1
|
Naderi A, Kakavandi B, Giannakis S, Angelidaki I, Rezaei Kalantary R. Putting the electro-bugs to work: A systematic review of 22 years of advances in bio-electrochemical systems and the parameters governing their performance. ENVIRONMENTAL RESEARCH 2023; 229:115843. [PMID: 37068722 DOI: 10.1016/j.envres.2023.115843] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2023] [Revised: 03/25/2023] [Accepted: 04/03/2023] [Indexed: 05/08/2023]
Abstract
Wastewater treatment using bioelectrochemical systems (BESs) can be considered as a technology finding application in versatile areas such as for renewable energy production and simultaneous reducing environmental problems, biosensors, and bioelectrosynthesis. This review paper reports and critically discusses the challenges, and advances in bio-electrochemical studies in the 21st century. To sum and critically analyze the strides of the last 20+ years on the topic, this study first provides a comprehensive analysis on the structure, performance, and application of BESs, which include Microbial Fuel Cells (MFCs), Microbial Electrolysis Cells (MECs) and Microbial Desalination Cells (MDCs). We focus on the effect of various parameters, such as electroactive microbial community structure, electrode material, configuration of bioreactors, anode unit volume, membrane type, initial COD, co-substrates and the nature of the input wastewater in treatment process and the amount of energy and fuel production, with the purpose of showcasing the modes of operation as a guide for future studies. The results of this review show that the BES have great potential in reducing environmental pollution, purifying saltwater, and producing energy and fuel. At a larger scale, it aspires to facilitate the path of achieving sustainable development and practical application of BES in real-world scenarios.
Collapse
Affiliation(s)
- Azra Naderi
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran
| | - Babak Kakavandi
- Research Center for Health, Safety and Environment, Alborz University of Medical Sciences, Karaj, Iran; Department of Environmental Health Engineering, Alborz University of Medical Sciences, Karaj, Iran
| | - Stefanos Giannakis
- Universidad Politécnica de Madrid, E.T.S. de Ingenieros de Caminos, Canales y Puertos, Departamento de Ingeniería Civil: Hidráulica, Energía y Medio Ambiente, Environment, Coast and Ocean Research Laboratory (ECOREL-UPM), C/Profesor Aranguren, s/n, ES-28040, Madrid, Spain
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, DK-2800, Lyngby, Denmark
| | - Roshanak Rezaei Kalantary
- Research Center for Environmental Health Technology, Iran University of Medical Sciences, Tehran, Iran; Department of Environmental Health Engineering, School of Public Health, Iran University of Medical Sciences, Tehran, Iran.
| |
Collapse
|
2
|
Mohyudin S, Farooq R, Jubeen F, Rasheed T, Fatima M, Sher F. Microbial fuel cells a state-of-the-art technology for wastewater treatment and bioelectricity generation. ENVIRONMENTAL RESEARCH 2022; 204:112387. [PMID: 34785206 DOI: 10.1016/j.envres.2021.112387] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Revised: 10/17/2021] [Accepted: 11/12/2021] [Indexed: 06/13/2023]
Abstract
Wastewater treatment and electricity generation have been the major concerns for the last few years. The scarcity of fossil fuels has led to the development of unconventional energy resources that are pollution-free. Microbial fuel cell (MFC) is an environmental and eco-friendly technology that harvests energy through the oxidation of organic substrates and transform into the electric current with the aid of microorganisms as catalysts. This review presents power output and colour removal values by designing various configurations of MFCs and highlights the importance of materials for the fabrication of anode and cathode electrodes playing vital roles in the formation of biofilm and redox reactions taking place in both chambers. The electron transfer mechanism from microbes towards the electrode surface and the generation of electric current are also highlighted. The effect of various parameters affecting the cell performance such as type and amount of substrate, pH and temperature maintained within the chambers have also been discussed. Although this technology presents many advantages, it still needs to be used in combination with other processes to enhance power output.
