1
|
Show BK, Shivakumaran G, Koley A, Ghosh A, Chaudhury S, Hazra AK, Balachandran S. Effect of thermal and NaOH pretreatment on water hyacinth to enhance the biogas production. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:120984-120993. [PMID: 37947930 DOI: 10.1007/s11356-023-30810-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 10/28/2023] [Indexed: 11/12/2023]
Abstract
Water hyacinth (WH) is used as the substrate for biogas production due to its high lignocellulosic composition and natural abundance. The present study used thermal and chemical (alkali) pretreatment techniques to enhance biogas production from water hyacinth used as a substrate by anaerobic digestion. Thermal pretreatment was done using an autoclave at 121 °C and 15 lb (2 bar) pressure and alkali pretreatment by NaOH at two concentrations (2% and 5% w/v). The inoculum:substrate ratio for biogas production was 2:1, where cow dung was used as inoculum. Results indicated that the pretreatments increased biomass degradability and improved biogas production. Water hyacinth pretreated with 5% NaOH produced the highest amount of biogas (142.61 L/Kg VS) with a maximum methane content of 64.59%. The present study found that alkali pretreatment can modify the chemical structure and enhance WH hydrolysis, leading to enhanced energy production.
Collapse
Affiliation(s)
- Binoy Kumar Show
- Bioenergy Laboratory, Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| | - Gaayathri Shivakumaran
- Department of Microbiology, PSG College of Arts and Sciences, Coimbatore, Tamil Nadu 641 014, India
| | - Apurba Koley
- Bioenergy Laboratory, Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| | - Anudeb Ghosh
- Bioenergy Laboratory, Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| | - Shibani Chaudhury
- Bioenergy Laboratory, Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India.
| | - Amit Kumar Hazra
- Department of Lifelong Learning and Extension, Palli-Samgathana Vibhaga, Visva-Bharati (A Central University), Sriniketan, West Bengal, 731236, India
| | - S Balachandran
- Bioenergy Laboratory, Department of Environmental Studies, Siksha-Bhavana, Visva-Bharati (A Central University), Santiniketan, West Bengal, 731235, India
| |
Collapse
|
2
|
Xu J, Li X, Gao T. The Multifaceted Function of Water Hyacinth in Maintaining Environmental Sustainability and the Underlying Mechanisms: A Mini Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:16725. [PMID: 36554606 PMCID: PMC9779344 DOI: 10.3390/ijerph192416725] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/13/2022] [Revised: 12/03/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Water hyacinth (Eichhornia crassipes) (WH) is a widespread aquatic plant. As a top invasive macrophyte, WH causes enormous economic and ecological losses. To control it, various physical, chemical and biological methods have been developed. However, multiple drawbacks of these methods limited their application. While being a noxious macrophyte, WH has great potential in many areas, such as phytoremediation, manufacture of value-added products, and so on. Resource utilization of WH has enormous benefits and therefore, is a sustainable strategy for its control. In accordance with the increasing urgency of maintaining environmental sustainability, this review concisely introduced up to date WH utilization specifically in pollution remediation and curbing the global warming crisis and discussed the underlying mechanisms.
Collapse
Affiliation(s)
- Jing Xu
- Correspondence: (J.X.); (T.G.)
| | | | | |
Collapse
|
3
|
Hung CM, Chen CW, Huang CP, Dong CD. Degradation of 4-nonylphenol in marine sediments using calcium peroxide activated by water hyacinth (Eichhornia crassipes)-derived biochar. ENVIRONMENTAL RESEARCH 2022; 211:113076. [PMID: 35271836 DOI: 10.1016/j.envres.2022.113076] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2021] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 06/14/2023]
Abstract
The contamination of marine sediments by 4-nonylphenol (4-NP) has become a global environmental problem, therefore there are necessaries searching appropriate and sustainable remediation methods for in-situ applications. Herein, water hyacinth [(WH) (Eichhornia crassipes)]-derived metal-free biochar (WHBC) prepared at 300-900 °C was used to promote the calcium peroxide (CP)-mediated remediation of 4-NP-contaminaed sediments. At [CP] = 4.37 × 10-4 M, [WHBC] = 1.5 g L-1, and pH = 6.0, the degradation of 4-NP was 77% in 12 h following the pseudo-first order rate law with rate constant (kobs) of 4.2 × 10-2 h-1. The efficient 4-NP degradation performance and reaction mechanisms of the WHBC/CP system was ascribed to the synergy between the reactive species (HO• and 1O2) at the WHBC surface on which there were abundant electron-rich carbonyl groups and defects/vacancies in the catalyst structure provides active sites, and the ability of the graphitized carbon framework to act as a medium for electron shuttling. According to microbial community analysis based on amplicon sequence variants, bacteria of the genus Solirubrobacter (Actinobacteria phylum) were dominant in WHBC/CP-treated sediments and were responsible for the biodegradation of 4-NP. The results showed great promise and novelty of the hydroxyl radical-driven carbon advanced oxidation processes (HR-CAOPs) that relies on the value-added utilization of water hyacinth for contaminated sediment remediation in achieving circular bioeconomy.
