1
|
Aqif M, Shah MUH, Khan R, Umar M, SajjadHaider, Razak SIA, Wahit MU, Khan SUD, Sivapragasam M, Ullah S, Nawaz R. Glycolipids biosurfactants production using low-cost substrates for environmental remediation: progress, challenges, and future prospects. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:47475-47504. [PMID: 39017873 DOI: 10.1007/s11356-024-34248-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2023] [Accepted: 07/02/2024] [Indexed: 07/18/2024]
Abstract
The production of renewable materials from alternative sources is becoming increasingly important to reduce the detrimental environmental effects of their non-renewable counterparts and natural resources, while making them more economical and sustainable. Chemical surfactants, which are highly toxic and non-biodegradable, are used in a wide range of industrial and environmental applications harming humans, animals, plants, and other entities. Chemical surfactants can be substituted with biosurfactants (BS), which are produced by microorganisms like bacteria, fungi, and yeast. They have excellent emulsifying, foaming, and dispersing properties, as well as excellent biodegradability, lower toxicity, and the ability to remain stable under severe conditions, making them useful for a variety of industrial and environmental applications. Despite these advantages, BS derived from conventional resources and precursors (such as edible oils and carbohydrates) are expensive, limiting large-scale production of BS. In addition, the use of unconventional substrates such as agro-industrial wastes lowers the BS productivity and drives up production costs. However, overcoming the barriers to commercial-scale production is critical to the widespread adoption of these products. Overcoming these challenges would not only promote the use of environmentally friendly surfactants but also contribute to sustainable waste management and reduce dependence on non-renewable resources. This study explores the efficient use of wastes and other low-cost substrates to produce glycolipids BS, identifies efficient substrates for commercial production, and recommends strategies to improve productivity and use BS in environmental remediation.
Collapse
Affiliation(s)
- Muhammad Aqif
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Mansoor Ul Hassan Shah
- Department of Chemical Engineering, Faculty of Mechanical, Chemical and Industrial Engineering, University of Engineering and Technology, Peshawar, 25120, Pakistan
| | - Rawaiz Khan
- College of Dentistry, Engineer Abdullah Bugshan Research Chair for Dental and Oral Rehabilitation, King Saud University, 11545, Riyadh, Saudi Arabia.
| | - Muhammad Umar
- Faculty of Materials and Chemical Engineering, Department of Chemical Engineering, Ghulam Ishaq Khan Institute, Topi, Swabi, Khyber Pakhtunkhwa, 23460, Pakistan
| | - SajjadHaider
- Chemical Engineering Department, College of Engineering, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Saiful Izwan Abd Razak
- BioInspired Device and Tissue Engineering Research Group, School of Biomedical Engineering and Health Sciences, Faculty of Engineering, Universiti Teknologi Malaysia, Skudai, Johor, Malaysia
- Sports Innovation & Technology Centre, Institute of Human Centred Engineering, Universiti Teknologi Malaysia, 81300, Skudai, Johor, Malaysia
| | - Mat Uzir Wahit
- Faculty of Chemical and Energy Engineering, UniversitiTeknologi Malaysia (UTM), 81310, Skudai, Johor Bahru, Johor, Malaysia
- Centre for Advanced Composite Materials (CACM), Universiti Teknologi Malaysia (UTM), 81310, Skudai, Johor, Malaysia
| | - Salah Ud-Din Khan
- College of Engineering, Sustainable Energy Center Technologies, King Saud University, P.O. Box 800, 11421, Riyadh, Saudi Arabia
| | - Magaret Sivapragasam
- Faculty of Integrated Life Sciences, School of Integrated Sciences (SIS), School of Postgraduate Studies, Research and Internationalization, Quest International University, 30250, Ipoh, Perak, Malaysia
| | - Shafi Ullah
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
| | - Rab Nawaz
- Institute of Soil and Environmental Sciences, PirMehr Ali Shah Arid Agriculture University Shamsabad, Murree Rd, Rawalpindi, 46300, Pakistan
- Department of Earth Sciences and Environment, Faculty of Science and Technology, Universiti Kebangsaan Malaysia (UKM), 43600, Bangi, Selangor, Malaysia
| |
Collapse
|
2
|
Behera S, Das S. Potential and prospects of Actinobacteria in the bioremediation of environmental pollutants: Cellular mechanisms and genetic regulations. Microbiol Res 2023; 273:127399. [PMID: 37150049 DOI: 10.1016/j.micres.2023.127399] [Citation(s) in RCA: 18] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 04/22/2023] [Accepted: 04/30/2023] [Indexed: 05/09/2023]
Abstract
Increasing industrialization and anthropogenic activities have resulted in the release of a wide variety of pollutants into the environment including pesticides, polycyclic aromatic hydrocarbons (PAHs), and heavy metals. These pollutants pose a serious threat to human health as well as to the ecosystem. Thus, the removal of these compounds from the environment is highly important. Mitigation of the environmental pollution caused by these pollutants via bioremediation has become a promising approach nowadays. Actinobacteria are a group of eubacteria mostly known for their ability to produce secondary metabolites. The morphological features such as spore formation, filamentous growth, higher surface area to volume ratio, and cellular mechanisms like EPS secretion, and siderophore production in Actinobacteria render higher resistance and biodegradation ability. In addition, these bacteria possess several oxidoreductase systems (oxyR, catR, furA, etc.) which help in bioremediation. Actinobacteria genera including Arthrobacter, Rhodococcus, Streptomyces, Nocardia, Microbacterium, etc. have shown great potential for the bioremediation of various pollutants. In this review, the bioremediation ability of these bacteria has been discussed in detail. The utilization of various genera of Actinobacteria for the biodegradation of organic pollutants, including pesticides and PAHs, and inorganic pollutants like heavy metals has been described. In addition, the cellular mechanisms in these microbes which help to withstand oxidative stress have been discussed. Finally, this review explores the Actinobacteria mediated strategies and recent technologies such as the utilization of mixed cultures, cell immobilization, plant-microbe interaction, utilization of biosurfactants and nanoparticles, etc., to enhance the bioremediation of various environmental pollutants.
Collapse
Affiliation(s)
- Shivananda Behera
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India
| | - Surajit Das
- Laboratory of Environmental Microbiology and Ecology (LEnME), Department of Life Science, National Institute of Technology, Rourkela 769 008, Odisha, India.
| |
Collapse
|
3
|
Zhang Y, Shi K, Cui H, Han J, Wang H, Ma X, Li Z, Zhang L, Nie S, Ma C, Wang A, Liang B. Efficient biodegradation of acetoacetanilide in hypersaline wastewater with a synthetic halotolerant bacterial consortium. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129926. [PMID: 36099740 DOI: 10.1016/j.jhazmat.2022.129926] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/17/2022] [Revised: 08/27/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
The high concentrations of salt and refractory toxic organics in industrial wastewater seriously restrict biological treatment efficiency and functional stability. However, how to construct a salt-tolerant biocatalytic community and realize the decarbonization coupled with detoxification toward green bio-enhanced treatment, has yet to be well elucidated. Here, acetoacetanilide (AAA), an important intermediate for many dyes and medicine synthesis, was used as the model amide pollutant to elucidate the directional enrichment of halotolerant degradative communities and the corresponding bacterial interaction mechanism. Combining microbial community composition and molecular ecological network analyses as well as the biodegradation efficiencies of AAA and its hydrolysis product aniline (AN) of pure strains, the core degradative bacteria were identified during the hypersaline AAA degradation process. A synthetic bacterial consortium composed of Paenarthrobacter, Rhizobium, Rhodococcus, Delftia and Nitratireductor was constructed based on the top-down strategy to treat AAA wastewater with different water quality characteristics. The synthetic halotolerant consortium showed promising treatment ability toward the simulated AAA wastewater (AAA 100-500 mg/L, 1-5% salinity) and actual AAA mother liquor. Additionally, the comprehensive toxicity of AAA mother liquor significantly reduced after biological treatment. This study provides a green biological approach for the treatment of hypersaline and high concentration of organics wastewater.