Collapse
Affiliation(s)
- Sidra Mohyudin
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Robina Farooq
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Chemistry, COMSATS University, Islamabad, Lahore, Pakistan
| | - Farhat Jubeen
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan
| | - Tahir Rasheed
- Interdisciplinary Research Center for Advanced Materials, King Fahd University of Petroleum and Minerals (KFUPM), Dhahran, 31261, Saudi Arabia.
| | - Masoom Fatima
- Department of Chemistry, Government College Women University, Faisalabad, 38000, Pakistan; Department of Biology and Environmental Science, Allama Iqbal Open University, Islamabad, 44000, Pakistan
| | - Farooq Sher
- Department of Engineering, School of Science and Technology, Nottingham Trent University, Nottingham, NG11 8NS, United Kingdom.
| |
Collapse
|
3
|
Xie J, Zou X, Chang Y, Chen C, Ma J, Liu H, Cui MH, Zhang TC. Bioelectrochemical systems with a cathode of stainless-steel electrode for treatment of refractory wastewater: Influence of electrode material on system performance and microbial community. BIORESOURCE TECHNOLOGY 2021; 342:125959. [PMID: 34852439 DOI: 10.1016/j.biortech.2021.125959] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2021] [Revised: 09/09/2021] [Accepted: 09/13/2021] [Indexed: 06/13/2023]
Abstract
The large-scale application of the bioelectrochemical system (BES) is limited by the cost-effective electrode materials. In this study, five kinds of stainless-steel materials were used as the cathode of the BES coupled with anaerobic digestion (BES-AD) for the treatment of diluted N, N-dimethylacetamide (DMAC) wastewater. Compared with a carbon-cloth cathode, BES-AD with a stainless-steel cathode had more engineering due to its low cost, although the operating efficiencies were slightly inferior. Stainless-steel mesh with a 100 µm aperture (SSM-100 μm) was the most cost-effective electrode and the implanted BES exhibited better COD removal efficiency, electrochemical performance and biodegradability. Analysis of microbial community revealed the synergetic effect between exoelectrogen and fermentative bacteria had been strengthened in the SSM-100 μm cathode biofilm. Function analysis of the microbial community based on PICRUSt predicted metagenomes revealed that the metabolic pathways of xenobiotics biodegradation and metabolism in the SSM-100 μm cathode were stimulated.
Collapse
Affiliation(s)
- Jiawei Xie
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Xinyi Zou
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Yaofeng Chang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China
| | - Chongjun Chen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou 215009, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, Suzhou University of Science and Technology, Suzhou 215009, PR China.
| | - Ji Ma
- Jiangsu Sujing Group Co., Ltd, Suzhou 215122, PR China
| | - He Liu
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Min-Hua Cui
- School of Environment and Civil Engineering, Jiangnan University, Wuxi 214122, PR China
| | - Tian C Zhang
- Civil & Environmental Engineering Dept, University of Nebraska-Lincoln (Omaha Campus), Omaha, NE 68182-0178, USA
| |
Collapse
|
4
|
Leon-Fernandez LF, Villaseñor J, Rodriguez L, Cañizares P, Rodrigo MA, Fernández-Morales FJ. Dehalogenation of 2,4-Dichlorophenoxyacetic acid by means of bioelectrochemical systems. J Electroanal Chem (Lausanne) 2019. [DOI: 10.1016/j.jelechem.2019.113564] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
5
|
Wang X, Wan G, Shi L, Gao X, Zhang X, Li X, Zhao J, Sha B, Huang Z. Direct micro-electric stimulation alters phenanthrene-degrading metabolic activities of Pseudomonas sp. strain DGYH-12 in modified bioelectrochemical system. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:31449-31462. [PMID: 31478172 PMCID: PMC6828628 DOI: 10.1007/s11356-019-05670-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2018] [Accepted: 06/03/2019] [Indexed: 05/23/2023]
Abstract
Bioelectrochemical systems (BESs) have great potential for treating wastewater containing polycyclic aromatic hydrocarbons (PAHs); however, detailed data on cell physiological activities in PAH biodegradation pathways stimulated by BESs are still lacking. In this paper, a novel BES device was assembled to promote the growth of Pseudomonas sp. DGYH-12 in phenanthrene (PHE) degradation. The results showed that in the micro-electric field (0.2 V), cell growth rate and PHE degradation efficiency were 22% and 27.2% higher than biological control without electric stimulation (BC), respectively. The extracellular polymeric substance (EPS) concentration in BES (39.38 mg L-1) was higher than control (33.36 mg L-1); moreover, the membrane permeability and ATPase activities were also enhanced and there existing phthalic acid and salicylic acid metabolic pathways in the strain. The degradation genes nahAc, pcaH, and xylE expression levels were upregulated by micro-electric stimulation. This is the first study to analyze the physiological and metabolic effect of micro-electric stimulation on a PHE-degrading strain in detail and systematically.