Collapse
Affiliation(s)
- Chang-Mao Hung
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chin-Pao Huang
- Department of Civil and Environmental Engineering, University of Delaware, Newark, USA
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
4
|
Saratale RG, Cho SK, Ghodake GS, Shin HS, Saratale GD, Park Y, Lee HS, Bharagava RN, Kim DS. Utilization of Noxious Weed Water Hyacinth Biomass as a Potential Feedstock for Biopolymers Production: A Novel Approach. Polymers (Basel) 2020; 12:polym12081704. [PMID: 32751380 PMCID: PMC7464782 DOI: 10.3390/polym12081704] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 11/16/2022] Open
Abstract
This study aims to utilize a noxious weed water hyacinth biomass (WH) for polyhydroxybutyrate (PHB) production. Alkaline and peracetic acid pretreatment was employed for the hydrolysis of WH and consequently enzymatic saccharification to produce fermentable sugars for PHB production. The pretreatment competence was determined using various operational parameters. By applying ambient conditions, alkaline pretreatment gave higher lignin removal of 65.0%, with 80.8% hydrolysis yield, and on enzyme hydrolysis (40 FPU/g of dry WH), produced total reducing sugar of about 523 mg/g of WH. The resulted WH enzymatic hydolysates were evaluated for the production of PHB by Ralstonia eutropha (ATCC 17699). The WH hydrolysates cultivation was compared to synthetic hydrolysates that contain a similar carbon composition in terms of bacterial growth and PHB synthesis. The effects of various supplements to enhance PHB production were estimated. Supplementation of corn steep liquor (CSL) as a cheap nitrogen source with WH hydrolysates favored a higher amount of PHB synthesis (73%), PHB titer of 7.30 g/L and PHB yield of 0.429 g/g of reducing sugar. Finally, using standard analytical tools, the physical and thermal characteristics of the extracted PHB were evaluated. The findings revealed WH was a promising and technically feasible option for transforming biomass into sustainable biopolymer conversion on a large scale.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea;
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.-K.C.); (G.S.G.)
| | - Gajanan S. Ghodake
- Department of Biological and Environmental Science, Dongguk University, Ilsandong-gu, Goyang-si, Gyonggido 10326, Korea; (S.-K.C.); (G.S.G.)
| | - Han-Seung Shin
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea; (H.-S.S.); (Y.P.)
| | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea; (H.-S.S.); (Y.P.)
- Correspondence:
| | - Yooheon Park
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Korea; (H.-S.S.); (Y.P.)
