1
|
Kujawa J, Głodek M, Li G, Al-Gharabli S, Knozowska K, Kujawski W. Highly effective enzymes immobilization on ceramics: Requirements for supports and enzymes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149647. [PMID: 34467928 DOI: 10.1016/j.scitotenv.2021.149647] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/27/2021] [Accepted: 08/09/2021] [Indexed: 06/13/2023]
Abstract
Enzyme immobilization is a well-known method for the improvement of enzyme reusability and stability. To achieve very high effectiveness of the enzyme immobilization, not only does the method of attachment need to be optimized, but the appropriate support must be chosen. The essential necessities addressed to the support applied for enzyme immobilization can be focused on the material features as well as on the stability and resistances in certain conditions. Ceramic membranes and nanoparticles are the most widespread supports for enzyme immobilization. Hence, the immobilization of enzymes on ceramic membrane and nanoparticles are summarized and discussed. The important properties of the supports are particle size, pore structure, active surface area, volume to surface ratio, type and number of reactive available groups, as well as thermal, mechanical, and chemical stability. The modifiers and the crosslinkers are crucial to the enzyme loading amount, the chemical and physical stability, and the reusability and catalytical activity of the immobilized enzymes. Therefore, the chemical and physical methods of modification of ceramic materials are presented. The most popular and used modifiers (e.g. APTES, CPTES, VTES) as well as activating agents (GA, gelatin, EDC and/or NHS) applied to the grafting process are discussed. Moreover, functional groups of enzymes are presented and discussed since they play important roles in the enzyme immobilization via covalent bonding. The enhanced physical, chemical, and catalytical properties of immobilized enzymes are discussed revealing the positive balance between the effectiveness of the immobilization process, preservation of high enzyme activity, its good stability, and relatively low cost.
Collapse
Affiliation(s)
- Joanna Kujawa
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Marta Głodek
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Guoqiang Li
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Samer Al-Gharabli
- Pharmaceutical and Chemical Engineering Department, German-Jordanian University, Amman 11180, Jordan
| | - Katarzyna Knozowska
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland
| | - Wojciech Kujawski
- Faculty of Chemistry, Nicolaus Copernicus University in Toruń, 7 Gagarina Street, 87-100 Toruń, Poland.
| |
Collapse
|
2
|
Ardila-Leal LD, Monterey-Gutiérrez PA, Poutou-Piñales RA, Quevedo-Hidalgo BE, Galindo JF, Pedroza-Rodríguez AM. Recombinant laccase rPOXA 1B real-time, accelerated and molecular dynamics stability study. BMC Biotechnol 2021; 21:37. [PMID: 34088291 PMCID: PMC8178886 DOI: 10.1186/s12896-021-00698-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2021] [Accepted: 05/24/2021] [Indexed: 12/28/2022] Open
Abstract
Background Laccases (EC 1.10.3.2) are multi-copper oxidoreductases with great biotechnological importance due to their high oxidative potential and utility for removing synthetic dyes, oxidizing phenolic compounds, and degrading pesticides, among others. Methods A real-time stability study (RTS) was conducted for a year, by using enzyme concentrates from 3 batches (L1, L3, and L4). For which, five temperatures 243.15, 277.15, 298.15, 303.15, 308.15, and 313.15 K were assayed. Using RTS data and the Arrhenius equation, we calculated the rPOXA 1B accelerated stability (AS). Molecular dynamics (MD) computational study results were very close to those obtained experimentally at four different temperatures 241, 278, 298, and 314 K. Results In the RTS, 101.16, 115.81, 75.23, 46.09, 5.81, and 4.83% of the relative enzyme activity were recovered, at respective assayed temperatures. AS study, showed that rPOXA 1B is stable at 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K; with t1/2 values of 230.8, 46.2, and 12.6 months, respectively. Kinetic and thermodynamic parameters supported the high stability of rPOXA 1B, with an Ed value of 41.40 KJ mol− 1, a low variation of KM and Vmax, at 240.98 ± 5.38, and 297.53 ± 3.88 K, and ∆G values showing deactivation reaction does not occur. The MD indicates that fluctuations in loop, coils or loops with hydrophilic or intermediate polarity amino acids as well as in some residues of POXA 1B 3D structure, increases with temperature; changing from three fluctuating residues at 278 K to six residues at 298 K, and nine residues at 314 K. Conclusions Laccase rPOXA 1B demonstrated experimentally and computationally to be a stable enzyme, with t1/2 of 230.8, 46.2 or 12.6 months, if it is preserved impure without preservatives at temperatures of 240.98 ± 5.38, 277.40 ± 1.32 or 297.53 ± 3.88 K respectively; this study could be of great utility for large scale producers. Supplementary Information The online version contains supplementary material available at 10.1186/s12896-021-00698-3.
