1
|
Song L, Cai C, Chen Z, Lin C, Lv Y, Ye X, Liu Y, Dai X, Liu M. Lactic acid production from food waste: Advances in microbial fermentation and separation technologies. BIORESOURCE TECHNOLOGY 2024; 414:131635. [PMID: 39401659 DOI: 10.1016/j.biortech.2024.131635] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2024] [Revised: 10/11/2024] [Accepted: 10/11/2024] [Indexed: 10/19/2024]
Abstract
China generates over 100 million tons of food waste annually, leading to significant environmental pollution and health risks if not managed properly. Converting FW into a high-value-added platform molecule, lactic acid (LA), through fermentation offers a promising approach for both waste treatment and resource recovery. This paper presents a comprehensive review of recent advancements in LA production from FW, focusing on pure strains fermentation and open fermentation technologies, metabolic mechanisms, and problems in fermentation. It also assesses purification methods, including molecular distillation, adsorption, membrane separation, precipitation, esterification and hydrolysis, solvent extraction, and in-situ separation, analyzing their efficiency, advantages, and disadvantages. However, current research encounters several challenges, including low LA yield, low optical purity of L-(+)-LA, and difficulties in the separation and purification of LA. The integration of in-situ separation technology coupled with multiple separation methods is highlighted as a promising direction for future advancements.
Collapse
Affiliation(s)
- Liang Song
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chenhang Cai
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Zengpeng Chen
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Chunxiang Lin
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yuancai Lv
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaoxia Ye
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Yifan Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China
| | - Xiaohu Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Minghua Liu
- Fujian Provincial Engineering Research Center of Rural Waste Recycling Technology, College of Environment & Safety Engineering, Fuzhou University, Fuzhou 350108, China.
| |
Collapse
|
2
|
Keshri S, Sudha S, Saxena AKS. State-of-the-art review on hydrogen's production, storage, and potential as a future transportation fuel. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024:10.1007/s11356-024-34098-9. [PMID: 38951393 DOI: 10.1007/s11356-024-34098-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 06/19/2024] [Indexed: 07/03/2024]
Abstract
Global energy consumption is expected to reach 911 BTU by the end of 2050 as a result of rapid urbanization and industrialization. Hydrogen is increasingly recognized as a clean and reliable energy vector for decarbonization and defossilization across various sectors. Projections indicate a significant rise in global demand for hydrogen, underscoring the need for sustainable production, efficient storage, and utilization. In this state-of-the-art review, we explore hydrogen production methods, compare their environmental impacts through life cycle analysis, delve into geological storage options, and discuss hydrogen's potential as a future transportation fuel. Combining electrolysis to make hydrogen and storing it in porous underground materials like salt caverns and geological reservoirs looks like a good way to balance out the variable supply of renewable energy and meet the demand at peak times. Hydrogen is a key component of our sustainable economy, and this article gives a broad overview of the process from production to consumption, touching on technical, economic, and environmental concerns along the way. We have made an attempt in this paper to compile different methods for the production of hydrogen and its storage, the challenges faced by current methods in the manufacturing of hydrogen gas, and the role of hydrogen in the future. This review paper will serve as a very good reference for hydrogen system engineering applications. The paper concludes with some suggestions for future research to help improve the technological efficiency of certain production methods, all with the goal of scaling up the hydrogen economy.