| | - Hee-Seok Lee
- Department of Food Science and Technology, Chung-Ang University, Anseong 17546, Korea;
| | - Ram Naresh Bharagava
- Department of Microbiology, School for Environmental Sciences Babasaheb Bhimrao Ambedkar University, Vidya Vihar, Uttar Pradesh 226025, India;
| | - Dong-Su Kim
- Department of Environmental Science and Engineering, Ewha Womans University, Seoul 120-750, Korea;
| |
Collapse
|
5
|
Prazeres AR, Fernandes F, Madeira L, Luz S, Albuquerque A, Simões R, Beltrán F, Jerónimo E, Rivas J. Treatment of slaughterhouse wastewater by acid precipitation (H 2SO 4, HCl and HNO 3) and oxidation (Ca(ClO)₂, H 2O 2 and CaO₂). JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 250:109558. [PMID: 31545176 DOI: 10.1016/j.jenvman.2019.109558] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 08/28/2019] [Accepted: 09/07/2019] [Indexed: 06/10/2023]
Abstract
The treatment of slaughterhouse wastewater was investigated by both acid precipitations and by oxidation processes. Precipitation tests were developed using three acids (H2SO4, HCl and HNO3) at different operating pH (1-6). A decrease of the precipitation pH led to an increase of the conductivity values of the supernatant. Precipitation processes allowed the removal of chemical oxygen demand (COD) (41-97%), turbidity (56-99%) and total phosphorus (27-56%). Total phenols were removed (15-96%) from pH ≥ 2, depending on the precipitation process. Generally, precipitation processes decreased the hydroxide and bicarbonates species. Additionally, three different oxidation processes were tested at different concentrations (1-15 g L-1): Ca(ClO)₂, H2O2 and CaO₂. When Ca(ClO)₂ and CaO₂ were applied, an increase of the supernatant conductivity was achieved. COD removal ≥71% and turbidity elimination in the range of 85-100% were achieved by using oxidation processes. CaO₂ was very effective to remove total phosphorus (81-96%). The increase of the oxidant concentration in H2O2 and Ca(ClO)₂ oxidation processes led to a decrease in the removal of total phenols and bicarbonates species. Optical density of the microorganism cultures was efficiently eliminated (up to 100%) by oxidation processes. In addition, acid precipitation and oxidation allowed to remove total solids (TS), total volatile solids (TVS), total suspended solids (TSS), ammonia nitrogen, nitrates and biochemical oxygen demand (BOD5). Acid precipitation and oxidation produced sludge rich in organic matter and nutrients (Ca, Mg, P, Cl, Na and K). Despite the high removal efficiencies, a post-treatment following the precipitation and oxidation processes can be required.
Collapse
Affiliation(s)
- Ana R Prazeres
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal.
| | - Flávia Fernandes
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Luís Madeira
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal
| | - Silvana Luz
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Escola Superior Agrária de Beja, Instituto Politécnico de Beja (IPBeja), Rua Pedro Soares, Apartado 6155, 7800-295, Beja, Portugal; Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| | - António Albuquerque
- Departamento de Engenharia Civil e Arquitetura, Universidade da Beira Interior (UBI) & FibEnTech - Materiais Fibrosos e Tecnologias Ambientais, Edifício 2 das Engenharias, Calçada Fonte do Lameiro, 6201-001, Covilhã, Portugal
| | - Rogério Simões
- Departamento de Engenharia Civil e Arquitetura, Universidade da Beira Interior (UBI) & FibEnTech - Materiais Fibrosos e Tecnologias Ambientais, Edifício 2 das Engenharias, Calçada Fonte do Lameiro, 6201-001, Covilhã, Portugal
| | - Fernando Beltrán
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| | - Eliana Jerónimo
- Centro de Biotecnologia Agrícola e Agro-Alimentar do Alentejo (CEBAL)/Instituto Politécnico de Beja (IPBeja), 7801-908, Beja, Portugal; Instituto de Ciências Agrárias e Ambientais Mediterrânicas (ICAAM), Universidade de Évora, Pólo da Mitra, Ap. 94, 7006-554, Évora, Portugal
| | - Javier Rivas
- Departamento de Ingeniería Química y Química Física, Universidad de Extremadura, Av. Elvas s/n, 06071, Badajoz, Spain
| |
Collapse
|
6
|
Dissolution of lignocellulosic biomass in ionic liquid-water media: Interpretation from solubility parameter concept. KOREAN J CHEM ENG 2019. [DOI: 10.1007/s11814-019-0363-2] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
7
|
Zhang Q, Wei Y, Han H, Weng C. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. BIORESOURCE TECHNOLOGY 2018; 251:358-363. [PMID: 29291533 DOI: 10.1016/j.biortech.2017.12.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 05/06/2023]
Abstract
This study investigated the possibility of enhancing bioethanol production by combined pretreatment methods for water hyacinth. Three different kinds of pretreatment methods, including microbial pretreatment, microbial combined dilute acid pretreatment, and microbial combined dilute alkaline pretreatment, were investigated for water hyacinth degradation. The results showed that microbial combined dilute acid pretreatment is the most effective method, resulting in the highest cellulose content (39.4 ± 2.8%) and reducing sugars production (430.66 mg·g-1). Scanning Electron Microscopy and Fourier Transform Infrared Spectrometer analysis indicated that the basic tissue of water hyacinth was significantly destroyed. Compared to the other previously reported pretreatment methods for water hyacinth, which did not append additional cellulase and microbes for hydrolysis process, the microbial combined dilute acid pretreatment of our research could achieve the highest reducing sugars. Moreover, the production of bioethanol could achieve 1.40 g·L-1 after fermentation, which could provide an extremely promising way for utilization of water hyacinth.