Collapse
Affiliation(s)
- Yanqing Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ke Shi
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hanlin Cui
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Jinglong Han
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Hao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xiaodan Ma
- Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Ling Zhang
- School of Science, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Shichen Nie
- Shandong Hynar Water Environmental Protection Co., Ltd., Caoxian, China
| | - Changshui Ma
- Tai'an Hospital of Chinese Medicine, Tai'an 271000, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China
| | - Bin Liang
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, China; Shenzhen Key Laboratory of Organic Pollution Prevention and Control, School of Civil & Environmental Engineering, Harbin Institute of Technology Shenzhen, Shenzhen 518055, China.
| |
Collapse
|
4
|
Bokade P, Gaur VK, Tripathi V, Bobate S, Manickam N, Bajaj A. Bacterial remediation of pesticide polluted soils: Exploring the feasibility of site restoration. JOURNAL OF HAZARDOUS MATERIALS 2023; 441:129906. [PMID: 36088882 DOI: 10.1016/j.jhazmat.2022.129906] [Citation(s) in RCA: 19] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Revised: 08/31/2022] [Accepted: 09/01/2022] [Indexed: 06/15/2023]
Abstract
For decades, reclamation of pesticide contaminated sites has been a challenging avenue. Due to increasing agricultural demand, the application of synthetic pesticides could not be controlled in its usage, and it has now adversely impacted the soil, water, and associated ecosystems posing adverse effects on human health. Agricultural soil and pesticide manufacturing sites, in particular, are one of the most contaminated due to direct exposure. Among various strategies for soil reclamation, ecofriendly microbial bioremediation suffers inherent challenges for large scale field application as interaction of microbes with the polluted soil varies greatly under climatic conditions. Methodically, starting from functional or genomic screening, enrichment isolation; functional pathway mapping, production of tensioactive metabolites for increasing the bioavailability and bio-accessibility, employing genetic engineering strategies for modifications in existing catabolic genes to enhance the degradation activity; each step-in degradation study has challenges and prospects which can be addressed for successful application. The present review critically examines the methodical challenges addressing the feasibility for restoring and reclaiming pesticide contaminated sites along with the ecotoxicological risk assessments. Overall, it highlights the need to fine-tune the available processes and employ interdisciplinary approaches to make microbe assisted bioremediation as the method of choice for reclamation of pesticide contaminated sites.
Collapse
Affiliation(s)
- Priyanka Bokade
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; School of Energy and Chemical Engineering, UNIST, Ulsan 44919, South Korea
| | - Varsha Tripathi
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Shishir Bobate
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India
| | - Natesan Manickam
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India; Environmental Biotechnology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Abhay Bajaj
- Environmental Biotechnology and Genomics Division, CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440020, Maharashtra, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, Uttar Pradesh, India.
| |
Collapse
|
5
|
Examining the effect of reservoir conditions on efficiency of microbial enhanced oil recovery processes using Rhodococcus erythropolis strain; experimental approach. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2022. [DOI: 10.1007/s43153-022-00249-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Yuan B, Yao J, Wang Z, Dai L, Zhao M, Hrynsphan D, Tatsiana S, Chen J. Increasing N,N-dimethylacetamide degradation and mineralization efficiency by co-culture of Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X. CHEMOSPHERE 2022; 303:134935. [PMID: 35561776 DOI: 10.1016/j.chemosphere.2022.134935] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2021] [Revised: 03/24/2022] [Accepted: 05/07/2022] [Indexed: 06/15/2023]
Abstract
In this work, Rhodococcus ruber HJM-8 and Paracoccus communis YBH-X were isolated and used to enhance N,N-dimethylacetamide (DMAC) degradation and mineralization efficiencies. The monoculture and co-culture of the two strains for DMAC degradation were compared; results indicated that, a degradation efficiency of 97.62% was obtained in co-culture, which was much higher than that of monocultures of HJM-8 (57.34%) and YBH-X (34.02%). The degradation mechanism showed that co-culture could efficiently improve extracellular polymeric substances production, electron transfer, and microbial activity. Meanwhile, the mineralization mechanism suggested that acetate was the dominant intermediate which had an inhibitory effect on HJM-8, and co-culture was conducive to mineralization due to the high performance of acetate conversion and Na+ K+-ATPase vitality. Besides, a pathway of DMAC biodegradation was proposed for co-culture: DMAC was degraded into acetate by HJM-8, then the accumulated acetate was mineralized by YBH-X. Additionally, the co-culture system was further optimized by Box-Behnken design.
Collapse
Affiliation(s)
- Bohan Yuan
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Jiachao Yao
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China
| | - Zeyu Wang
- Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China
| | - Luyao Dai
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Min Zhao
- College of Environment, Zhejiang University of Technology, Hangzhou 310032, China
| | - Dzmitry Hrynsphan
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Savitskaya Tatsiana
- Research Institute of Physical and Chemical Problems, Belarusian State University, Minsk, 220030, Belarus
| | - Jun Chen
- College of Biological and Environmental Engineering, Zhejiang Shuren University, Hangzhou 310015, China; Key Laboratory of Pollution Exposure and Health Intervention of Zhejiang Province, Interdisciplinary Research Academy, Zhejiang Shuren University, Hangzhou 310015, China.
| |
Collapse
|
7
|
Al-Rashed S, Marraiki N, Syed A, Elgorban AM, Prasad KS, Shivamallu C, Bahkali AH. Bioremediation characteristics, influencing factors of dichlorodiphenyltrichloroethane (DDT) removal by using non-indigenous Paracoccus sp. CHEMOSPHERE 2021; 270:129474. [PMID: 33445153 DOI: 10.1016/j.chemosphere.2020.129474] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2020] [Revised: 12/16/2020] [Accepted: 12/26/2020] [Indexed: 06/12/2023]
Abstract
The marine bacterium able to consume DDT as the nutrient source was isolated from sea water which was identified as Paracoccus sp. DDT-21 based on 16 S rDNA gene sequence and Gram negative rod, obligate aerobic, non-motile biochemical characteristics. The isolate can degrade over 80% of the DDT, at a concentration of 50 mg/L in MSM in 72 h. Time and pollutant (DDT) dependent growth studies indicated that the isolate Paracoccus sp., DDT-21 significantly degrade the DDT and tolerates under DDT stress up to 50 mg/L. The DDT degradation capability of the strain Paracoccus sp. DDT-21 was found to be 5 ˃ 10 ˃ 15 ˃ 25 ˃ 50 mg/L DDT. The high concentrations (75 and 100 mg/L) of DDT showed significant decrease in DDT degradation. The optimal DDT degradation (∼90.0%) was observed at 6 g/L of yeast extract, 6% of glucose in pH 7.0 at 35 °C with 72 h of incubation as constant. Furthermore, four metabolites were observed by GC-MS analysis such as, DDE, DDD, DDMU, and DDA. The obtained results indicate that the isolate Paracoccus sp. DDT-21 is a promising candidate for the removal and/or detoxification of DDT in the environment.