Collapse
Affiliation(s)
- Sonanki Keshri
- Department of Chemistry, Jyoti Nivas College Autonomous, Bengaluru, Karnataka, 560095, India.
| | - Suriyanarayanan Sudha
- Department of Chemistry, Jyoti Nivas College Autonomous, Bengaluru, Karnataka, 560095, India
| | | |
Collapse
|
3
|
Ghosh S, Kar D. Biohythane: a Potential Biofuel of the Future. Appl Biochem Biotechnol 2024; 196:2957-2975. [PMID: 36576653 DOI: 10.1007/s12010-022-04291-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/16/2022] [Indexed: 12/29/2022]
Abstract
Today, the world is becoming more dependent on fossil fuels. The major drawbacks of these non-renewable energy resources include an extreme environmental pollution and an extinction threat. Several technologies including microalgal biodiesel production, biomass gasification, and bioethanol production have been explored for the generation of renewable energy especially, biofuels. One such promising research has been carried out in the generation of biohythane which has the potential to become an alternative fuel to the existing non-renewable ones. It has been reported that biohydrogen can be produced from organic wastes or agricultural feedstocks with the help of acidogens. Dark fermentation can be carried out by acidogens to produce biohydrogen under anaerobic conditions by utilizing lignocellulosic biomass or sugarcane feedstocks in the absence of light. The spent medium contains volatile short-chain fatty acids like acetate, butyrate, and propionate that can serve as substrates for acetogenesis followed by methane biosynthesis by methanogens. Therefore, the sequential two-stage anaerobic digestion (AD) involves a production of biohydrogen followed by the biosynthesis of methane. This combined process is termed as a single eponym "Biohythane" (hydrogen + methane). Several studies have demonstrated about the effectiveness of biofuel, and it is believed to have a greater energy recovery, environmental friendliness, and shorter fermentation time. Biohythane can serve as an alternative future green biofuel and solve the present energy crisis in India as well as the entire world.
Collapse
Affiliation(s)
- Subhrojyoti Ghosh
- Department of Biotechnology, Heritage Institute of Technology, Kolkata, India
| | - Debasish Kar
- Department of Biotechnology, Ramaiah University of Applied Sciences, Bangalore, India.
| |
Collapse
|
4
|
Elgarahy AM, Eloffy MG, Alengebawy A, El-Sherif DM, Gaballah MS, Elwakeel KZ, El-Qelish M. Sustainable management of food waste; pre-treatment strategies, techno-economic assessment, bibliometric analysis, and potential utilizations: A systematic review. ENVIRONMENTAL RESEARCH 2023; 225:115558. [PMID: 36842700 DOI: 10.1016/j.envres.2023.115558] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Revised: 02/20/2023] [Accepted: 02/21/2023] [Indexed: 06/18/2023]
Abstract
Food waste (FW) contains many nutritional components such as proteins, lipids, fats, polysaccharides, carbohydrates, and metal ions, which can be reused in some processes to produce value-added products. Furthermore, FW can be converted into biogas, biohydrogen, and biodiesel, and this type of green energy can be used as an alternative to nonrenewable fuel and reduce reliance on fossil fuel sources. It has been demonstrated in many reports that at the laboratory scale production of biochemicals using FW is as good as pure carbon sources. The goal of this paper is to review approaches used globally to promote turning FW into useable products and green energy. In this context, the present review article highlights deeply in a transdisciplinary manner the sources, types, impacts, characteristics, pre-treatment strategies, and potential management of FW into value-added products. We find that FW could be upcycled into different valuable products such as eco-friendly green fuels, organic acids, bioplastics, enzymes, fertilizers, char, and single-cell protein, after the suitable pre-treatment method. The results confirmed the technical feasibility of all the reviewed transformation processes of FW. Furthermore, life cycle and techno-economic assessment studies regarding the socio-economic, environmental, and engineering aspects of FW management are discussed. The reviewed articles showed that energy recovery from FW in various forms is economically feasible.