Collapse
Affiliation(s)
- Xingbiao Wang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Guilong Wan
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
- University of Chinese Academy of Sciences, Beijing, 100049, People's Republic of China
| | - Liuyang Shi
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaolong Gao
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaoxia Zhang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China
| | - Xiaoguang Li
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Jianfang Zhao
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Beibei Sha
- Binzhou Engineering Technology Research Center for High Salt Wastewater Treatment (chips) of Befar Group, Binzhou, Shandong Province, 256602, People's Republic of China
| | - Zhiyong Huang
- Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, 300308, People's Republic of China.
| |
Collapse
|
6
|
Yang Y, Luo O, Kong G, Wang B, Li X, Li E, Li J, Liu F, Xu M. Deciphering the Anode-Enhanced Azo Dye Degradation in Anaerobic Baffled Reactors Integrating With Microbial Fuel Cells. Front Microbiol 2018; 9:2117. [PMID: 30237793 PMCID: PMC6135904 DOI: 10.3389/fmicb.2018.02117] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2018] [Accepted: 08/20/2018] [Indexed: 11/13/2022] Open
Abstract
Microbial anode respiration in microbial fuel cells (MFCs) can enhance the degradations of many electron acceptor-type contaminants which are presumed to be competitive to anode respiration. The mechanisms underlying those counterintuitive processes are important for MFCs application but are unclear. This study integrated MFCs with anaerobic baffled reactor (ABR), termed MFC-ABR, to enhance the reduction of azo dye acid orange-7 (AO-7). Compare with ABR, MFC-ABR enhanced the degradation of AO-7, especially at high AO-7 concentration (800 mg/L). Acute toxicity test suggested a higher detoxication efficiency in MFC-ABR. Higher microbial viability, dehydrogenase activity and larger sludge granule size were also observed in MFC-ABR. MFC-ABR significantly enriched and reshaped the microbial communities relative to ABR. Bacteria with respiratory versatility, e.g., Pseudomonas, Geobacter, and Shewanella, were significantly enriched. Functional prediction showed that six metabolism functions (manganese-, iron-, fumarate- and nitrate-respiration, oil bioremediation and chemoheterotrophy) were significantly stimulated while methanogenesis, sulfate-respiration, hydrogen-oxidation were suppressed in MFC-ABR relative to ABR. The results provided important information for understanding the role of microbial anode respiration in contaminated environments.
Collapse
Affiliation(s)
- Yonggang Yang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Ou Luo
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Guannan Kong
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Bin Wang
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Xiaojing Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Enze Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Jianjun Li
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| | - Feifei Liu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China
| | - Meiying Xu
- Guangdong Provincial Key Laboratory of Microbial Culture Collection and Application, Guangdong Institute of Microbiology, Guangzhou, China.,State Key Laboratory of Applied Microbiology Southern China, Guangzhou, China
| |
Collapse
|
7
|
Sophia Ayyappan C, Bhalambaal VM, Kumar S. Effect of biochar on bio-electrochemical dye degradation and energy production. BIORESOURCE TECHNOLOGY 2018; 251:165-170. [PMID: 29274856 DOI: 10.1016/j.biortech.2017.12.043] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/13/2017] [Accepted: 12/14/2017] [Indexed: 06/07/2023]
Abstract
The effect of coconut shell biochar on dye degradation in a microbial fuel cell (MFC) was investigated in the present study. Two different doses of biochar (0.5 g and 1 g) and one control without bio-char were studied. The highest COD removal efficiency was about 77.7% (0.5 g biochar), maximum current (1.07 mA) and voltage (722 mV) were obtained with 1 g biochar. Biofilm optical microscopy characterization revealed the micro colonies intricate plate-like structures. High adsorbent dosage might provide a high surface area for biofilm to generate electricity. BET results of coconut shell biochar showed the maximum surface area of 0.9669 m2/g and macroporosity (0.0032 cm3/g). The overall results highlighted the possibility of using biochar as an additive in MFC for efficient dye degradation.