Collapse
Affiliation(s)
- Sarah Al-Rashed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Najat Marraiki
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Asad Syed
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| | - Abdallah M Elgorban
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia; Center of Excellence in Biotechnology Research, King Saud University, Riyadh, Saudi Arabia.
| | - Kollur Shiva Prasad
- Department of Sciences, Amrita School of Arts and Sciences, Amrita Vishwa Vidyapeetham, Mysuru Campus, Mysuru, Karnataka, 570 026, India
| | - Chandan Shivamallu
- Department of Biotechnology and Bioinformatics, School of Life Sciences, JSS Academy of Higher Education and Research Mysuru, 570 015, India
| | - Ali H Bahkali
- Department of Botany and Microbiology, College of Science, King Saud University, P.O. Box 2455, Riyadh, 11451, Saudi Arabia
| |
Collapse
|
8
|
Kour D, Kaur T, Devi R, Yadav A, Singh M, Joshi D, Singh J, Suyal DC, Kumar A, Rajput VD, Yadav AN, Singh K, Singh J, Sayyed RZ, Arora NK, Saxena AK. Beneficial microbiomes for bioremediation of diverse contaminated environments for environmental sustainability: present status and future challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24917-24939. [PMID: 33768457 DOI: 10.1007/s11356-021-13252-7] [Citation(s) in RCA: 62] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2020] [Accepted: 02/28/2021] [Indexed: 05/21/2023]
Abstract
Over the past few decades, the rapid development of agriculture and industries has resulted in contamination of the environment by diverse pollutants, including heavy metals, polychlorinated biphenyls, plastics, and various agrochemicals. Their presence in the environment is of great concern due to their toxicity and non-biodegradable nature. Their interaction with each other and coexistence in the environment greatly influence and threaten the ecological environment and human health. Furthermore, the presence of these pollutants affects the soil quality and fertility. Physicochemical techniques are used to remediate such environments, but they are less effective and demand high costs of operation. Bioremediation is an efficient, widespread, cost-effective, and eco-friendly cleanup tool. The use of microorganisms has received significant attention as an efficient biotechnological strategy to decontaminate the environment. Bioremediation through microorganisms appears to be an economically viable and efficient approach because it poses the lowest risk to the environment. This technique utilizes the metabolic potential of microorganisms to clean up contaminated environments. Many microbial genera have been known to be involved in bioremediation, including Alcaligenes, Arthrobacter, Aspergillus, Bacillus, Burkholderia, Mucor, Penicillium, Pseudomonas, Stenotrophomonas, Talaromyces, and Trichoderma. Archaea, including Natrialba and Haloferax, from extreme environments have also been reported as potent bioresources for biological remediation. Thus, utilizing microbes for managing environmental pollution is promising technology, and, in fact, the microbes provide a useful podium that can be used for an enhanced bioremediation model of diverse environmental pollutants.
Collapse
Affiliation(s)
- Divjot Kour
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Tanvir Kaur
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Rubee Devi
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India
| | - Ashok Yadav
- Department of Botany, Banaras Hindu University, Varanasi, Uttar Pradesh, 221005, India
| | - Manali Singh
- Invertis Institute of Engineering and Technology (IIET), Invertis University, Bareilly, Uttar Pradesh, India
| | - Divya Joshi
- Uttarakhand Pollution Control Board, Regional Office, Kashipur, Dehradun, Uttarakhand, India
| | - Jyoti Singh
- Department of Microbiology, G. B. Pant University of Agriculture and Technology, Pantnagar, Uttarakhand, India
| | - Deep Chandra Suyal
- Department of Microbiology, Akal College of Basic Sciences, Eternal University, Baru Sahib, Sirmour, Himachal Pradesh, 173101, India
| | - Ajay Kumar
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
| | | | - Ajar Nath Yadav
- Microbial Biotechnology Laboratory, Department of Biotechnology, Dr. Khem Singh Gill Akal College of Agriculture, Eternal University, Baru Sahib, Himachal Pradesh, 173101, Sirmour, India.
| | - Karan Singh
- Department of Chemistry, Indira Gandhi University, Haryana, 122502, Meerpur, Rewari, India
| | - Joginder Singh
- Department of Biotechnology, Lovely Professional University, Phagwara, Punjab, India
| | - Riyaz Z Sayyed
- Department of Microbiology, PSGVP Mandal's Arts, Science and Commerce College, Shahada, Maharashtra, India
| | - Naveen Kumar Arora
- Department of Environmental Science, Babasaheb Bhimrao Ambedkar University (A Central University), Rae Bareli Road, Uttar Pradesh, 226025, Lucknow, India
| | - Anil Kumar Saxena
- ICAR-National Bureau of Agriculturally Important Microorganisms, Kusmaur, Mau, 275103, India
| |
Collapse
|
9
|
Myco-remediation of Chlorinated Pesticides: Insights Into Fungal Metabolic System. Indian J Microbiol 2021; 61:237-249. [PMID: 34294989 DOI: 10.1007/s12088-021-00940-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2020] [Accepted: 04/03/2021] [Indexed: 12/22/2022] Open
Abstract
Synthetic chemicals including organochlorine pesticides pose environment and health hazard due to persistent and bio-accumulation property. Majority of them are recognized as endocrine disruptors. Fungi are ubiquitous in nature and employs efficient enzymatic machinery for the biotransformation and degradation of toxic, recalcitrant pollutants. This review critically discusses the organochlorine biotransformation process mediated by fungi and highlights the role of enzymatic system responsible for biotransformation, especially distribution of dehalogenase homologs among fungal classes. It also explores the potential use of fungal derived biomaterial, mainly chitosan as an adsorbing biomaterial for pesticides and heavy metals removal. Further, prospects of employing fungus to over-come the existing bioremediation limitations are discussed. The study highlights the potential scope of utilizing fungi for initial biotransformation purposes, preceding final biodegradation by bacterial species under environmental conditions. Supplementary Information The online version contains supplementary material available at 10.1007/s12088-021-00940-8.
Collapse
|
10
|
Bhatt P, Verma A, Gangola S, Bhandari G, Chen S. Microbial glycoconjugates in organic pollutant bioremediation: recent advances and applications. Microb Cell Fact 2021; 20:72. [PMID: 33736647 PMCID: PMC7977309 DOI: 10.1186/s12934-021-01556-9] [Citation(s) in RCA: 36] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2020] [Accepted: 02/27/2021] [Indexed: 02/06/2023] Open
Abstract
The large-scale application of organic pollutants (OPs) has contaminated the air, soil, and water. Persistent OPs enter the food supply chain and create several hazardous effects on living systems. Thus, there is a need to manage the environmental levels of these toxicants. Microbial glycoconjugates pave the way for the enhanced degradation of these toxic pollutants from the environment. Microbial glycoconjugates increase the bioavailability of these OPs by reducing surface tension and creating a solvent interface. To date, very little emphasis has been given to the scope of glycoconjugates in the biodegradation of OPs. Glycoconjugates create a bridge between microbes and OPs, which helps to accelerate degradation through microbial metabolism. This review provides an in-depth overview of glycoconjugates, their role in biofilm formation, and their applications in the bioremediation of OP-contaminated environments.