Collapse
Affiliation(s)
- Ahmed M Elgarahy
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt; Egyptian Propylene and Polypropylene Company (EPPC), Port-Said, Egypt.
| | - M G Eloffy
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Ahmed Alengebawy
- College of Engineering, Huazhong Agricultural University, Wuhan, 430070, PR China.
| | - Dina M El-Sherif
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt.
| | - Mohamed S Gaballah
- National Institute of Oceanography and Fisheries (NIOF), Cairo, Egypt; College of Engineering (Key Laboratory for Clean Renewable Energy Utilization Technology, Ministry of Agriculture), China Agricultural University, Beijing, 100083, PR China.
| | - Khalid Z Elwakeel
- Environmental Chemistry Division, Environmental Science Department, Faculty of Science, Port Said University, Port Said, Egypt.
| | - Mohamed El-Qelish
- Water Pollution Research Department, National Research Centre, El Buhouth St., Dokki, 12622, Cairo, Egypt.
| |
Collapse
|
5
|
Sreekala AGV, Ismail MHB, Nathan VK. Biotechnological interventions in food waste treatment for obtaining value-added compounds to combat pollution. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:62755-62784. [PMID: 35802320 DOI: 10.1007/s11356-022-21794-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 06/28/2022] [Indexed: 06/15/2023]
Abstract
Over the last few decades, the globe is facing tremendous effects due to the unnecessary piling of municipal solid waste among which food waste holds a greater portion. This practice not only affects the environment in terms of generating greenhouse gas emissions but when left dumped in landfills will also trigger poverty and malnutrition. This review focuses on the global trend in food waste management strategies involved in the effective utilization of food waste to produce various value-added products in a microbiology aspect, thereby diminishing the negative impacts caused by the unnecessary side effects of non-renewable energy sources. The review also detailed the efficiency of microorganisms in the production of various bio-energies as well. Further, recent attempts to the exploitation of genetically modified microorganisms in producing value-added products were enlisted. This also attempted to address food waste valorization techniques, the combined applications of various processes for an enhanced yield of different compounds, and addressed various challenges. Further, the current challenges involved in various processes and the effective measures to tackle them in the future have been addressed. Thus, the present review has successfully addressed the circular bio-economy in food waste valorization.
Collapse
Affiliation(s)
| | - Muhammad Heikal Bin Ismail
- Department of Chemical and Environmental Engineering, Faculty of Engineering, Universiti Putra, Putrajaya, Malaysia
| | - Vinod Kumar Nathan
- School of Chemical and Biotechnology, SASTRA Deemed to Be University, Thanjavur, 613 401, Tamil Nadu, India.
| |
Collapse
|
6
|
Naresh Kumar A, Sarkar O, Chandrasekhar K, Raj T, Narisetty V, Mohan SV, Pandey A, Varjani S, Kumar S, Sharma P, Jeon BH, Jang M, Kim SH. Upgrading the value of anaerobic fermentation via renewable chemicals production: A sustainable integration for circular bioeconomy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 806:150312. [PMID: 34844320 DOI: 10.1016/j.scitotenv.2021.150312] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/23/2021] [Revised: 09/07/2021] [Accepted: 09/09/2021] [Indexed: 06/13/2023]
Abstract
The single bioprocess approach has certain limitations in terms of process efficiency, product synthesis, and effective resource utilization. Integrated or combined bioprocessing maximizes resource recovery and creates a novel platform to establish sustainable biorefineries. Anaerobic fermentation (AF) is a well-established process for the transformation of organic waste into biogas; conversely, biogas CO2 separation is a challenging and expensive process. Biological fixation of CO2 for succinic acid (SA) mitigates CO2 separation issues and produces commercially important renewable chemicals. Additionally, utilizing digestate rich in volatile fatty acid (VFA) to produce medium-chain fatty acids (MCFAs) creates a novel integrated platform by utilizing residual organic metabolites. The present review encapsulates the advantages and limitations of AF along with biogas CO2 fixation for SA and digestate rich in VFA utilization for MCFA in a closed-loop approach. Biomethane and biohydrogen processes CO2 utilization for SA production is cohesively deliberated along with the role of biohydrogen as an alternative reducing agent to augment SA yields. Similarly, MCFA production using VFA as a substrate and functional role of electron donors namely ethanol, lactate, and hydrogen are comprehensively discussed. A road map to establish the fermentative biorefinery approach in the framework of AF integrated sustainable bioprocess development is deliberated along with limitations and factors influencing for techno-economic analysis. The discussed integrated approach significantly contributes to promote the circular bioeconomy by establishing carbon-neutral processes in accord with sustainable development goals.