Collapse
Affiliation(s)
- Carmalin Sophia Ayyappan
- CSIR-National Environmental Engineering Research Institute, CSIR Complex, Taramani, Chennai 600 113, India
| | - V M Bhalambaal
- CSIR-National Environmental Engineering Research Institute, CSIR Complex, Taramani, Chennai 600 113, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute, Nehru Marg, Nagpur 440 020, India.
| |
Collapse
|
8
|
Shabbir S, Faheem M, Ali N, Kerr PG, Wu Y. Periphyton biofilms: A novel and natural biological system for the effective removal of sulphonated azo dye methyl orange by synergistic mechanism. CHEMOSPHERE 2017; 167:236-246. [PMID: 27728882 DOI: 10.1016/j.chemosphere.2016.10.002] [Citation(s) in RCA: 30] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2016] [Revised: 09/30/2016] [Accepted: 10/01/2016] [Indexed: 06/06/2023]
Abstract
Due to their large scale use, azo dyes are adversely affecting aquatic fauna and flora as well as humans. The persistent nature of sulphonated azo dyes makes them potential ecotoxic hazards. The aim of the present study was to employ a proficient, locally available biomaterial, viz. periphyton (i.e. epiphyton, epilithon or metaphyton), for removal of the azo dye, methyl orange (MO). Results showed that the periphytic biofilms are capable of completely removing comparatively high concentrations (up to 500 mg L-1) of MO from wastewater. The removal of MO occurs by a synergistic mechanism involving bioadsorption and biodegradation processes. The adsorption of MO by periphyton can be described by pseudo-second order kinetics. Elovich and intraparticle diffusion models as well as Langmuir equations fit well to the MO adsorption process. FTIR analysis of MO and its metabolites demonstrated biotransformation into simpler compounds within 72 h. GC-MS/MS analysis showed the conversion of MO into simpler compounds such as phenol, ethyl acetate and acetyl acetate. The results indicated that periphyton is a promising biomaterial for the complete removal of MO from wastewater and that the treatment process has the potential for in situ removal of MO at contaminated sites.
Collapse
Affiliation(s)
- Sadaf Shabbir
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China; Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320, Islamabad, Pakistan
| | - Muhammad Faheem
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China
| | - Naeem Ali
- Department of Microbiology, Quaid-i-Azam University, 3rd Avenue, 45320, Islamabad, Pakistan
| | - Philip G Kerr
- School of Biomedical Sciences, Charles Sturt University, Wagga Wagga, NSW, 2678, Australia
| | - Yonghong Wu
- State Key Laboratory of Soil and Sustainable Agriculture, Institute of Soil Sciences, Chinese Academy of Sciences, 71 East Beijing Road, Nanjing, 210008, Jiangsu, People's Republic of China.
| |
Collapse
|
9
|
Zhang Q, Hu J, Lee DJ. Microbial fuel cells as pollutant treatment units: Research updates. BIORESOURCE TECHNOLOGY 2016; 217:121-128. [PMID: 26906446 DOI: 10.1016/j.biortech.2016.02.006] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2015] [Revised: 01/30/2016] [Accepted: 02/01/2016] [Indexed: 06/05/2023]
Abstract
Microbial fuel cells (MFC) are a device that can convert chemical energy in influent substances to electricity via biological pathways. Based on the consent that MFC technology should be applied as a waste/wastewater treatment unit rather than a renewable energy source, this mini-review discussed recent R&D efforts on MFC technologies for pollutant treatments and highlighted the challenges and research and development needs. Owing to the low power density levels achievable by larger-scale MFC, the MFC should be used as a device other than energy source such as being a pollutant treatment unit.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; R&D Center for Membrane Technology, Department of Chemical Engineering, Chung Yuan Christian University, Chungli 32023, Taiwan.
| |
Collapse
|
10
|
Process and kinetics of azo dye decolourization in bioelectrochemical systems: effect of several key factors. Sci Rep 2016; 6:27243. [PMID: 27270398 PMCID: PMC4895170 DOI: 10.1038/srep27243] [Citation(s) in RCA: 19] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2016] [Accepted: 05/16/2016] [Indexed: 11/08/2022] Open
Abstract
This study explored the influence of several key factors on the process and kinetics of azo dye decolourization in bioelectrochemical systems (BESs), including cathode potential, dissolved oxygen (DO) concentration of catholyte and biofilm formed on the cathode. The results show that azo dye methyl orange (MO) decolourization in the BES could be well described with the pseudo first-order kinetics. The MO decolourization efficiency increased from 0 to 94.90 ± 0.01% and correspondingly the reaction rate constant increased from 0 to 0.503 ± 0.001 h−1 with the decrease in cathodic electrode potential from −0.2 to −0.8 V vs Ag/AgCl. On the contrary, DO concentration of the catholyte had a negative impact on MO decolourization in the BES. When DO concentration increased from zero to 5.80 mg L−1, the MO decolourization efficiency decreased from 87.19 ± 4.73% to 27.77 ± 0.06% and correspondingly the reaction rate constant reduced from 0.207 ± 0.042 to 0.033 ± 0.007 h−1. Additionally, the results suggest that the biofilm formed on the cathode could led to an adverse rather than a positive effect on azo dye decolourization in the BES in terms of efficiency and kinetics.
