1
|
Wang LJ, Wen F, Li LX, Xia ZF. Antifungal activity and mechanism of oxanthromicin against Verticillium dahliae. Arch Microbiol 2024; 206:83. [PMID: 38296859 DOI: 10.1007/s00203-023-03815-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 12/12/2023] [Accepted: 12/23/2023] [Indexed: 02/02/2024]
Abstract
Oxanthromicin is an anthranone-type natural product isolated from Streptomyces sp. TRM 15522, which exhibits antifungal activity. However, the underlying mechanisms remain unclear. This study, therefore, aimed at investigating the mode of action of oxanthromicin against the phytopathogen Verticillium dahliae. We found that oxanthromicin substantially suppressed spore germination and mycelial growth in V. dahliae. Further, electron microscopy and staining with propidium iodide and Rhodamine 123 indicated that oxanthromicin causes cell membrane damage and induces changes in mitochondrial membrane potential. These findings suggest that oxanthromicin exhibits its antifungal activity by damaging fungal cell membranes. This discovery could potentially facilitate the development of oxanthromicin as a biological pesticide.
Collapse
Affiliation(s)
- Li-Jun Wang
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
- Instrumental Analysis Center of Tarim University, Alar, 843300, China
| | - Feng Wen
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
| | - Li-Xia Li
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China
| | - Zhan-Feng Xia
- College of Life Science and Technology, Key Laboratory of Protection and Utilization of Biological Resources in Tarim Basin of Xinjiang Production & Construction Corps, Tarim University, Alar, 843300, China.
| |
Collapse
|
2
|
Niimi-Nakamura S, Kawaguchi H, Uematsu K, Teramura H, Nakamura-Tsuruta S, Kashiwagi N, Sugai Y, Katsuyama Y, Ohnishi Y, Ogino C, Kondo A. 3-Amino-4-hydroxybenzoic acid production from glucose and/or xylose via recombinant Streptomyces lividans. J GEN APPL MICROBIOL 2022; 68:109-116. [PMID: 35831135 DOI: 10.2323/jgam.2022.06.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Abstract
The aromatic compound 3-amino-4-hydroxybenzoic acid (3,4-AHBA) can be employed as a raw material for high-performance industrial plastics. The aim of this study is to produce 3,4-AHBA via a recombinant Streptomyces lividans strain containing griI and griH genes derived from Streptomyces griseus using culture medium with glucose and/or xylose, which are the main components in lignocellulosic biomass. Production of 3,4-AHBA by the recombinant S. lividans strain was successful, and the productivity was affected by the kind of sugar used as an additional carbon source. Metabolic profiles revealed that L aspartate-4-semialdehyde (ASA), a precursor of 3,4-AHBA, and coenzyme NADPH were supplied in greater amounts in xylose medium than in glucose medium. Moreover, cultivation in TSB medium with a mixed sugar (glucose/xylose) was found to be effective for 3,4-AHBA production, and optimal conditions for efficient production were designed by changing the ratio of glucose to xylose. The best productivity of 2.70 g/L was achieved using a sugar mixture of 25 g/L glucose and 25 g/L xylose, which was 1.5 times higher than the result using 50 g/L glucose alone. These results suggest that Streptomyces is a suitable candidate platform for 3,4-AHBA production from lignocellulosic biomass-derived sugars under appropriate culture conditions.
Collapse
Affiliation(s)
- Satoko Niimi-Nakamura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | - Hideo Kawaguchi
- Graduate School of Science, Technology and Innovation, Kobe University
| | - Kouji Uematsu
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | - Hiroshi Teramura
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | | | | | - Yoshinori Sugai
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo
| | - Yohei Katsuyama
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Yasuo Ohnishi
- Department of Biotechnology, Graduate School of Agricultural and Life Sciences, The University of Tokyo.,Collaborative Research Institute for Innovative Microbiology, The University of Tokyo
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University.,RIKEN Center for Sustainable Resource Science
| |
Collapse
|
3
|
Nawaz MZ, Bilal M, Tariq A, Iqbal HMN, Alghamdi HA, Cheng H. Bio-purification of sugar industry wastewater and production of high-value industrial products with a zero-waste concept. Crit Rev Food Sci Nutr 2021; 61:3537-3554. [PMID: 32820646 DOI: 10.1080/10408398.2020.1802696] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
In recent years, biorefinery approach with a zero-waste concept has gained a lot research impetus to boost the environment and bioeconomy in a sustainable manner. The wastewater from sugar industries contains miscellaneous compounds and need to be treated chemically or biologically before being discharged into water bodies. Efficient utilization of wastewater produced by sugar industries is a key point to improve its economy. Thus, interest in the sugar industry wastes has grown in both fundamental and applied research fields, over the years. Although, traditional methods being used to process such wastewaters are effective yet are tedious, laborious and time intensive. Considering the diverse nature of wastewaters from various sugar-manufacturing processes, the development of robust, cost-competitive, sustainable and clean technologies has become a challenging task. Under the recent scenario of cleaner production and consumption, the biorefinery and/or close-loop concept, though using different technologies and multi-step processes, namely, bio-reduction, bio-accumulation or biosorption using a variety of microbial strains, has stepped-up as the method of choice for a sustainable exploitation of a wide range of organic waste matter along with the production of high-value products of industrial interests. This review comprehensively describes the use of various microbial strains employed for eliminating the environmental pollutants from sugar industry wastewater. Moreover, the main research gaps are also critically discussed along with the prospects for the efficient purification of sugar industry wastewaters with the concomitant production of high-value products using a biorefinery approach. In this review, we emphasized that the biotransformation/biopurification of sugar industry waste into an array of value-added compounds such as succinic acid, L-arabinose, solvents, and xylitol is a need of hour and is futuristic approach toward achieving cleaner production and consumption.
