliver oxygen and modulate redox conditions on diurnal cycles using solar light may provide a sustainable, long term strategy for increasing dissolved oxygen levels in subsurface environments and maintaining diverse biological communities.
Collapse
Affiliation(s)
- Mariana Lanzarini-Lopes
- Arizona State University, School of Sustainable Engineering and the Built Environment, Box 3005, Tempe, AZ 85287-3005, USA
| | - Anca G Delgado
- Arizona State University, School of Sustainable Engineering and the Built Environment, Box 3005, Tempe, AZ 85287-3005, USA
| | - Yuanming Guo
- Arizona State University, School of Sustainable Engineering and the Built Environment, Box 3005, Tempe, AZ 85287-3005, USA
| | - Paul Dahlen
- Arizona State University, School of Sustainable Engineering and the Built Environment, Box 3005, Tempe, AZ 85287-3005, USA
| | - Paul Westerhoff
- Arizona State University, School of Sustainable Engineering and the Built Environment, Box 3005, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
32
|
Sun Y, Huang Y, Liao Q, Xia A, Fu Q, Zhu X, Fu J. Boosting Nannochloropsis oculata growth and lipid accumulation in a lab-scale open raceway pond characterized by improved light distributions employing built-in planar waveguide modules. BIORESOURCE TECHNOLOGY 2018; 249:880-889. [PMID: 29145114 DOI: 10.1016/j.biortech.2017.11.013] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/04/2017] [Revised: 11/03/2017] [Accepted: 11/04/2017] [Indexed: 06/07/2023]
Abstract
Aiming at alleviating the adverse effect of poor light penetrability on microalgae growth, planar waveguide modules functioned as diluting and redistributing the intense incident light within microalgae culture more homogeneously were introduced into a lab-scale open raceway pond (ORP) for Nannochloropsis oculata cultivation. As compared to the conventional ORP, the illumination surface area to volume ratio and effective illuminated volume percentage in the proposed ORP were respectively improved by 5.53 times and 19.68-172.72%. Consequently, the superior light distribution characteristics in the proposed ORP contributed to 193.33% and 443.71% increase in biomass concentration and lipid yield relative to those obtained in conventional ORP, respectively. Subsequently, the maximum biomass concentration (2.31 g L-1) and lipid yield (1258.65 mg L-1) was obtained when the interval between adjacent planar waveguide modules was 18 mm. The biodiesel produced in PWM-ORPs showed better properties than conventional ORP due to higher MUFA and C18:1 components proportions.
Collapse
Affiliation(s)
- Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Jingwei Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
33
|
Cheng J, Guo W, Cai C, Ye Q, Zhou J. Alternatively permutated conic baffles generate vortex flow field to improve microalgal productivity in a raceway pond. BIORESOURCE TECHNOLOGY 2018; 249:212-218. [PMID: 29045924 DOI: 10.1016/j.biortech.2017.10.031] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2017] [Revised: 09/30/2017] [Accepted: 10/07/2017] [Indexed: 06/07/2023]
Abstract
Alternatively permutated conic (APC) baffles were proposed to generate vertical and horizontal vortex flow to intensify mixing and mass transfer in a raceway pond. Both clockwise vortexes were generated before and after conic baffles in the main stream to increase perpendicular velocity by 40.3% and vorticity magnitude by 1.7 times on vertical cross section. Self-rotary flow around conic baffles and vortex flow among conic baffles were generated to increase perpendicular velocity by 80.4% and vorticity magnitude by 4.2 times on horizontal cross section. The bubble generation time and diameter decreased by 25.5% and 38.7%, respectively, while bubble residence time increased by 84.3%. The solution mixing time decreased by 48.1% and mass transfer coefficient increased by 34.0% with optimized relative spacing (ε) and height (ω) of conic baffles. The biomass productivity of Spirulina increased by 39.6% under pure CO2 with APC baffles in a raceway pond.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Wangbiao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Chengyi Cai