Collapse
Affiliation(s)
- Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| | - Yan Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Hui Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Chen Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| |
Collapse
|
8
|
Corneli E, Adessi A, Olguín E, Ragaglini G, García‐López D, De Philippis R. Biotransformation of water lettuce (
Pistia stratiotes
) to biohydrogen by
Rhodopseudomonas palustris. J Appl Microbiol 2017; 123:1438-1446. [DOI: 10.1111/jam.13599] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2017] [Revised: 09/20/2017] [Accepted: 09/23/2017] [Indexed: 11/28/2022]
Affiliation(s)
- E. Corneli
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
| | - A. Adessi
- Department of Agrifood Production and Environmental Sciences University of Florence Firenze Italy
| | - E.J. Olguín
- Environmental Biotechnology Group Institute of Ecology CONACYT Veracruz México
| | - G. Ragaglini
- Institute of Life Sciences Scuola Superiore Sant'Anna Pisa Italy
- CRIBE – Centro Ricerche Interuniversitario Biomasse da Energia Pisa Italy
| | - D.A. García‐López
- Environmental Biotechnology Group Institute of Ecology CONACYT Veracruz México
| | - R. De Philippis
- Department of Agrifood Production and Environmental Sciences University of Florence Firenze Italy
| |
Collapse
|
9
|
Sindhu R, Binod P, Pandey A, Madhavan A, Alphonsa JA, Vivek N, Gnansounou E, Castro E, Faraco V. Water hyacinth a potential source for value addition: An overview. BIORESOURCE TECHNOLOGY 2017; 230:152-162. [PMID: 28209247 DOI: 10.1016/j.biortech.2017.01.035] [Citation(s) in RCA: 44] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2016] [Revised: 01/12/2017] [Accepted: 01/19/2017] [Indexed: 05/08/2023]
Abstract
Water hyacinth a fresh water aquatic plant is considered as a noxious weed in many parts of the world since it grows very fast and depletes nutrients and oxygen from water bodies adversely affecting the growth of both plants and animals. Hence conversion of this problematic weed to value added chemicals and fuels helps in the self-sustainability especially for developing countries. The present review discusses the various value added products and fuels which can be produced from water hyacinth, the recent research and developmental activities on the bioconversion of water hyacinth for the production of fuels and value added products as well as its possibilities and challenges in commercialization.
Collapse
Affiliation(s)
- Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Center of Innovative and Applied Bioprocessing, C-127, II Floor, Phase 8, Industrial Area, SAS Nagar, Mohali 160 071, Punjab, India
| | - Aravind Madhavan
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Rajiv Gandhi Centre for Biotechnology, Thiruvananthapuram 695 014, India
| | - Jose Anju Alphonsa
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695019, Kerala, India
| | - Narisetty Vivek
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695019, Kerala, India
| | - Edgard Gnansounou
- Ecole Polytechnique Federale de Lausanne, Institute of Urban and Regional Sciences, GC A3, Station 18, CH-1015 Lausanne, Switzerland
| | - Eulogio Castro
- Department of Chemical, Environmental and Materials Engineering, University of Jaén, Campus Las Lagunillas, 23071 Jaén, Spain
| | - Vincenza Faraco
- Department of Chemical Sciences, University of Naples Federico II, Complesso Universitario Monte S. Angelo, via Cintia 4, 80126 Naples, Italy
| |
Collapse
|
10
|
Jeong H, Jang SK, Hong CY, Kim SH, Lee SY, Lee SM, Choi JW, Choi IG. Levulinic acid production by two-step acid-catalyzed treatment of Quercus mongolica using dilute sulfuric acid. BIORESOURCE TECHNOLOGY 2017; 225:183-190. [PMID: 27889477 DOI: 10.1016/j.biortech.2016.11.063] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2016] [Revised: 11/14/2016] [Accepted: 11/15/2016] [Indexed: 06/06/2023]
Abstract
The objectives of this research were to produce a levulinic acid by two-step acid-catalyzed treatment of Quercus mongolica and to investigate the effect of treatment parameter (reaction temperature range: 100-230°C; sulfuric acid (SA) concentration range: 0-2%) on the levulinic acid yield. After 1st step acid-catalyzed treatment, most of the hemicellulosic C5 sugars (15.6gg/100gbiomass) were released into the liquid hydrolysate at the reaction temperature of 150°C in 1% SA; the solid fraction, which contained 53.5% of the C6 sugars, was resistant to further loss of C6 sugars. Subsequently, 2nd step acid-catalyzed treatment of the solid fractions was performed under more severe conditions. Finally, 16.5g/100g biomass of levulinic acid was produced at the reaction temperature of 200°C in 2% SA, corresponding to a higher conversion rate than during single-step treatment.