Collapse
Affiliation(s)
- Muhammad Zohaib Nawaz
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian, China
| | - Arslan Tariq
- Center for Advanced Studies in Agriculture and Food Security, University of Agriculture, Faisalabad, Pakistan
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Monterrey, Mexico
| | - Huda Ahmed Alghamdi
- Department of Biology, College of Sciences, King Khalid University, Abha, Saudi Arabia
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| |
Collapse
|
4
|
Mutturi S, Ike M, Yamagishi K, Tokuyasu K. Isolation, characterization, and application of thermotolerant Streptomyces sp. K5 for efficient conversion of cellobiose to chitinase using pulse- feeding strategy. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.04.009] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
5
|
Lu ZY, Zhong JJ. Effect of furfural addition on validamycin-A production in fermentation of Streptomyces hygroscopicus 5008. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
6
|
Abstract
Pseudo-oligosaccharides are microbial-derived secondary metabolites whose chemical structures contain pseudosugars (glycomimetics). Due to their high resemblance to the molecules of life (carbohydrates), most pseudo-oligosaccharides show significant biological activities. Some of them have been used as drugs to treat human and plant diseases. Because of their significant economic value, efforts have been put into understanding their biosynthesis, optimizing their fermentation conditions, and engineering their metabolic pathways to obtain better production yields. A number of unusual enzymes participating in diverse biosynthetic pathways to pseudo-oligosaccharides have been reported. Various methods and conditions to improve the production yields of the target compounds and eliminate byproducts have also been developed. This review article describes recent studies on the biosynthesis, fermentation optimization, and metabolic engineering of high-value pseudo-oligosaccharides.
Collapse
|
7
|
Du Z, Zhong J. Rational approach to improve ansamitocin P‐3 production by integrating pathway engineering and substrate feeding in
Actinosynnema pretiosum. Biotechnol Bioeng 2018; 115:2456-2466. [DOI: 10.1002/bit.26775] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2018] [Revised: 06/19/2018] [Accepted: 06/22/2018] [Indexed: 12/15/2022]
Affiliation(s)
- Zhi‐Qiang Du
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| | - Jian‐Jiang Zhong
- State Key Laboratory of Microbial MetabolismSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Joint International Research Laboratory of Metabolic and Developmental SciencesSchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
- Laboratory of Molecular Biochemical Engineering and Advanced Fermentation TechnologySchool of Life Sciences and Biotechnology, Shanghai Jiao Tong UniversityShanghai China
| |
Collapse
|
8
|
ur Rahman S, Ali T, Ali I, Khan NA, Han B, Gao J. The Growing Genetic and Functional Diversity of Extended Spectrum Beta-Lactamases. BIOMED RESEARCH INTERNATIONAL 2018; 2018:9519718. [PMID: 29780833 PMCID: PMC5892270 DOI: 10.1155/2018/9519718] [Citation(s) in RCA: 134] [Impact Index Per Article: 19.1] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/02/2017] [Revised: 01/24/2018] [Accepted: 01/31/2018] [Indexed: 11/17/2022]
Abstract
The β-lactams-a large class of diverse compounds-due to their excellent safety profile and broad antimicrobial spectrum are considered to be the most widely used therapeutic class of antibacterials prescribed in human and veterinary clinical practices. This, unfortunately, has also given rise to a continuous increased resistance globally in health care settings as well as in the community due to their permanent selective force driving diversification of the resistance mechanism. Resistance against β-lactams is increasing rapidly as novel β-lactamases, enzymes that degrade β-lactams, are being discovered each day such as recent emergence of extended spectrum β-lactamases (ESBL) that have the ability to inactivate most of the cephalosporins. The complexity and diversity of ESBL are increasing so rapidly that more than 170 variants have thus far been described for only a single genotype, the blaCTX-M -encoding ESBL. This review is to organize all the current updated literature describing genomic features, organization, and mechanism of resistance and mode of dissemination of all known ESBLs.