Collapse
|
11
|
Wang X, Xing D, Ren N. p-Nitrophenol degradation and microbial community structure in a biocathode bioelectrochemical system. RSC Adv 2016. [DOI: 10.1039/c6ra17446a] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
The biocathode bioelectrochemical system (bioc-BES) was used forp-nitrophenol (PNP) degradation with sodium bicarbonate as the carbon source.
Collapse
Affiliation(s)
- Xinyu Wang
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Defeng Xing
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| | - Nanqi Ren
- State Key Laboratory of Urban Water Resource and Environment
- School of Municipal and Environmental Engineering
- Harbin Institute of Technology
- Harbin 150090
- PR China
| |
Collapse
|
12
|
Kong F, Wang A, Ren HY. Optimization of working cathode position in sleeve-type bioelectrochemical system with inner chamber/outer chamber for azo dye treatment. BIORESOURCE TECHNOLOGY 2015; 198:437-444. [PMID: 26409856 DOI: 10.1016/j.biortech.2015.09.050] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/02/2015] [Revised: 09/08/2015] [Accepted: 09/09/2015] [Indexed: 06/05/2023]
Abstract
In this study, the optimization of working cathode position in sleeve-type bioelectrochemical system (BES) was evaluated with inner/outer chamber for azo dye decolorization. Results showed that the working position in outer chamber performed better with decolorization efficiencies of 97.8 ± 2.1% (7h) and 94.0 ± 2.3% (16 h) than that in inner chamber as the volume ratio Vcathode:Vanode=1:1 and 3:1, respectively. The current and electrochemical impedance spectroscopy (EIS) analysis indicated that the proton/electron transfer and anolyte diffusion could be improved using outer chamber as working position. The decolorization with increased volume ratio could be further improved through the strategy of increasing substrate concentration, which would provide enough electrons and decrease diffusion resistance, further improving the whole performance with increased outer cathode volume. It has the great potential in sleeve-type configuration application and would create more challenges for process optimization and maintenance.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Sun Q, Li Z, Wang Y, Cui D, Liang B, Thangavel S, Chung JS, Wang A. A horizontal plug-flow baffled bioelectrocatalyzed reactor for the reductive decolorization of Alizarin Yellow R. BIORESOURCE TECHNOLOGY 2015; 195:73-7. [PMID: 26142821 DOI: 10.1016/j.biortech.2015.06.086] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/24/2015] [Revised: 06/17/2015] [Accepted: 06/18/2015] [Indexed: 05/20/2023]
Abstract
An application-oriented membrane-free, continuous plug-flow baffled bioelectrocatalyzed reactor (PFB-BER), was designed and testified for the decolorization of Alizarin Yellow R. Decolorization efficiency (DE) with an external power source of 0.5 V was higher than without electrolysis, i.e. 93.4% versus 73.6% (HRT of 24 h). Product formation efficiencies of p-phenylenediamine and 5-aminosalicylic acid were above 95% and 50%, respectively. When HRT decreased to 8 h and 4 h, DE reduced to 69.9% and 44.9%, respectively. An additional electrode assembly improved DE to 96.4% (HRT of 8 h) and 80% (HRT of 4 h), while energy consumption (HRT of 4 h) was lower than that of HRT of 12 h with single electrode assembly under comparable DE. The PFB-BER with higher removal capacity, lower internal resistance and energy consumption provides a new solution to treat the high loading azo dye-containing wastewaters.
Collapse
Affiliation(s)
- Qian Sun
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Zhiling Li
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Youzhao Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Dan Cui
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Bin Liang
- Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China
| | - Sangeetha Thangavel
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Jong Shik Chung
- Department of Chemical Engineering, Pohang University of Science and Technology (POSTECH), San 31, Hyoja-dong, Pohang 790-784, South Korea; Division of Environmental Catalysis, Research Institute of Industrial Science and Technology, P.O. Box 135, Pohang 790-600, South Korea
| | - Aijie Wang
- State Key Laboratory of Urban Water Resources and Environment, Harbin Institute of Technology, Harbin 150090, PR China; Key Laboratory of Environmental Biotechnology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, PR China.