Collapse
Affiliation(s)
- Pankaj Bhatt
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China
| | - Amit Verma
- Department of Biochemistry, College of Basic Science and Humanities, SD Agricultural University, Gujarat, 385506, India
| | - Saurabh Gangola
- School of Agriculture, Graphic Era Hill University, Bhimtal Campus, Dehradun, Uttarakhand, 248002, India
| | - Geeta Bhandari
- Department of Biotechnology, Sardar Bhagwan Singh University, Dehradun, Uttarakhand, 248161, India
| | - Shaohua Chen
- State Key Laboratory for Conservation and Utilization of Subtropical Agro-bioresources, Guangdong Laboratory for Lingnan Modern Agriculture, Integrative Microbiology Research Centre, South China Agricultural University, Guangzhou, 510642, China.
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou, 510642, China.
| |
Collapse
|
11
|
Yang F, Jian H, Wang C, Wang Y, Li E, Sun H. Effects of biochar on biodegradation of sulfamethoxazole and chloramphenicol by Pseudomonas stutzeri and Shewanella putrefaciens: Microbial growth, fatty acids, and the expression quantity of genes. JOURNAL OF HAZARDOUS MATERIALS 2021; 406:124311. [PMID: 33257131 DOI: 10.1016/j.jhazmat.2020.124311] [Citation(s) in RCA: 33] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2020] [Revised: 09/27/2020] [Accepted: 10/15/2020] [Indexed: 06/12/2023]
Abstract
An incubation experiment was conducted to investigate whether different biochar could enhance the biodegradation of sulfamethoxazole (SMX) and chloramphenicol (CAP). During incubation in nutrient medium solution, the degradation efficiencies of SMX by P. stutzeri and S. putrefaciens obtained 61.79% and 68.67% respectively, while CAP was 85.75% and 85.70%. The biodegradation efficiencies of SMX and CAP increased for P. stutzeri cultured with biochar and increased for S. putrefaciens cultured with high-concentration biochar (500, 1,000, 2,000 mg L-1). Additionally, TOC and TN contents were significantly decreased during the biodegradation process. Hence, the effects of biochar on microbial growth, fatty acids and expression genes, biodegradation products were studied. The content of bacteria, saturated fatty acids and expression genes showed a positive correlation with the content of TOC released from biochar, while the biodegradation products would not change when bacteria was cultured with biochar. These indicated that biochar improved the antibiotics biodegradation efficiencies via involvement in the bacterial growth, changing the components of fatty acids, increasing the expression quantity of genes. This research suggests that micro-biological degradation with biochar is a promising technology to treat specific antibiotics in the environment.
Collapse
Affiliation(s)
- Fang Yang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Hongxian Jian
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Cuiping Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China.
| | - Yu Wang
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| | - Erhu Li
- Tianjin Agriculture Ecological Environment Monitoring and Agricultural Product Quality Testing Centre, Tianjin 300191, China
| | - Hongwen Sun
- Key Laboratory of Pollution Processes and Environmental Criteria, Ministry of Education, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300071, China
| |
Collapse
|
12
|
Krohn C, Jin J, Wood JL, Hayden HL, Kitching M, Ryan J, Fabijański P, Franks AE, Tang C. Highly decomposed organic carbon mediates the assembly of soil communities with traits for the biodegradation of chlorinated pollutants. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124077. [PMID: 33053475 DOI: 10.1016/j.jhazmat.2020.124077] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2020] [Revised: 09/04/2020] [Accepted: 09/21/2020] [Indexed: 06/11/2023]
Abstract
To improve biodegradation strategies for chlorinated pollutants, the roles of soil organic matter and microbial function need to be clarified. It was hypothesised that microbial degradation of specific organic fractions in soils enhance community metabolic capability to degrade chlorinated pollutants. This field study used historic records of dieldrin concentrations since 1988 and established relationships between dieldrin dissipation and soil carbon fractions together with bacterial and fungal diversity in surface soils of Kurosol and Chromosol. Sparse partial least squares analysis linked dieldrin dissipation to metabolic activities associated with the highly decomposed carbon fraction. Dieldrin dissipation, after three decades of natural attenuation, was associated with increased bacterial species fitness for the decomposition of recalcitrant carbon substrates including synthetic chlorinated pollutants. These metabolic capabilities were linked to the decomposed carbon fraction, an important driver for the microbial community and function. Common bacterial traits among taxonomic groups enriched in samples with high dieldrin dissipation included their slow growth, large genome and complex metabolism which supported the notion that metabolic strategies for dieldrin degradation evolved in an energy-low soil environment. The findings provide new perspectives for bioremediation strategies and suggest that soil management should aim at stimulating metabolism at the decomposed, fine carbon fraction.
Collapse
Affiliation(s)
- Christian Krohn
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Jian Jin
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia.
| | - Jennifer L Wood
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Helen L Hayden
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Centre for AgriBioScience, Bundoora, Vic 3083, Australia
| | - Matt Kitching
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Macleod, Vic 3085, Australia
| | - John Ryan
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Wangaratta, Vic 3677, Australia
| | - Piotr Fabijański
- Agriculture Victoria, Department of Jobs, Precincts and Regions, Ellinbank, Vic 3821, Australia
| | - Ashley E Franks
- Department of Physiology, Anatomy and Microbiology, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia; Centre for Future Landscapes, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia
| | - Caixian Tang
- Department of Animal, Plant and Soil Sciences, Centre for AgriBioscience, La Trobe University, Melbourne Campus, Bundoora, Vic 3086, Australia.
| |
Collapse
|
13
|
Xu HJ, Bai J, Li W, Murrell JC, Zhang Y, Wang J, Luo C, Li Y. Mechanisms of the enhanced DDT removal from soils by earthworms: Identification of DDT degraders in drilosphere and non-drilosphere matrices. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124006. [PMID: 33068995 DOI: 10.1016/j.jhazmat.2020.124006] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2020] [Revised: 09/01/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
The remediation of soil contaminated by 1,1,1-trichloro-2,2-bis(4-chlorophenyl)ethane (DDT) remains an important issue in environmental research. Although our previous studies demonstrated that earthworms could enhance the degradation of DDT in soils, the underlying mechanisms and microorganisms involved in these transformation processes are still not clear. Here we studied the transformation of DDT in sterilized/non-sterilized drilosphere and non-drilosphere matrices and identified DDT degraders using the technique of DNA-stable isotope probing. The results show that DDT degradation in non-sterilized drilosphere was quicker than that in their non-drilosphere counterparts. Earthworms enhance DDT removal mainly by improving soil properties, thus stimulating indigenous microorganisms rather than abiotic degradation or tissue accumulating. Ten new genera, including Streptomyces, Streptacidiphilus, Dermacoccus, Brevibacterium, Bacillus, Virgibacillus, were identified as DDT ring cleavage degrading bacteria in the five matrices tested. Bacillus and Dermacoccus may also play vital roles in the dechlorination of DDTs as they were highly enriched during the incubations. The results of this study provide robust evidence for the application of earthworms in remediating soils polluted with DDT and highlight the importance of using combinations of cultivation-independent techniques together with process-based measurements to examine the function of microbes degrading organic pollutants in drilosphere matrices.