Collapse
Affiliation(s)
- Sadeeq ur Rahman
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
- Abdul Wali Khan University, Garden Campus, Khyber Pakhtunkhwa, Pakistan
| | - Tariq Ali
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Ijaz Ali
- Department of Biosciences, COMSATS Institute of Information Technology (CIIT), Bioscience Block, Chak Shahzad Campus, Park Road, Islamabad, Pakistan
| | - Nazir Ahmad Khan
- Department of Animal Nutrition, The University of Agriculture, Peshawar, Pakistan
| | - Bo Han
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| | - Jian Gao
- Department of Clinical Veterinary Medicine, College of Veterinary Medicine, China Agricultural University, Beijing, China
| |
Collapse
|
9
|
Jiang J, Sun YF, Tang X, He CN, Shao YL, Tang YJ, Zhou WW. Alkaline pH shock enhanced production of validamycin A in fermentation of Streptomyces hygroscopicus. BIORESOURCE TECHNOLOGY 2018; 249:234-240. [PMID: 29045927 DOI: 10.1016/j.biortech.2017.10.012] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2017] [Revised: 10/03/2017] [Accepted: 10/05/2017] [Indexed: 06/07/2023]
Abstract
Validamycin A (Val-A) is produced by Streptomyces as a secondary metabolite with wide agricultural applications of controlling rice sheath blight, false smut and damping-off diseases. The effect of alkaline pH shock on enhancing Val-A production and its mechanism were investigated. A higher yield of Val-A was achieved by NaOH shock once or several times together with faster protein synthesis and sugar consumption and alkaline pH shock can increase Val-A production by 27.43%. Transcription of genes related to amino acid metabolism, carbon metabolism and electron respiratory chain was significantly up-regulated, accompanied by the substantial increase of respiratory activity and glutamate concentration. Val-A production was promoted by a series of complex mechanisms and made a response to pH stress signal, which led to the enhancement of glutamate metabolism and respiration activity. The obtained information will facilitate future studies for antibiotic yield improvement and the deep revealment of molecular mechanism.
Collapse
Affiliation(s)
- Jing Jiang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Fang Sun
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Xi Tang
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Chao-Nan He
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ye-Lin Shao
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China
| | - Ya-Jie Tang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, China
| | - Wen-Wen Zhou
- College of Biosystems Engineering and Food Science, Fuli Institute of Food Science, Zhejiang Key Laboratory for Agro-Food Processing, Key Laboratory for Agro-Products Postharvest Handling of Ministry of Agriculture, Zhejiang University, Hangzhou 310058, Zhejiang, China.
| |
Collapse
|
10
|
Kashiwagi N, Ogino C, Kondo A. Production of chemicals and proteins using biomass-derived substrates from a Streptomyces host. BIORESOURCE TECHNOLOGY 2017; 245:1655-1663. [PMID: 28651868 DOI: 10.1016/j.biortech.2017.06.001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2017] [Revised: 05/31/2017] [Accepted: 06/01/2017] [Indexed: 06/07/2023]
Abstract
Bioproduction using microbes from biomass feedstocks is of interest in regards to environmental problems and cost reduction. Streptomyces as an industrial microorganism plays an important role in the production of useful secondary metabolites for various applications. This strain also secretes a wide range of extracellular enzymes which degrade various biopolymers in nature, and it consumes these degrading substrates as nutrients. Hence, Streptomyces can be employed as a cell factory for the conversion of biomass-derived substrates into various products. This review focuses on the following two points: (1) Streptomyces as a producer of enzymes for degrading biomass-derived polysaccharides and polymers; and, (2) wild-type and engineered strains of Streptomyces as a host for chemical production from biomass-derived substrates.
Collapse
Affiliation(s)
- Norimasa Kashiwagi
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan
| | - Chiaki Ogino
- Department of Chemical Science and Engineering, Graduate School of Engineering, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan.
| | - Akihiko Kondo
- Graduate School of Science, Technology and Innovation, Kobe University, 1-1 Rokkodaicho, Nada-ku, Kobe, Hyogo 657-8501, Japan; RIKEN Center for Sustainable Resource Science, 1-7-22 Suehiro-cho, Tsurumi-ku, Yokohama, Kanagawa 230-0045, Japan
| |
Collapse
|
11
|
Li F, Ding W, Quan N, Wu J, He Y, Zhu X, Shi X, Zhao J. Improved Stereoselective Syntheses of (+)-Valiolamine and (+)-Valienamine Starting from (-)-Shikimic Acid. CHINESE J CHEM 2017. [DOI: 10.1002/cjoc.201600935] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Affiliation(s)
- Fenglei Li
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Wei Ding
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Na Quan
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Jiajia Wu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Yungang He
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Xingliang Zhu
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Xiaoxin Shi
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| | - Jianhong Zhao
- Shanghai Key Laboratory of Chemical Biology, School of Pharmacy; East China University of Science and Technology; Shanghai 200237 China
| |
Collapse
|
12
|
Zeng X, Chen XS, Ren XD, Wang L, Gao Y, Mao ZG. Improved ε-poly-l-lysine productivity partly resulting from rapid cell growth in cultures using a glucose-glycerol mixed carbon source. Eng Life Sci 2016. [DOI: 10.1002/elsc.201500090] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022] Open
Affiliation(s)
- Xin Zeng
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| | - Xu-Sheng Chen
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| | - Xi-Dong Ren
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| | - Liang Wang
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| | - Yang Gao
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| | - Zhong-Gui Mao
- The Key Laboratory of Industrial Biotechnology; Ministry of Education; School of Biotechnology; Jiangnan University; Wuxi China
| |
Collapse
|