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Qing Ye
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
34
|
Castrillo M, Díez-Montero R, Tejero I. Model-based feasibility assessment of a deep solar photobioreactor for microalgae culturing. ALGAL RES 2018. [DOI: 10.1016/j.algal.2017.12.004] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
35
|
Liao Q, Sun Y, Huang Y, Xia A, Fu Q, Zhu X. Simultaneous enhancement of Chlorella vulgaris growth and lipid accumulation through the synergy effect between light and nitrate in a planar waveguide flat-plate photobioreactor. BIORESOURCE TECHNOLOGY 2017; 243:528-538. [PMID: 28697455 DOI: 10.1016/j.biortech.2017.06.091] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2017] [Revised: 06/14/2017] [Accepted: 06/17/2017] [Indexed: 06/07/2023]
Abstract
Interval between adjacent planar waveguides and light intensity emitted from waveguide surface were the primary two factors affecting light distribution characteristics in the planar waveguide flat-plate photobioreactor (PW-PBR). In this paper, the synergy effect between light and nitrate in the PW-PBR was realized to simultaneously enhance microalgae growth and lipid accumulation. Under an interval of 10mm between adjacent planar waveguides, 100% of microalgae cells in regions between adjacent waveguides could be illuminated. Chlorella vulgaris growth and lipid accumulation were synchronously elevated as light intensities emitted from planar waveguide surface increasing. With an identical initial nitrate concentration of 18mM, the maximum lipid content (41.66% in dry biomass) and lipid yield (2200.25mgL-1) were attained under 560μmolm-2s-1, which were 86.82% and 133.56% higher relative to those obtained under 160μmolm-2s-1, respectively. The PW-PBR provides a promising way for microalgae lipid production.
Collapse
Affiliation(s)
- Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
36
|
Luo S, Berges JA, He Z, Young EB. Algal-microbial community collaboration for energy recovery and nutrient remediation from wastewater in integrated photobioelectrochemical systems. ALGAL RES 2017. [DOI: 10.1016/j.algal.2016.10.006] [Citation(s) in RCA: 37] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
37
|
Reflection-refraction effects on light distribution inside tubular photobioreactors. CAN J CHEM ENG 2017. [DOI: 10.1002/cjce.22811] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
|
38
|
Taisir M, Teo CL, Idris A, Yusuf AM. Cultivation of Nannochloropsis sp. using narrow beam angle light emitting diode in an internally illuminated photobioreactor. BIORESOUR BIOPROCESS 2016. [DOI: 10.1186/s40643-016-0113-9] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022] Open
|
39
|
Pierobon SC, Riordon J, Nguyen B, Sinton D. Breathable waveguides for combined light and CO2 delivery to microalgae. BIORESOURCE TECHNOLOGY 2016; 209:391-396. [PMID: 26996260 DOI: 10.1016/j.biortech.2016.03.016] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2016] [Revised: 02/27/2016] [Accepted: 03/01/2016] [Indexed: 06/05/2023]
Abstract
Suboptimal light and chemical distribution (CO2, O2) in photobioreactors hinder phototrophic microalgal productivity and prevent economically scalable production of biofuels and bioproducts. Current strategies that improve illumination in reactors negatively impact chemical distribution, and vice versa. In this work, an integrated illumination and aeration approach is demonstrated using a gas-permeable planar waveguide that enables combined light and chemical distribution. An optically transparent cellulose acetate butyrate (CAB) slab is used to supply both light and CO2 at various source concentrations to cyanobacteria. The breathable waveguide architecture is capable of cultivating microalgae with over double the growth as achieved with impermeable waveguides.