Collapse
Affiliation(s)
- Hanseob Jeong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo-Kyeong Jang
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Chang-Young Hong
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Seon-Hong Kim
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea
| | - Su-Yeon Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Soo Min Lee
- Division of Wood Chemistry & Microbiology, Department of Forest Products, National Institute of Forest Science, Seoul 02455, Republic of Korea
| | - Joon Weon Choi
- Graduate School of International Agricultural Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea
| | - In-Gyu Choi
- Department of Forest Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea; Institute of Green-Bio Science and Technology, Seoul National University, Pyeongchang 25354, Republic of Korea; Research Institute of Agriculture and Life Sciences, College of Agriculture and Life Sciences, Seoul National University, Seoul 08826, Republic of Korea.
| |
Collapse
|
11
|
Zheng Y, Shi J, Tu M, Cheng YS. Principles and Development of Lignocellulosic Biomass Pretreatment for Biofuels. ADVANCES IN BIOENERGY 2017. [DOI: 10.1016/bs.aibe.2017.03.001] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
12
|
Cheng YS, Wu JH, Yeh LH. Utilization of Calophyllum inophyllum shell and kernel oil cake for reducing sugar production. BIORESOURCE TECHNOLOGY 2016; 212:338-341. [PMID: 27130225 DOI: 10.1016/j.biortech.2016.04.069] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2016] [Revised: 04/13/2016] [Accepted: 04/15/2016] [Indexed: 05/25/2023]
Abstract
This study is aimed at fully utilizing fruit biomass of Calophyllum inophyllum for reducing sugar production. The effects of pretreatment conditions and post reaction wash on the lignin removal and enzymatic hydrolysis of shell were investigated. The oil cake was also subjected to solvent extraction followed by enzymatic hydrolysis. The results showed that the sequential acid/alkaline pretreatment of C. inophyllum shell resulted in better delignification than alkaline or acid only pretreatment. The reducing sugar yields obtained from sequential acid/alkaline pretreated shell and solvent extracted oil cake were 0.24g/g and 0.66g/g, respectively. The results suggested that the shell and oil cake of C. inophyllum could also be feedstocks for reducing sugar production.
Collapse
Affiliation(s)
- Yu-Shen Cheng
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan.
| | - Jang-Hong Wu
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| | - Li-Hsien Yeh
- Department of Chemical and Materials Engineering, National Yunlin University of Science and Technology, Douliou, Yunlin 64002, Taiwan
| |
Collapse
|
13
|
Optimization of High Solids Dilute Acid Hydrolysis of Spent Coffee Ground at Mild Temperature for Enzymatic Saccharification and Microbial Oil Fermentation. Appl Biochem Biotechnol 2016; 180:753-765. [PMID: 27179516 DOI: 10.1007/s12010-016-2130-8] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2016] [Accepted: 05/06/2016] [Indexed: 12/12/2022]
Abstract
Soluble coffee, being one of the world's most popular consuming drinks, produces a considerable amount of spent coffee ground (SCG) along with its production. The SCG could function as a potential lignocellulosic feedstock for production of bioproducts. The objective of this study is to investigate the possible optimal condition of dilute acid hydrolysis (DAH) at high solids and mild temperature condition to release the reducing sugars from SCG. The optimal condition was found to be 5.3 % (w/w) sulfuric acid concentration and 118 min reaction time. Under the optimal condition, the mean yield of reducing sugars from enzymatic saccharification of defatted SCG acid hydrolysate was 563 mg/g. The SCG hydrolysate was then successfully applied to culture Lipomyces starkeyi for microbial oil fermentation without showing any inhibition. The results suggested that dilute acid hydrolysis followed by enzymatic saccharification has the great potential to convert SCG carbohydrates to reducing sugars. This study is useful for the further developing of biorefinery using SCG as feedstock at a large scale.