Collapse
Affiliation(s)
- Leidy D Ardila-Leal
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| | - Pedro A Monterey-Gutiérrez
- Vicerrectoría Académica. Universidad Antonio Nariño, Programa de Maestría y Doctorado en Educación Matemática, Bogotá, D.C, Colombia
| | - Raúl A Poutou-Piñales
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Biotecnología Molecular, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Balkys E Quevedo-Hidalgo
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ), Laboratorio de Biotecnología Aplicada, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia.
| | - Johan F Galindo
- Departamento de Química, Universidad Nacional de Colombia, Bogotá, D.C, Colombia.
| | - Aura M Pedroza-Rodríguez
- Departamento de Microbiología. Facultad de Ciencias. Pontificia Universidad Javeriana (PUJ). Bogotá, Laboratorio de Microbiología Ambiental y de Suelos, Grupo de Biotecnología Ambiental e Industrial (GBAI), Bogotá, D.C, Colombia
| |
Collapse
|
3
|
Qiu X, Wang S, Miao S, Suo H, Xu H, Hu Y. Co-immobilization of laccase and ABTS onto amino-functionalized ionic liquid-modified magnetic chitosan nanoparticles for pollutants removal. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123353. [PMID: 32652421 DOI: 10.1016/j.jhazmat.2020.123353] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2020] [Revised: 06/16/2020] [Accepted: 06/28/2020] [Indexed: 05/23/2023]
Abstract
This work aims to achieve the co-immobilization of laccase and 2,2-binamine-di-3-ethylbenzothiazolin-6-sulfonic acid (ABTS) to improve removal capability of the biocatalyst for pollutants while avoiding potential pollution caused by ABTS. The laccase was immobilized on magnetic chitosan nanoparticles modified with amino-functionalized ionic liquid containing ABTS (MACS-NIL) based on Cu ion chelation (MACS-NIL-Cu-lac). The carrier was characterized by Fourier transform infrared spectroscopy, thermogravimetric analysis, x-ray diffraction and etc., and electron paramagnetic resonance confirmed the mediator molecule ABTS on the carrier could also play the role of electron transmission. MACS-NIL-Cu-lac presented relatively high immobilization capacity, enhanced activity (1.7-fold that of free laccase), improved pH and temperature adaptability, and increased thermal and storage stability. The removal performance assay found that MACS-NIL-Cu-lac had a good removal efficiency with 100.0 % for 2,4-dichlorophenol in water at 25 °C, even when the concentration reached 50 mg/L. Reusability study showed that after six catalytic runs, the removal efficiency of 2,4-dichlorophenol by MACS-NIL-Cu-lac could still reach 93.2 %. Additionally, MACS-NIL-Cu-lac exhibited higher catalytic efficiencies with 100.0 %, 70.5 % and 93.3 % for bisphenol A, indole, and anthracene, respectively. The high catalytic performance in pure water system obtained by the novel biocatalyst co-immobilizing laccase and electron mediator ABTS showed greater practical application value.
Collapse
Affiliation(s)
- Xiang Qiu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shushu Wang
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Shanshan Miao
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Hongbo Suo
- School of Pharmacy, Liaocheng University, Liaocheng, Shandong 252059, China
| | - Huajin Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China
| | - Yi Hu
- State Key Laboratory of Materials-Oriented Chemical Engineering, School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing 210009, China.