Collapse
Affiliation(s)
- Hui-Juan Xu
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jing Bai
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China; College of Agriculture and Biotechnology, Hunan University of Humanities, Science and Technology, Loudi 417000, China
| | - Wenyan Li
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - J Colin Murrell
- School of Environmental Sciences, University of East Anglia, Norwich NR4 7TJ, UK
| | - Yulong Zhang
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Jinjin Wang
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Chunling Luo
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China
| | - Yongtao Li
- Joint Institute for Environmental Research & Education, College of Natural Resources and Environment, South China Agricultural University, Guangzhou 510642, China.
| |
Collapse
|
14
|
Khatoon Z, Huang S, Rafique M, Fakhar A, Kamran MA, Santoyo G. Unlocking the potential of plant growth-promoting rhizobacteria on soil health and the sustainability of agricultural systems. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2020; 273:111118. [PMID: 32741760 DOI: 10.1016/j.jenvman.2020.111118] [Citation(s) in RCA: 78] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2020] [Revised: 07/13/2020] [Accepted: 07/19/2020] [Indexed: 05/06/2023]
Abstract
The concept of soil health refers to specific soil properties and the ability to support and sustain crop growth and productivity, while maintaining long-term environmental quality. The key components of healthy soil are high populations of organisms that promote plant growth, such as the plant growth promoting rhizobacteria (PGPR). PGPR plays multiple beneficial and ecological roles in the rhizosphere soil. Among the roles of PGPR in agroecosystems are the nutrient cycling and uptake, inhibition of potential phytopathogens growth, stimulation of plant innate immunity, and direct enhancement of plant growth by producing phytohormones or other metabolites. Other important roles of PGPR are their environmental cleanup capacities (soil bioremediation). In this work, we review recent literature concerning the diverse mechanisms of PGPR in maintaining healthy conditions of agricultural soils, thus reducing (or eliminating) the toxic agrochemicals dependence. In conclusion, this review provides comprehensive knowledge on the current PGPR basic mechanisms and applications as biocontrol agents, plant growth stimulators and soil rhizoremediators, with the final goal of having more agroecological practices for sustainable agriculture.
Collapse
Affiliation(s)
- Zobia Khatoon
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Suiliang Huang
- Key Laboratory of Pollution Processes and Environmental Criteria of the Ministry of Education, Key Laboratory of Urban Ecological Environment Rehabilitation and Pollution Control of Tianjin, Numerical Stimulation Group for Water Environment, College of Environmental Science and Engineering Nankai University, Tianjin, 300350, China
| | - Mazhar Rafique
- Department of Soil Science, The University of Haripur, 22630, KPK, Pakistan
| | - Ali Fakhar
- Department of Soil Science, Sindh Agricultural University, Tandojam, Pakistan
| | | | - Gustavo Santoyo
- Genomic Diversity Laboratory, Institute of Biological and Chemical Research, Universidad Michoacana de San Nicolas de Hidalgo, 58030, Morelia, Mexico.
| |
Collapse
|
15
|
Hu X, Li D, Qiao Y, Song Q, Guan Z, Qiu K, Cao J, Huang L. Salt tolerance mechanism of a hydrocarbon-degrading strain: Salt tolerance mediated by accumulated betaine in cells. JOURNAL OF HAZARDOUS MATERIALS 2020; 392:122326. [PMID: 32092654 DOI: 10.1016/j.jhazmat.2020.122326] [Citation(s) in RCA: 30] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2019] [Revised: 02/15/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Rhodococcus sp. HX-2 could degrade diesel oil in the presence of 1%-10 % NaCl. The compatible solute betaine accumulated in cells with increasing NaCl concentration, and this was found to be the main mechanism of resistance of HX-2 to high salt concentration. Exogenously added betaine can be transported into cells, which improved cell growth and the percentage degradation of diesel oil in the presence of high [NaCl] in solution and in soil. Scanning electron microscopy data suggested that addition of exogenous betaine facilitated salt tolerance by stimulating exopolysaccharide production. Fourier-transform infrared analysis suggested that surface hydroxyl, amide and phosphate groups may be related to tolerance of high-salt environments. Four betaine transporter-encoding genes (H0, H1, H3, H5) and the betaine producer gene betB were induced in Rhodococcus sp. HX-2 by NaCl stress. The maximal induction of H0, H1, H3 and H5 transcription depended on high salinity plus the presence of betaine. These results demonstrate that salt tolerance is mediated by accumulated betaine in Rhodococcus sp. HX-2 cells, and the potential of this strain for application in bioremediation of hydrocarbon pollution in saline environments.
Collapse
Affiliation(s)
- Xin Hu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Dahui Li
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Yue Qiao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Qianqian Song
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Zhiguo Guan
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Kaixuan Qiu
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Jiachang Cao
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China
| | - Lei Huang
- College of Chemistry and Chemical Engineering, Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, Tianjin Key Laboratory of Drug Targeting and Bioimaging, Tianjin University of Technology, Tianjin, 300384, China.
| |
Collapse
|
16
|
Regar RK, Gaur VK, Bajaj A, Tambat S, Manickam N. Comparative microbiome analysis of two different long-term pesticide contaminated soils revealed the anthropogenic influence on functional potential of microbial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 681:413-423. [PMID: 31108361 DOI: 10.1016/j.scitotenv.2019.05.090] [Citation(s) in RCA: 35] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2018] [Revised: 05/07/2019] [Accepted: 05/07/2019] [Indexed: 05/17/2023]
Abstract
Microbial communities play a crucial role in bioremediation of pollutants in contaminated ecosystem. In addition to pure culture isolation and bacterial 16S rRNA based community studies, the focus has now shifted employing the omics technologies enormously for understanding the microbial diversity and functional potential of soil samples. Our previous report on two pesticide-contaminated sites revealed the diversity of both culturable and unculturable bacteria. In the present study, we have observed distinct taxonomic and functional communities in contaminated soil with respect to an uncontaminated soil as control by using shotgun metagenomic sequencing method. Our data demonstrated that Proteobacteria, Actinobacteria, Firmicutes, Bacteroidetes, and Acidobacteria significantly dominated the microbial diversity with their cumulative abundance percentage in the range of 98.61, 87.38, and 80.52 for Hindustan Insecticides Limited (HIL), India Pesticides Limited (IPL), and control respectively. Functional gene analysis demonstrated the presence of large number of both substrate specific upper pathway and common lower pathway degradative genes. Relatively lower number of genes was found encoding the degradation of styrene, atrazine, bisphenol, dioxin, and naphthalene. When three bacteria were augumentated with rhamnolipid (20-100 μM) and Triton X-100 (84-417 μM) surfactants in HIL soil, an enhanced degradation to 76%, 70%, and 58% of HCH, Endosulfan, and DDT respectively was achieved. The overall data obtained from two heavily contaminated soil suggest the versatility of the microbial communities for the xenobiotic pollutant degradation which may help in exploiting their potential applications in bioremediation.