Collapse
Affiliation(s)
- A Naresh Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea; Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - Omprakash Sarkar
- Biochemical Process Engineering, Division of Chemical Engineering, Department of Civil, Environmental, and Natural Resources Engineering, Luleå University of Technology, 971‑87, Luleå, Sweden
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vivek Narisetty
- School of Water, Energy, and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - S Venkata Mohan
- Bioengineering and Environmental Sciences Lab, Department of Energy and Environmental Engineering, CSIR-Indian Institute of Chemical Technology, Hyderabad 500 007, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research, CSIR-Indian Institute of Toxicology Research, Lucknow, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Pooja Sharma
- CSIR-National Environmental Engineering Research Institute (CSIR-NEERI), Nagpur 440 020, India
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Min Jang
- Department of Environmental Engineering, Kwangwoon University, Seoul 01897, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
7
|
Yadav S, Singh D, Mohanty P, Sarangi PK. Biochemical and Thermochemical Routes of H
2
Production from Food Waste: A Comparative Review. Chem Eng Technol 2021. [DOI: 10.1002/ceat.202000526] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Sanjeev Yadav
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Dharminder Singh
- Shiv Nadar University Department of Chemical Engineering 201314 Gr. Noida India
| | - Pravakar Mohanty
- Govt. of India Department of Science and Technology 110016 New Delhi India
| | | |
Collapse
|
8
|
Hou T, Zhao J, Lei Z, Shimizu K, Zhang Z. Enhanced energy recovery via separate hydrogen and methane production from two-stage anaerobic digestion of food waste with nanobubble water supplementation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 761:143234. [PMID: 33162132 DOI: 10.1016/j.scitotenv.2020.143234] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2020] [Revised: 09/21/2020] [Accepted: 09/29/2020] [Indexed: 06/11/2023]
Abstract
This study investigated the enhancement effect of N2- and Air-nanobubble water (NBW) supplementation on two-stage anaerobic digestion (AD) of food waste (FW) for separate production of hydrogen and methane. In the first stage for hydrogen production, the highest cumulative H2 yield (27.31 ± 1.21 mL/g-VSadded) was obtained from FW + Air-NBW, increasing by 38% compared to the control (FW + deionized water (DW)). In the second stage for methane production, the cumulative CH4 yield followed a descending order of FW + Air-NBW (373.63 ± 3.58 mL/g-VSadded) > FW + N2-NBW (347.63 ± 7.05 mL/g-VSadded) > FW + DW (300.93 ± 3.24 mL/g-VSadded, control), increasing by 24% in FW + Air-NBW and 16% in FW + N2-NBW compared to the control, respectively. Further investigations indicate that different gas-NBW may positively impact the different stages of AD process. Addition of N2-NBW only enhanced the hydrolysis/acidification of FW with no significant effect on methanogenesis. By comparison, addition of Air-NBW promoted both hydrolysis/acidification stage and methanogenesis stage, reflecting by the enhanced activities of four extracellular hydrolases at the end of hydrolysis/acidification and coenzyme F420 at the end of methanogenesis, respectively. Results from this work suggest the potential application of Air-NBW in the two-stage AD for efficient renewable energy recovery from FW.