| |
Collapse
|
4
|
Enhanced removal of crystal violet in water using a facile-fabricated and environmental-friendly laccase immobilized composite membrane. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.07.021] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
5
|
Zdarta J, Meyer AS, Jesionowski T, Pinelo M. Multi-faceted strategy based on enzyme immobilization with reactant adsorption and membrane technology for biocatalytic removal of pollutants: A critical review. Biotechnol Adv 2019; 37:107401. [DOI: 10.1016/j.biotechadv.2019.05.007] [Citation(s) in RCA: 96] [Impact Index Per Article: 19.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 04/29/2019] [Accepted: 05/20/2019] [Indexed: 01/22/2023]
|
6
|
Yaohua G, Ping X, Feng J, Keren S. Co-immobilization of laccase and ABTS onto novel dual-functionalized cellulose beads for highly improved biodegradation of indole. JOURNAL OF HAZARDOUS MATERIALS 2019; 365:118-124. [PMID: 30412808 DOI: 10.1016/j.jhazmat.2018.10.076] [Citation(s) in RCA: 44] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2018] [Revised: 09/27/2018] [Accepted: 10/24/2018] [Indexed: 06/08/2023]
Abstract
The method developed in this work, for the first time, for the co-immobilization of mediator 2,2'-azino-bis(3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) and laccase, in which the dual-functionalized cellulose beads with network pore structure were constructed by polydopamine (PD) and polymeric glycidyl methacrylate (GMA) to obtain the biocatalyst co-immobilizing ABTS and laccase. ABTS molecules were encapsulated into the dual-functionalized cellulose beads to obtain an efficient carrier (PD-GMA-Ce/ABTS) on which the laccase could be covalently immobilized by means of the coupling between the amino groups of the enzyme and the epoxy groups and ortho-dihydroxyphenyl groups existing on the beads. The as-prepared PD-GMA-Ce/ABTS with network pore structure were characterized by SEM, XRD, FT-IR and EPR. The resultant beaded biocatalyst (PD-GMA-Ce/ABTS@Lac) co-immobilizing laccase and ABTS were used in the biodegradation of indole and the degradation rate was up to 99.7%, while indole is difficult to be degraded by free laccase. The PD-GMA-Ce/ABTS@Lac beads displayed considerably reusability and storage stability for indole degradation after cycling of 10 runs or storage of 100 days benefited from the mediation effect of the immobilized ABTS. The effective recovery of both expensive laccase and hazardous ABTS by using PD-GMA-Ce/ABTS@Lac is promising to reduce the cost for the laccase application in wastewater treatment and might be helpful to eliminate the secondary pollution from the free mediator.
Collapse
Affiliation(s)
- Gu Yaohua
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Xue Ping
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China.
| | - Jia Feng
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| | - Shi Keren
- State Key Laboratory of High-efficiency Coal Utilization and Green Chemical Engineering, College of Chemistry & Chemical Engineering, Ningxia University, Yinchuan, 750021, China
| |
Collapse
|
7
|
Huang J, Yang Y, Wang Y, Zhang M, Liu Y. Immobilization of a Laccase/2,2'-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic Acid System to Layered Double Hydroxide/Alginate Biohybrid Beads for Biodegradation of Malachite Green Dye. BIOMED RESEARCH INTERNATIONAL 2018; 2018:5471961. [PMID: 30345302 PMCID: PMC6174817 DOI: 10.1155/2018/5471961] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 08/06/2018] [Accepted: 09/05/2018] [Indexed: 02/02/2023]
Abstract
The application of laccase-mediator-based catalysis is limited owing to the high cost of laccases and mediators and the potential toxicity of free mediators. Here, a novel biocatalyst (Im-LMS) was fabricated by immobilizing both laccase and a mediator (2,2'-azino-bis-[3-ethylbenzothiazoline]-6-sulfonic acid) on layered double hydroxide/alginate biohybrid beads. The catalytic activity of Im-LMS was evaluated for dye decolorization using malachite green. The decolorization yields of malachite green by Im-LMS and the free laccase-mediator system were 92% within 120 min and 90% within 90 min. Malachite green solution was detoxified completely after biodegradation by Im-LMS. Following eight reuse cycles of Im-LMS for dye treatment, a decolorization yield of 79% was obtained. The activity of Im-LMS was almost completely stable after being stored for 10 days. The recyclability and stability of Im-LMS will be helpful for reducing the running cost and potential toxicity associated with mediators to facilitate practical applications.