Collapse
Affiliation(s)
- Raj Kumar Regar
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarsi Das University, Lucknow, Uttar Pradesh, India
| | - Vivek Kumar Gaur
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Abhay Bajaj
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India
| | - Subodh Tambat
- Bionivid Technology Pvt. Ltd., Bengaluru, Karnataka, India
| | - Natesan Manickam
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow, Uttar Pradesh, India.
| |
Collapse
|
17
|
Mansouri A, Abbes C, Ben Mouhoub R, Ben Hassine S, Landoulsi A. Enhancement of mixture pollutant biodegradation efficiency using a bacterial consortium under static magnetic field. PLoS One 2019; 14:e0208431. [PMID: 30608939 PMCID: PMC6319723 DOI: 10.1371/journal.pone.0208431] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/14/2018] [Accepted: 11/16/2018] [Indexed: 11/19/2022] Open
Abstract
One of the main challenges of bioremediation is to define efficient protocols with low environmental impact and high removal rates, such as static magnetic field (SMF). The aim of this study was to evaluate the effect of SMF exposure on the biodegradation rate of a mixture of pollutants using three bacterial strains which were isolated and identified from the Bizerte lagoon: Pseudomonas stutzeri LBR (KC157911), Cupriavidus metallidurans LBJ (KU659610) and Rhodococcus equi LBB (KU743870). To recognize the improvement role of SMF, the culture was submitted to a pre-treatment with SMF with an induction equal to 200 mT for 5 hours, after that the degradation experiment was followed with individual strains and with a consortium. Results showed an increase by 20% in the growth of the exposed bacterial population compared to controls, and 98% of biodegradation of DDT and 90% for BaP after 30 days of follow-up. This encouraging data opens new perspectives for a bioremediation bioprocess using SMF.
Collapse
Affiliation(s)
- Ahlem Mansouri
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
- * E-mail:
| | - Chiraz Abbes
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Ramla Ben Mouhoub
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| | - Sihem Ben Hassine
- Laboratory of Environmental Analytical Chemistry, University of Carthage, Faculty of Sciences of Bizerte, Zarzouna, Tunisia
| | - Ahmed Landoulsi
- University of Carthage, Biochemistry and Molecular Biology Lab of Faculty of Sciences, Risks Related to Environmental Stress, Struggle and Prevention (UR17ES20), Bizerte, Zarzouna, Tunisia
| |
Collapse
|
18
|
Gaur VK, Bajaj A, Regar RK, Kamthan M, Jha RR, Srivastava JK, Manickam N. Rhamnolipid from a Lysinibacillus sphaericus strain IITR51 and its potential application for dissolution of hydrophobic pesticides. BIORESOURCE TECHNOLOGY 2019; 272:19-25. [PMID: 30296609 DOI: 10.1016/j.biortech.2018.09.144] [Citation(s) in RCA: 54] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2018] [Revised: 09/28/2018] [Accepted: 09/30/2018] [Indexed: 06/08/2023]
Abstract
Rhamnolipid produced from a Lysinibacillus sphaericus IITR51 was characterized and its ability for dissolution of hydrophobic pesticides were evaluated. L. sphaericus produced 1.6 g/L of an anionic biosurfactant that reduced surface tension from 72 N/m to 52 N/m with 48% emulsification index. The biosurfactant was found stable over a wide range of pH (4.0-10.0), temperature (4-100 °C), salt concentration (2-14%) and was identified as rhamnolipid. At the concentration of 90 mg/L rhamnolipid showed enhanced dissolution of α-, β-endosulfan, and γ-hexachlorocyclohexane up to 7.2, 2.9, and 1.8 folds, respectively. The bacterium utilized benzoic acid, chlorobenzene, 3- and 4-chlorobenzoic acid as sole source of carbon and was found resistant to arsenic, lead and cadmium. Furthermore, the isolated biosurfactant showed antimicrobial activities against different pathogenic bacteria. The results obtained indicate the usefulness of rhamnolipid for enhanced dissolution and thereby increasing the bioavailability.
Collapse
Affiliation(s)
- Vivek Kumar Gaur
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Amity Institute of Biotechnology, Amity University Uttar Pradesh, Lucknow Campus, Lucknow, India
| | - Abhay Bajaj
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Raj Kumar Regar
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India; Department of Biochemistry, School of Dental Sciences, Babu Banarsi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Mohan Kamthan
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Rakesh Roshan Jha
- Analytical Chemistry Laboratory, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India
| | - Janmejai Kumar Srivastava
- Department of Biochemistry, School of Dental Sciences, Babu Banarsi Das University, Lucknow 226028, Uttar Pradesh, India
| | - Natesan Manickam
- Environmental Biotechnology Division, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhavan, 31 Mahatma Gandhi Marg, Lucknow 226001, Uttar Pradesh, India.
| |
Collapse
|
19
|
Fang H, Deng Y, Ge Q, Mei J, Zhang H, Wang H, Yu Y. Biodegradability and ecological safety assessment of Stenotrophomonas sp. DDT-1 in the DDT-contaminated soil. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2018; 158:145-153. [PMID: 29679846 DOI: 10.1016/j.ecoenv.2018.04.026] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2017] [Revised: 03/26/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
The biodegradability and ecological safety assessment of the previously isolated DDT-degrading bacterial strain Stenotrophomonas sp. DDT-1 were investigated in the DDT-contaminated soil under laboratory and field conditions. Under laboratory conditions, the degradation rates of fresh p,p'-DDT in soil were enhanced by 2.0-3.0-fold with the introduction of the strain DDT-1 compared to those of the control treatments. A similar enhancement in the dissipation of DDTs (p,p'-DDT, p,p'-DDE, p,p'-DDD, and o,p'-DDT) in the aged DDT-contaminated field plot soils resulted from the inoculation with this strain. Meanwhile, the degradation rates of DDTs increased by 2.9-5.5- and 2.8-7.6-fold in the inoculated greenhouse and open field soils, respectively, after field demonstration application of strain DDT-1 preparation. Moreover, no significant differences in the soil enzyme activity, microbial functional diversity, and bacterial community structure were observed between the inoculated and un-inoculated field soils, but several soil microbial genera exhibited some fluctuations in abundance. It is concluded that strain DDT-1 could accelerate the removal of DDTs residues in field soils, and furthermore, its inoculation was ecologically safe.
Collapse
Affiliation(s)
- Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yanfei Deng
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Qiqing Ge
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Jiajia Mei
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Houpu Zhang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Huifang Wang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
20
|
The Impact of Biosurfactants on Microbial Cell Properties Leading to Hydrocarbon Bioavailability Increase. COLLOIDS AND INTERFACES 2018. [DOI: 10.3390/colloids2030035] [Citation(s) in RCA: 55] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
The environment pollution with hydrophobic hydrocarbons is a serious problem that requires development of efficient strategies that would lead to bioremediation of contaminated areas. One of the common methods used for enhancement of biodegradation of pollutants is the addition of biosurfactants. Several mechanisms have been postulated as responsible for hydrocarbons bioavailability enhancement with biosurfactants. They include solubilization and desorption of pollutants as well as modification of bacteria cell surface properties. The presented review contains a wide discussion of these mechanisms in the context of alteration of bioremediation efficiency with biosurfactants. It brings new light to such a complex and important issue.