Collapse
Affiliation(s)
- Scott C Pierobon
- Department of Mechanical & Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Jason Riordon
- Department of Mechanical & Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - Brian Nguyen
- Department of Mechanical & Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada
| | - David Sinton
- Department of Mechanical & Industrial Engineering and Institute for Sustainable Energy, University of Toronto, 5 King's College Road, Toronto, ON M5S 3G8, Canada.
| |
Collapse
|
40
|
Sun Y, Huang Y, Liao Q, Fu Q, Zhu X. Enhancement of microalgae production by embedding hollow light guides to a flat-plate photobioreactor. BIORESOURCE TECHNOLOGY 2016; 207:31-38. [PMID: 26868153 DOI: 10.1016/j.biortech.2016.01.136] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2015] [Revised: 01/27/2016] [Accepted: 01/31/2016] [Indexed: 06/05/2023]
Abstract
To offset the adverse effects of light attenuation on microalgae growth, hollow polymethyl methacrylate (PMMA) tubes were embedded into a flat-plate photobioreactor (PBR) as light guides. In this way, a fraction of incident light could be transmitted and emitted to the interior of the PBR, providing a secondary light source for cells in light-deficient regions. The average light intensity of interior regions 3-6cm from surfaces with 70μmolm(-2)s(-1) incident light was enhanced 2-6.5 times after 3.5days cultivation, resulting in a 23.42% increase in biomass production to that cultivated in PBR without PMMA tubes. The photosynthetic efficiency of microalgae in the proposed PBR was increased to 12.52%. Moreover, the installation of hollow PMMA tubes induced turbulent flow in the microalgae suspension, promoting microalgae suspension mixing. However, the enhanced biomass production was mainly attributed to the optimized light distribution in the PBR.
Collapse
Affiliation(s)
- Yahui Sun
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Yun Huang
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China.
| | - Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Qian Fu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Ministry of Education, Chongqing 400044, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400044, China
| |
Collapse
|
41
|
Jeffryes C, Severi V, Delhaye A, Urbain B, Grama BS, Agathos SN. Energy conversion in an internally illuminated annular‐plate airlift photobioreactor. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500042] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Clayton Jeffryes
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
- Fonds de l Recherche (FNRS) Brussels Belgium
| | - Veronica Severi
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Antoine Delhaye
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Brieuc Urbain
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
| | - Borhane Samir Grama
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
- Université Larbi Ben M'hidi Oum el Bouaghi Algeria
| | - Spiros N. Agathos
- Bioengineering Laboratory, Earth & Life Institute Université catholique de Louvain Louvain‐la‐Neuve Belgium
- School of Life Sciences and Biotechnology Yachay Tech University San Miguel de Urcuquí Ecuador
| |
Collapse
|
42
|
Abu-Ghosh S, Fixler D, Dubinsky Z, Iluz D. Flashing light in microalgae biotechnology. BIORESOURCE TECHNOLOGY 2016; 203:357-363. [PMID: 26747205 DOI: 10.1016/j.biortech.2015.12.057] [Citation(s) in RCA: 80] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Revised: 12/17/2015] [Accepted: 12/19/2015] [Indexed: 06/05/2023]
Abstract
Flashing light can enhance photosynthesis and improve the quality and quantity of microalgal biomass, as it can increase the products of interest by magnitudes. Therefore, the integration of flashing light effect into microalgal cultivation systems should be considered. However, microalgae require a balanced mix of the light/dark cycle for higher growth rates, and respond to light intensity differently according to the pigments acquired or lost during the growth. This review highlights recently published results on flashing light effect on microalgae and its applications in biotechnology, as well as the recently developed bioreactors designed to fulfill this effect. It also discusses how this knowledge can be applied in selecting the optimal light frequencies and intensities with specific technical properties for increasing biomass production and/or the yield of the chemicals of interest by microalgae belonging to different genera.