Collapse
Affiliation(s)
- Tingting Hou
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Jiamin Zhao
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhongfang Lei
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan.
| | - Kazuya Shimizu
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| | - Zhenya Zhang
- Graduate School of Life and Environmental Sciences, University of Tsukuba, 1-1-1 Tennodai, Tsukuba, Ibaraki 305-8572, Japan
| |
Collapse
|
9
|
Paillet F, Barrau C, Escudié R, Bernet N, Trably E. Robust operation through effluent recycling for hydrogen production from the organic fraction of municipal solid waste. BIORESOURCE TECHNOLOGY 2021; 319:124196. [PMID: 33038651 DOI: 10.1016/j.biortech.2020.124196] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2020] [Revised: 09/25/2020] [Accepted: 09/26/2020] [Indexed: 06/11/2023]
Abstract
The stability of fermentative hydrogen production from the organic fraction of municipal solid waste (OFMSW) was evaluated in this work using a strategy of effluent recycling. Three pretreatment conditions were applied on the recycled effluent: a) no heat shock treatment, b) one initial heat shock treatment (90 °C, 30 min) and c) systematic heat shock treatment at the beginning of each fermentation. When a systematic heat shock was applied, a maximal hydrogen yield of 17.2 ± 3.8 mLH2/gVS was attained. The hydrogen productivity was improved by 331% reaching a stable value of 1.51 ± 0.29 mLH2/gVS/h, after 8 cycles of effluent recycling. This strategy caused a sharp decrease of diversity with stable co-dominance of hydrogen- and lactate-producing bacteria, ie. Clostridiales and Lactobacillales, respectively. For the other conditions, a sharp decrease of the hydrogen yields was observed showing the importance of applying a heat shock treatment for optimal hydrogen production with effluent recycling.
Collapse
Affiliation(s)
- Florian Paillet
- TRIFYL, Route de Sieurac, 81300 Labessiere-Candeil, France; INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | - Carole Barrau
- TRIFYL, Route de Sieurac, 81300 Labessiere-Candeil, France
| | - Renaud Escudié
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | - Nicolas Bernet
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France
| | - Eric Trably
- INRAE, Univ Montpellier, LBE, 102 avenue des Etangs, 11100 Narbonne, France.
| |
Collapse
|
10
|
Yukesh Kannah R, Merrylin J, Poornima Devi T, Kavitha S, Sivashanmugam P, Kumar G, Rajesh Banu J. Food waste valorization: Biofuels and value added product recovery. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100524] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
11
|
Meena RAA, Rajesh Banu J, Yukesh Kannah R, Yogalakshmi KN, Kumar G. Biohythane production from food processing wastes - Challenges and perspectives. BIORESOURCE TECHNOLOGY 2020; 298:122449. [PMID: 31784253 DOI: 10.1016/j.biortech.2019.122449] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 11/16/2019] [Accepted: 11/18/2019] [Indexed: 06/10/2023]
Abstract
The food industry generates enormous quantity of food waste (FW) either directly or indirectly including the processing sector, which turned into biofuels for waste remediation. Six types of food processing wastes (FPW) such as oil, fruit and vegetable, dairy, brewery, livestock and finally agriculture based materials that get treated via dark fermentation/anaerobic digestion has been discussed. Production of both hydrogen and methane is daunting for oil, fruit and vegetable processing wastes because of the presence of polyphenols and essential oils. Moreover, acidic pH and high protein are the reasons for increased concentration of ammonia and accumulation of volatile fatty acids in FPW, especially in dairy, brewery, and livestock waste streams. Moreover, the review brought to forefront the enhancing methods, (pretreatment and co-digestion) operational, and environmental parameters that can influence the production of biohythane. Finally, the nature of feedstock's role in achieving successful circular bio economy is also highlighted.