Collapse
|
21
|
Pan X, Xu T, Xu H, Fang H, Yu Y. Characterization and genome functional analysis of the DDT-degrading bacterium Ochrobactrum sp. DDT-2. THE SCIENCE OF THE TOTAL ENVIRONMENT 2017; 592:593-599. [PMID: 28320527 DOI: 10.1016/j.scitotenv.2017.03.052] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2016] [Revised: 03/05/2017] [Accepted: 03/06/2017] [Indexed: 06/06/2023]
Abstract
A strain of Ochrobactrum sp. DDT-2 that was capable of degrading DDT as the sole carbon and energy source was isolated and sequenced, and its biodegradation characteristics and metabolism mechanism were examined. The genome sequence of the isolate DDT-2 was composed of 4,630,303bp with a GC content of 55.99% and 4454 coding genes. The degradation rate of DDT by the isolate DDT-2 increased with the increasing substrate concentration (0.1-10mg/l) and temperature (20-40°C). The degradation half-life of DDT in the presence of the isolate DDT-2 at pH7.0 was obviously shorter than those at pH5.0 and 9.0. Potential DDT degradation genes were found in the isolate DDT-2 genome by a BLASTx search against a DDT degradation genes (DDGs) database. A common biodegradation pathway of DDT was proposed based on the combined analysis of genome annotation and mass spectrometry. DDT was initially dechlorinated to form DDD and DDE. Then, it was transformed into DDMU and DDA via dechlorination and carboxylation, and it may ultimately be mineralized to carbon dioxide. The results suggested that the isolate DDT-2 could be useful for the bioremediation of DDT and its metabolite residues.
Collapse
Affiliation(s)
- Xiong Pan
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Tianheng Xu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Haoyu Xu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China
| | - Hua Fang
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| | - Yunlong Yu
- Institute of Pesticide and Environmental Toxicology, College of Agriculture & Biotechnology, Zhejiang University, Hangzhou 310058, PR China.
| |
Collapse
|
22
|
Zhang Q, Zhang Y, Li D. Cometabolic degradation of chloramphenicol via a meta-cleavage pathway in a microbial fuel cell and its microbial community. BIORESOURCE TECHNOLOGY 2017; 229:104-110. [PMID: 28110226 DOI: 10.1016/j.biortech.2017.01.026] [Citation(s) in RCA: 56] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2016] [Revised: 01/10/2017] [Accepted: 01/11/2017] [Indexed: 06/06/2023]
Abstract
The performance of a microbial fuel cell (MFC) in terms of degradation of chloramphenicol (CAP) was investigated. Approximately 84% of 50mg/L CAP was degraded within 12h in the MFC. A significant interaction of pH, temperature, and initial CAP concentration was found on removal of CAP, and a maximum degradation rate of 96.53% could theoretically be achieved at 31.48°C, a pH of 7.12, and an initial CAP concentration of 106.37mg/L. Moreover, CAP was further degraded through a ring-cleavage pathway. The antibacterial activity of CAP towards Escherichia coli ATCC 25922 and Shewanella oneidensis MR-1 was largely eliminated by MFC treatment. High-throughput sequencing analysis indicated that Azonexus, Comamonas, Nitrososphaera, Chryseobacterium, Azoarcus, Rhodococcus, and Dysgonomonas were the predominant genera in the MFC anode biofilm. In conclusion, the MFC shows potential for the treatment of antibiotic residue-containing wastewater due to its high rates of CAP removal and energy recovery.
Collapse
Affiliation(s)
- Qinghua Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; College of Life Sciences, Sichuan University, Chengdu 610064, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yanyan Zhang
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China
| | - Daping Li
- Key Laboratory of Environmental and Applied Microbiology, Environmental Microbiology Key Laboratory of Sichuan Province, Chengdu Institute of Biology, Chinese Academy of Science, Chengdu 610041, China; University of Chinese Academy of Sciences, Beijing 100049, China.
| |
Collapse
|
23
|
Chen X, Yang C, Wang W, Ge B, Zhang J, Liu Y, Nan Y. Biodegradation of N,N-dimethylacetamide by Rhodococcus sp. strain B83 isolated from the rhizosphere of pagoda tree. J Environ Sci (China) 2017; 53:88-98. [PMID: 28372764 DOI: 10.1016/j.jes.2016.05.013] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2015] [Revised: 05/05/2016] [Accepted: 05/10/2016] [Indexed: 06/07/2023]
Abstract
The biodegradation characteristic and potential metabolic pathway for removal of environmental N,N-dimethylacetamide (DMAC) by Rhodococcus sp. strain B83 was studied. Rhodococcus sp. strain B83 was isolated from the rhizosphere of a pagoda tree and proved capable of utilizing DMAC as sole source of carbon and nitrogen. Batch culture studies showed that strain B83 could tolerate up to 25g/L DMAC and showed distinct growth on possible catabolic intermediates except for acetate. The nitrogen balance analysis revealed that approximately 71% of the initial nitrogen was converted to organic nitrogen. DMAC degradation has led to accumulation of acetate and organic nitrogen, meanwhile traces of nitrate and ammonia was build-up but without nitrite. The growth of strain B83 could be inhibited by adding exogenous acetate. By means of the assay of enzymatic degradation of DMAC, several catabolic intermediates at different intervals were observed and identified. Based on the results obtained from culture solution and enzymatic degradation assay, a detailed pathway is proposed for DMAC biodegradation.
Collapse
Affiliation(s)
- Xingdu Chen
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Chengjian Yang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Weiwei Wang
- School of Life Sciences, Northwest University, Xi'an 710069, China
| | - Bizhou Ge
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Jun Zhang
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yucan Liu
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yaping Nan
- Shaanxi Key Laboratory of Environmental Engineering, Key Laboratory of Northwest Water Resource Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
24
|
Paulino BN, Pessôa MG, Mano MCR, Molina G, Neri-Numa IA, Pastore GM. Current status in biotechnological production and applications of glycolipid biosurfactants. Appl Microbiol Biotechnol 2016; 100:10265-10293. [PMID: 27844141 DOI: 10.1007/s00253-016-7980-z] [Citation(s) in RCA: 63] [Impact Index Per Article: 7.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2016] [Revised: 10/20/2016] [Accepted: 11/01/2016] [Indexed: 01/20/2023]
Abstract
Biosurfactants are natural compounds with surface activity and emulsifying properties produced by several types of microorganisms and have been considered an interesting alternative to synthetic surfactants. Glycolipids are promising biosurfactants, due to low toxicity, biodegradability, and chemical stability in different conditions and also because they have many biological activities, allowing wide applications in different fields. In this review, we addressed general information about families of glycolipids, rhamnolipids, sophorolipids, mannosylerythritol lipids, and trehalose lipids, describing their chemical and surface characteristics, recent studies using alternative substrates, and new strategies to improve of production, beyond their specificities. We focus in providing recent developments and trends in biotechnological process and medical and industrial applications.