Collapse
Affiliation(s)
- Said Abu-Ghosh
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel.
| | - Dror Fixler
- Faculty of Engineering, Bar-Ilan University, Ramat-Gan 5290002, Israel; The Institute of Nanotechnology and Advanced Materials (BINA), Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - Zvy Dubinsky
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| | - David Iluz
- The Mina and Everard Goodman Faculty of Life Sciences, Bar-Ilan University, Ramat-Gan 5290002, Israel
| |
Collapse
|
43
|
Guo X, Yao L, Huang Q. Aeration and mass transfer optimization in a rectangular airlift loop photobioreactor for the production of microalgae. BIORESOURCE TECHNOLOGY 2015; 190:189-195. [PMID: 25958141 DOI: 10.1016/j.biortech.2015.04.077] [Citation(s) in RCA: 44] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2015] [Revised: 04/16/2015] [Accepted: 04/17/2015] [Indexed: 06/04/2023]
Abstract
Effects of superficial gas velocity and top clearance on gas holdup, liquid circulation velocity, mixing time, and mass transfer coefficient are investigated in a new airlift loop photobioreactor (PBR), and empirical models for its rational control and scale-up are proposed. In addition, the impact of top clearance on hydrodynamics, especially on the gas holdup in the internal airlift loop reactor, is clarified; a novel volume expansion technique is developed to determine the low gas holdup in the PBR. Moreover, a model strain of Chlorella vulgaris is cultivated in the PBR and the volumetric power is analyzed with a classic model, and then the aeration is optimized. It shows that the designed PBR, a cost-effective reactor, is promising for the mass cultivation of microalgae.
Collapse
Affiliation(s)
- Xin Guo
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Qilu Petrochemical Engineering Co. Ltd, Zibo 255400, China
| | - Lishan Yao
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China
| | - Qingshan Huang
- Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Key Laboratory of Green Process and Engineering, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 10090, China.
| |
Collapse
|
44
|
Krujatz F, Illing R, Krautwer T, Liao J, Helbig K, Goy K, Opitz J, Cuniberti G, Bley T, Weber J. Light-field-characterization in a continuous hydrogen-producing photobioreactor by optical simulation and computational fluid dynamics. Biotechnol Bioeng 2015; 112:2439-49. [DOI: 10.1002/bit.25667] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2015] [Revised: 05/09/2015] [Accepted: 05/28/2015] [Indexed: 11/06/2022]
Affiliation(s)
- Felix Krujatz
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Rico Illing
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden; TU Dresden, Dresden; Germany
| | - Tobias Krautwer
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Jing Liao
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Karsten Helbig
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Katharina Goy
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Jörg Opitz
- Fraunhofer Institute for Ceramic Technologies and Systems; Dresden Germany
| | - Gianaurelio Cuniberti
- Institute for Materials Science and Max Bergmann Center of Biomaterials and Center for Advancing Electronics Dresden; TU Dresden, Dresden; Germany
| | - Thomas Bley
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| | - Jost Weber
- Instituteof Food Technology and Bioprocess Engineering; TU Dresden, 01062 Dresden; Germany
| |
Collapse
|
45
|
Gupta PL, Lee SM, Choi HJ. A mini review: photobioreactors for large scale algal cultivation. World J Microbiol Biotechnol 2015; 31:1409-17. [DOI: 10.1007/s11274-015-1892-4] [Citation(s) in RCA: 100] [Impact Index Per Article: 11.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2015] [Accepted: 06/13/2015] [Indexed: 10/23/2022]
|
46
|
Heining M, Buchholz R. Photobioreactors with internal illumination - A survey and comparison. Biotechnol J 2015; 10:1131-7. [DOI: 10.1002/biot.201400572] [Citation(s) in RCA: 32] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2014] [Revised: 01/19/2015] [Accepted: 02/25/2015] [Indexed: 12/11/2022]
|
47
|
Wang SK, Stiles AR, Guo C, Liu CZ. Microalgae cultivation in photobioreactors: An overview of light characteristics. Eng Life Sci 2014. [DOI: 10.1002/elsc.201300170] [Citation(s) in RCA: 87] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022] Open
Affiliation(s)
- Shi-Kai Wang