| |
Collapse
|
14
|
Mecheri B, Iannaci A, D'Epifanio A, Mauri A, Licoccia S. Carbon-Supported Zirconium Oxide as a Cathode for Microbial Fuel Cell Applications. Chempluschem 2015; 81:80-85. [DOI: 10.1002/cplu.201500347] [Citation(s) in RCA: 43] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2015] [Indexed: 12/14/2022]
Affiliation(s)
- Barbara Mecheri
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandro Iannaci
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Alessandra D'Epifanio
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Arianna Mauri
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| | - Silvia Licoccia
- Department of Chemical Sciences and Technologies; University of Rome Tor Vergata; Via della Ricerca Scientifica 00133 Rome Italy
| |
Collapse
|
15
|
Kong F, Wang A, Ren HY. Optimized matching modes of bioelectrochemical module and anaerobic sludge in the integrated system for azo dye treatment. BIORESOURCE TECHNOLOGY 2015; 192:486-493. [PMID: 26080106 DOI: 10.1016/j.biortech.2015.06.001] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2015] [Revised: 05/29/2015] [Accepted: 06/01/2015] [Indexed: 06/04/2023]
Abstract
In this work, three matching modes (relative positions, catholyte flow sequences, and flow regimes) of bioelectrochemical module and anaerobic sludge were evaluated and optimized for azo dye treatment in the integrated system with embedding modular bioelectrochemical system into anaerobic sludge reactor. Results showed that it was favorable to operate this integrated system under the condition of 1/4 cathode soaking into sludge with spiral distributor in down-flow direction. Current, electrochemical impedance spectroscopy and pH clearly demonstrated the important role of 1/4 soaking in electron/proton transfer. The down-flow direction flowed through electrode zone and then sludge zone could benefit to the efficient use of cathode and improve AO7 treatment. Furthermore, the positive effect of spiral catholyte distributor might be due to its promoting role in mixing and creating a spiral flow channel around the cathode electrode-microbes-solution interface. These results exhibited great potential for matching modular bioelectrochemical system with anaerobic treatment process.
Collapse
Affiliation(s)
- Fanying Kong
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| | - Aijie Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China; Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing 100085, China.
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Municipal and Environmental Engineering, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
16
|
Zhang G, Jiao Y, Lee DJ. A lab-scale anoxic/oxic-bioelectrochemical reactor for leachate treatments. BIORESOURCE TECHNOLOGY 2015; 186:97-105. [PMID: 25812812 DOI: 10.1016/j.biortech.2015.03.022] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2015] [Revised: 03/02/2015] [Accepted: 03/03/2015] [Indexed: 06/04/2023]
Abstract
A membraneless, liter-scale bioelectrochemical reactor with both bioanode and biocathode was established for landfill leachate treatment. Anoxic/oxic (A/O) zones at anode compartment and cathode compartment, respectively, were connected with a reflux to facilitate nitrogen removal. With raw landfill leachate of 17,500-22,600 mg L(-1) chemical oxygen demand (COD) and 1170-1490 mg L(-1) NH4(+)-N, the tested reactor removed 89.1±1.6% of chemical oxygen demand and 99.2±0.1% of NH4(+)-N at 3.0 kg COD m(-3) d(-1). The corresponding maximum power density was 2.71±0.09 W m(-3), with internal resistance of 46.7±1.6 Ω and open circuit voltage of 727±7 mV. The species of Pseudomonas, Desulfovibrio, Bacillus, Enterococcus, Pelospora, Dehalobacter dominated the anodic community, while those of methylotrophs, Rhodobacter, Verrucomicrobiaceae, Geobacter, Flavobacterium, Thauera, Desulfovibrio and Aeromonas dominated the cathodic community. The proposed A/O bioelectrochemical reactor is a prototype for practical treatment of landfill leachate at affordable costs.
Collapse
Affiliation(s)
- Guodong Zhang
- Institute of Resources and Environment Engineering, Shanxi University, Taiyuan 030006, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan
| | - Yan Jiao
- Research Institute of Transition of Research-based Economics, Department of Environmental Economics, Shanxi University of Finance and Economics, Taiyuan 030006, China
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 106, Taiwan.
| |
Collapse
|
17
|
Gavazza S, Guzman JJL, Angenent LT. Electrolysis within anaerobic bioreactors stimulates breakdown of toxic products from azo dye treatment. Biodegradation 2015; 26:151-60. [DOI: 10.1007/s10532-015-9723-8] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2014] [Accepted: 03/02/2015] [Indexed: 11/29/2022]
|