Collapse
Affiliation(s)
- Juan Huang
- School of Life Sciences and Technology, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Yun Yang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Yaokun Wang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Mingyang Zhang
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| | - Youxun Liu
- School of Basic Medical Sciences, Xinxiang Medical University, Jinsui Avenue 601, Xinxiang, Henan 453003, China
- Key Laboratory of molecular medicine of Xinxiang, Jinsui Avenue 601, Xinxiang, Henan 453003, China
| |
Collapse
|
8
|
Arica MY, Salih B, Celikbicak O, Bayramoglu G. Immobilization of laccase on the fibrous polymer-grafted film and study of textile dye degradation by MALDI–ToF-MS. Chem Eng Res Des 2017. [DOI: 10.1016/j.cherd.2017.09.023] [Citation(s) in RCA: 34] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
9
|
Sun H, Huang W, Yang H, Zhang S. Co-immobilization of laccase and mediator through a self-initiated one-pot process for enhanced conversion of malachite green. J Colloid Interface Sci 2016; 471:20-28. [PMID: 26971065 DOI: 10.1016/j.jcis.2016.03.009] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2016] [Revised: 03/04/2016] [Accepted: 03/04/2016] [Indexed: 12/18/2022]
Abstract
Laccase is a green biocatalyst. It works with molecular oxygen and produces water as the only by-product. However, its practical application is far less than satisfactory due to the low stability/poor reusability of free laccase and the potential secondary pollution caused by dissolved mediators. To address those bottlenecks in laccase-based catalysis, a novel biocatalyst (Immo-LMS) was fabricated by simultaneously immobilizing both laccase and a mediator (acetylacetone, abbreviated as AA) into a hydrogel through the laccase-AA initiated polymerization. This self-initiated immobilization process avoided the forced conformational change of laccase in the passive embedding to pre-existing carriers. Resulting from the effective cooperation of laccase and AA, the Immo-LMS had the highest substrate conversion quantity to malachite green, followed by the sole immobilized laccase and the immobilized laccase with an external mediator. Besides the improved activity, the Immo-LMS showed enhanced stability. The good performance of the Immo-LMS suggests that the co-immobilization of laccase and mediator through the self-initiated one-pot process was a promising strategy for the immobilization of laccase, which is expected to be helpful to cut down the running cost as well as the potential toxicity that come from mediators in the practical application of laccase.
Collapse
Affiliation(s)
- Hongfei Sun
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Wenguang Huang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Hua Yang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Shujuan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
10
|
Li G, Nandgaonkar AG, Lu K, Krause WE, Lucia LA, Wei Q. Laccase immobilized on PAN/O-MMT composite nanofibers support for substrate bioremediation: a de novo adsorption and biocatalytic synergy. RSC Adv 2016. [DOI: 10.1039/c6ra00220j] [Citation(s) in RCA: 29] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/20/2023] Open
Abstract
The engineering of supports for enzyme immobilization while retaining competent functionality is nontrivial.
Collapse
Affiliation(s)
- Guohui Li
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| | | | - Keyu Lu
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| | - Wendy E. Krause
- Fiber and Polymer Science Program
- North Carolina State University
- Raleigh
- USA
| | - Lucian A. Lucia
- Fiber and Polymer Science Program
- North Carolina State University
- Raleigh
- USA
- Department of Forest Biomaterials
| | - Qufu Wei
- Key Laboratory of Eco-Textiles
- Ministry of Education
- Jiangnan University
- Wuxi
- China
| |
Collapse
|
11
|
ABTS-Modified Silica Nanoparticles as Laccase Mediators for Decolorization of Indigo Carmine Dye. J CHEM-NY 2015. [DOI: 10.1155/2015/670194] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Efficient reuse and regeneration of spent mediators are highly desired for many of the laccases’ biotechnology applications. This investigation demonstrates that a redox mediator 2,2′-azino-bis-(3-ethylbenzothiazoline)-6-sulfonic acid (ABTS) covalently attached to silica nanoparticles (SNPs) effectively mediated dye decolorization catalyzed by laccase. Characteristics of ABTS-modified silica nanoparticles (ABTS-SNPs) were researched by scanning electron microscopy and Fourier-transformed infrared spectroscopy. When ABTS and ABTS-SNPs were used as laccase mediators, the decolorization yields of 96 and 95% were, respectively, obtained for indigo carmine dye. The results suggest that ABTS immobilized on SNPs can be used as laccase mediators as they retain almost the same efficiency as the free ABTS. The oxidized ABTS-SNPs were regenerated by their reduction reaction with ascorbic acid. Decolorization efficiency of regenerated ABTS-SNPs and their initial forms were found to be almost equivalent. Six reuse cycles for spent ABTS-SNPs were run for the treatment of indigo carmine, providing decolorization yields of 96–77%. Compared with free mediator, the immobilized mediators have the advantage of being easily recovered, regenerated, and reused making the whole process environmentally friendly.
Collapse
|