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
- School of Chemistry and Chemical Engineering; University of Chinese Academy of Sciences; Beijing P.R. China
| | - Amanda R. Stiles
- Department of Plant and Microbial Biology; University of California; Berkeley CA USA
| | - Chen Guo
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| | - Chun-Zhao Liu
- National Key Laboratory of Biochemical Engineering; Institute of Process Engineering, Chinese Academy of Sciences; Beijing P.R. China
| |
Collapse
|
48
|
Liao Q, Li L, Chen R, Zhu X. A novel photobioreactor generating the light/dark cycle to improve microalgae cultivation. BIORESOURCE TECHNOLOGY 2014; 161:186-191. [PMID: 24704839 DOI: 10.1016/j.biortech.2014.02.119] [Citation(s) in RCA: 54] [Impact Index Per Article: 5.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/26/2013] [Revised: 02/24/2014] [Accepted: 02/26/2014] [Indexed: 06/03/2023]
Abstract
In this work, a novel tubular photobioreactor with the outer surface periodically shaded by the light-shielding material at pre-set interval was developed. Such design forms periodic light and dark regions along tubular photobioreactor, which creates controllable light/dark cycle and favours the microalgae growth. Experimental results showed that the developed photobioreactor was beneficial for the growth of Chlorella pyrenoidosa and a higher light-to-biomass conversion efficiency was achieved. The effects of the frequency of the light/dark cycle and light intensity on the microalgae cultivation were also investigated. It was revealed that this new design could greatly enhance the photosynthetic efficiency. As compared to conventional photobioreactors, the average biomass productivity could be increased by 21.6±2.1% when the frequency of created artificial light/dark cycle was set at 100Hz. The photobioreactor developed in this work enables an efficient light-to-biomass conversion and provides a viable and promising vision for large-scale outdoor applications.
Collapse
Affiliation(s)
- Qiang Liao
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China.
| | - Lin Li
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Rong Chen
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| | - Xun Zhu
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems (Chongqing University), Ministry of Education, Chongqing 400030, China; Institute of Engineering Thermophysics, Chongqing University, Chongqing 400030, China
| |
Collapse
|
49
|
Cultivation of Scenedesmus obliquus in Photobioreactors: Effects of Light Intensities and Light–Dark Cycles on Growth, Productivity, and Biochemical Composition. Appl Biochem Biotechnol 2013; 172:2377-89. [DOI: 10.1007/s12010-013-0679-z] [Citation(s) in RCA: 66] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2013] [Accepted: 12/05/2013] [Indexed: 10/25/2022]
|
50
|
Harris L, Tozzi S, Wiley P, Young C, Richardson TMJ, Clark K, Trent JD. Potential impact of biofouling on the photobioreactors of the Offshore Membrane Enclosures for Growing Algae (OMEGA) system. BIORESOURCE TECHNOLOGY 2013; 144:420-428. [PMID: 23907145 DOI: 10.1016/j.biortech.2013.06.125] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/22/2013] [Revised: 06/27/2013] [Accepted: 06/29/2013] [Indexed: 05/28/2023]
Abstract
The influence of PBR composition [clear polyurethane (PolyU) vs. clear linear low-density polyethylene (LLDPE) (top) and black opaque high-density polyethylene (bottom)] and shape (rectangular vs. tubular) on biofouling and the influence of biofouling on algae productivity were investigated. In 9-week experiments, PBR biofouling was dominated by pennate diatoms and clear plastics developed macroalgae. LLDPE exhibited lower photosynthetic-active-radiation (PAR) light transmittance than PolyU before biofouling, but higher transmittance afterwards. Both rectangular and tubular LLDPE PBRs accumulated biofouling predominantly along their wetted edges. For a tubular LLDPE PBR after 12 weeks of biofouling, the correlation between biomass, percent surface coverage, and PAR transmittance was complex, but in general biomass inversely correlated with transmittance. Wrapping segments of this biofouled LLDPE around an algae culture reduced CO2 and NH3-N utilization, indicating that external biofouling must be controlled.
Collapse
Affiliation(s)
- Linden Harris
- University Space Research Association, Columbia, MD 21044, United States
| | | | | | | | | | | | | |
Collapse
|