Collapse
|
14
|
Zhang Q, Weng C, Huang H, Achal V, Wang D. Optimization of Bioethanol Production Using Whole Plant of Water Hyacinth as Substrate in Simultaneous Saccharification and Fermentation Process. Front Microbiol 2016; 6:1411. [PMID: 26779125 PMCID: PMC4703791 DOI: 10.3389/fmicb.2015.01411] [Citation(s) in RCA: 18] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/26/2015] [Accepted: 11/27/2015] [Indexed: 11/13/2022] Open
Abstract
Water hyacinth was used as substrate for bioethanol production in the present study. Combination of acid pretreatment and enzymatic hydrolysis was the most effective process for sugar production that resulted in the production of 402.93 mg reducing sugar at optimal condition. A regression model was built to optimize the fermentation factors according to response surface method in saccharification and fermentation (SSF) process. The optimized condition for ethanol production by SSF process was fermented at 38.87°C in 81.87 h when inoculated with 6.11 ml yeast, where 1.291 g/L bioethanol was produced. Meanwhile, 1.289 g/L ethanol was produced during experimentation, which showed reliability of presented regression model in this research. The optimization method discussed in the present study leading to relatively high bioethanol production could provide a promising way for Alien Invasive Species with high cellulose content.
Collapse
Affiliation(s)
- Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai, China
| | - Chen Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai, China
| | - Huiqin Huang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai, China
| | - Varenyam Achal
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai, China
| | - Duanchao Wang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University Shanghai, China
| |
Collapse
|
15
|
Yan J, Wei Z, Wang Q, He M, Li S, Irbis C. Bioethanol production from sodium hydroxide/hydrogen peroxide-pretreated water hyacinth via simultaneous saccharification and fermentation with a newly isolated thermotolerant Kluyveromyces marxianu strain. BIORESOURCE TECHNOLOGY 2015; 193:103-109. [PMID: 26119051 DOI: 10.1016/j.biortech.2015.06.069] [Citation(s) in RCA: 28] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2015] [Revised: 06/13/2015] [Accepted: 06/15/2015] [Indexed: 06/04/2023]
Abstract
In this study, bioethanol production from NaOH/H2O2-pretreated water hyacinth was investigated. Pretreatment of water hyacinth with 1.5% (v/v) H2O2 and 3% (w/v) NaOH at 25 °C increased the production of reducing sugars (223.53 mg/g dry) and decreased the cellulose crystallinity (12.18%), compared with 48.67 mg/g dry and 22.80% in the untreated sample, respectively. The newly isolated Kluyveromyces marxianu K213 showed greater ethanol production from glucose (0.43 g/g glucose) at 45 °C than did the control Saccharomyces cerevisiae angel yeast. The maximum ethanol concentration (7.34 g/L) achieved with K. marxianu K213 by simultaneous saccharification and fermentation (SSF) from pretreated water hyacinth at 42 °C was 1.78-fold greater than that produced by angel yeast S. cerevisiae at 30 °C. The present work demonstrates that bioethanol production achieved via SSF of NaOH/H2O2-pretreated water hyacinth with K. marxianu K213 is a promising strategy to utilize water hyacinth biomass.
Collapse
Affiliation(s)
- Jinping Yan
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Zhilei Wei
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China; Changdu Institute of Agriculture Science, Changdu 854000, PR China
| | - Qiaoping Wang
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Manman He
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Shumei Li
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| | - Chagan Irbis
- Laboratory of Bioconversion, Life Science and Technology College, Kunming University of Science and Technology, Kunming 650500, PR China
| |
Collapse
|