Collapse
Affiliation(s)
- Bruno Nicolau Paulino
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil.
| | - Marina Gabriel Pessôa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Mario Cezar Rodrigues Mano
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Gustavo Molina
- Institute of Science and Technology, Food Engineering, UFVJM, Diamantina, Minas Gerais, Brazil
| | - Iramaia Angélica Neri-Numa
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| | - Glaucia Maria Pastore
- Laboratory of Bioflavors and Bioactive Compounds, Department of Food Science, Faculty of Food Engineering, University of Campinas, Cidade Universitária "Zeferino Vaz" Barão Geraldo - Campinas, São Paulo, CEP 13083-862, Brazil
| |
Collapse
|
25
|
Mansouri A, Cregut M, Abbes C, Durand MJ, Landoulsi A, Thouand G. The Environmental Issues of DDT Pollution and Bioremediation: a Multidisciplinary Review. Appl Biochem Biotechnol 2016; 181:309-339. [PMID: 27591882 DOI: 10.1007/s12010-016-2214-5] [Citation(s) in RCA: 67] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2016] [Accepted: 08/12/2016] [Indexed: 12/01/2022]
Abstract
DDT (1,1,1-trichloro-2,2-bis(4-chlorophenyl) ethane) is probably the best known and most useful organochlorine insecticide in the world which was used since 1945 for agricultural purposes and also for vector-borne disease control such as malaria since 1955, until its banishment in most countries by the Stockholm convention for ecologic considerations. However, the World Health Organization allowed its reintroduction only for control of vector-borne diseases in some tropical countries in 2006. Due to its physicochemical properties and specially its persistence related with a half-life up to 30 years, DDT linked to several health and social problems which are due to its accumulation in the environment and its biomagnification properties in living organisms. This manuscript compiles a multidisciplinary review to evaluate primarily (i) the worldwide contamination of DDT and (ii) its (eco) toxicological impact onto living organisms. Secondly, several ways for DDT bioremediation from contaminated environment are discussed. For this, reports on DDT biodegradation capabilities by microorganisms and ways to enhance bioremediation strategies to remove DDT are presented. The different existing strategies for DDT bioremediation are evaluated with their efficiencies and limitations to struggle efficiently this contaminant. Finally, rising new approaches and technological bottlenecks to promote DDT bioremediation are discussed.
Collapse
Affiliation(s)
- Ahlem Mansouri
- University of Nantes, UMR CNRS 6144 GEPEA, CBAC group, 18 Bvd Gaston Defferre, 85000, La Roche sur Yon, France.,Faculty of Sciences of Bizerte, Laboratory of Biochemistry and Molecular Biology, University of Carthage, Zarzouna, 7021, Tunisia
| | - Mickael Cregut
- University of Nantes, UMR CNRS 6144 GEPEA, CBAC group, 18 Bvd Gaston Defferre, 85000, La Roche sur Yon, France
| | - Chiraz Abbes
- Faculty of Sciences of Bizerte, Laboratory of Biochemistry and Molecular Biology, University of Carthage, Zarzouna, 7021, Tunisia
| | - Marie-Jose Durand
- University of Nantes, UMR CNRS 6144 GEPEA, CBAC group, 18 Bvd Gaston Defferre, 85000, La Roche sur Yon, France
| | - Ahmed Landoulsi
- Faculty of Sciences of Bizerte, Laboratory of Biochemistry and Molecular Biology, University of Carthage, Zarzouna, 7021, Tunisia
| | - Gerald Thouand
- University of Nantes, UMR CNRS 6144 GEPEA, CBAC group, 18 Bvd Gaston Defferre, 85000, La Roche sur Yon, France.
| |
Collapse
|
26
|
Biodegradation of DDT by Stenotrophomonas sp. DDT-1: Characterization and genome functional analysis. Sci Rep 2016; 6:21332. [PMID: 26888254 PMCID: PMC4758049 DOI: 10.1038/srep21332] [Citation(s) in RCA: 49] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/15/2015] [Accepted: 01/21/2016] [Indexed: 11/08/2022] Open
Abstract
A novel bacterium capable of utilizing 1,1,1-trichloro-2,2-bis(p-chlorophenyl)ethane (DDT) as the sole carbon and energy source was isolated from a contaminated soil which was identified as Stenotrophomonas sp. DDT-1 based on morphological characteristics, BIOLOG GN2 microplate profile, and 16S rDNA phylogeny. Genome sequencing and functional annotation of the isolate DDT-1 showed a 4,514,569 bp genome size, 66.92% GC content, 4,033 protein-coding genes, and 76 RNA genes including 8 rRNA genes. Totally, 2,807 protein-coding genes were assigned to Clusters of Orthologous Groups (COGs), and 1,601 protein-coding genes were mapped to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway. The degradation half-lives of DDT increased with substrate concentration from 0.1 to 10.0 mg/l, whereas decreased with temperature from 15 °C to 35 °C. Neutral condition was the most favorable for DDT biodegradation. Based on genome annotation of DDT degradation genes and the metabolites detected by GC-MS, a mineralization pathway was proposed for DDT biodegradation in which it was orderly converted into DDE/DDD, DDMU, DDOH, and DDA via dechlorination, hydroxylation, and carboxylation, and ultimately mineralized to carbon dioxide. The results indicate that the isolate DDT-1 is a promising bacterial resource for the removal or detoxification of DDT residues in the environment.
Collapse
|
27
|
Rylott EL, Johnston EJ, Bruce NC. Harnessing microbial gene pools to remediate persistent organic pollutants using genetically modified plants--a viable technology? JOURNAL OF EXPERIMENTAL BOTANY 2015; 66:6519-33. [PMID: 26283045 DOI: 10.1093/jxb/erv384] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/06/2023]
Abstract
It has been 14 years since the international community came together to legislate the Stockholm Convention on Persistent Organic Pollutants (POPs), restricting the production and use of specific chemicals that were found to be environmentally stable, often bioaccumulating, with long-term toxic effects. Efforts are continuing to remove these pollutants from the environment. While incineration and chemical treatment can be successful, these methods require the removal of tonnes of soil, at high cost, and are damaging to soil structure and microbial communities. The engineering of plants for in situ POP remediation has had highly promising results, and could be a more environmentally-friendly alternative. This review discusses the characterization of POP-degrading bacterial pathways, and how the genes responsible have been harnessed using genetic modification (GM) to introduce these same abilities into plants. Recent advances in multi-gene cloning, genome editing technologies and expression in monocot species are accelerating progress with remediation-applicable species. Examples include plants developed to degrade 2,4,6-trinitrotoluene (TNT), hexahydro-1,3,5-trinitro-1,3,5-triazine (RDX), trichloroethylene (TCE), and polychlorinated biphenyls (PCBs). However, the costs and timescales needed to gain regulatory approval, along with continued public opposition, are considerable. The benefits and challenges in this rapidly developing and promising field are discussed.
Collapse
Affiliation(s)
- Elizabeth L Rylott
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Emily J Johnston
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| | - Neil C Bruce
- Centre for Novel Agricultural Products, Department of Biology, University of York, Wentworth Way, York, YO10 5DD, UK
| |
Collapse
|