Collapse
Affiliation(s)
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - K N Yogalakshmi
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, Bathinda 151001, Punjab, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
12
|
Vo TP, Lay CH, Lin CY. Effects of hydraulic retention time on biohythane production via single-stage anaerobic fermentation in a two-compartment bioreactor. BIORESOURCE TECHNOLOGY 2019; 292:121869. [PMID: 31400653 DOI: 10.1016/j.biortech.2019.121869] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/11/2019] [Revised: 07/16/2019] [Accepted: 07/20/2019] [Indexed: 06/10/2023]
Abstract
Hythane has been well known as a mixture of hydrogen and methane gases but their production is mostly in a different way. The present study dealt with the potential biohythane production in a two-compartment (lower, hydrogenesis; upper, methanogenesis) reactor via a single-stage anaerobic fermentation at mesophilic temperature. The effect of hydraulic retention time (HRT) was tested at 10-2 d using food waste substrate. HRT 2 d resulted in (1) maximum removal efficiencies for COD, carbohydrate, lipid and protein contents with values of 58.5, 58.4, 62.6 and 79.1%, respectively; (2) peak hydrogen and methane production rates of 714 and 254 mL/L-d, respectively; and (3) biogas contents of hydrogen 8.6% and methane 48.0% in the produced gas. At this HRT, Clostridium sensu stricto 2 and Methanosaeta were dominant species in H2 and CH4 compartments, respectively. The novelty of this work is creating a novel two-compartment reactor for single-stage anaerobic biohythane fermentation.
Collapse
Affiliation(s)
- Tan-Phat Vo
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan
| | - Chyi-How Lay
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan; General Education Center, Feng Chia University, Taiwan; Green Energy and Biotechnology Industry Research Center, Feng Chia University, Taiwan
| | - Chiu-Yue Lin
- Master's Program of Green Energy Science and Technology, Feng Chia University, Taiwan; Green Energy and Biotechnology Industry Research Center, Feng Chia University, Taiwan.
| |
Collapse
|
13
|
García-Depraect O, Valdez-Vázquez I, Rene ER, Gómez-Romero J, López-López A, León-Becerril E. Lactate- and acetate-based biohydrogen production through dark co-fermentation of tequila vinasse and nixtamalization wastewater: Metabolic and microbial community dynamics. BIORESOURCE TECHNOLOGY 2019; 282:236-244. [PMID: 30870689 DOI: 10.1016/j.biortech.2019.02.100] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/20/2019] [Accepted: 02/21/2019] [Indexed: 05/15/2023]
Abstract
The aim of this work was to study the metabolic and microbial community dynamics during dark co-fermentation of 80% tequila vinasse and 20% nixtamalization wastewater (w/w). Batch co-fermentations were performed in a 3-L well-mixed reactor at 35 °C and pH 5.5. In correspondence to Illumina MiSeq sequencing and reactor monitoring, changes in metabolites and microbial communities were characterized by three main stages: (i) a first stage during which lactate and acetate producers dominated and consumed the major part of fermentable carbohydrates, (ii) a second stage in which lactate and acetate were consumed by emerging hydrogen-producing bacteria (HPB) in correlation with bioH2 (100 NmL/L-h or 1200 NmL/Lreactor) and butyrate production, and (iii) a third stage during which non-HPB outcompeted HPB after bioH2 production ceased. Altogether, the results of this study suggest that cooperative interactions between lactate producers and lactate- and acetate-consuming HPB could be attributed to lactate- and acetate-based cross-feeding interactions.
Collapse
Affiliation(s)
- Octavio García-Depraect
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Idania Valdez-Vázquez
- Unidad Académica Juriquilla, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Blvd Juriquilla 3001, 76230 Querétaro, Mexico
| | - Eldon R Rene
- Department of Environmental Engineering and Water Technology, UNESCO-IHE Institute for Water Education, P. O. Box 3015, 2601 DA Delft, The Netherlands
| | - Jacob Gómez-Romero
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Alberto López-López
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico
| | - Elizabeth León-Becerril
- Department of Environmental Technology, Centro de Investigación y Asistencia en Tecnología y Diseño del Estado de Jalisco, A.C Av. Normalistas 800, Colinas de la Normal, 44270 Guadalajara, Jalisco, Mexico.
| |
Collapse
|
14
|
Yuan T, Bian S, Ko JH, Wu H, Xu Q. Enhancement of hydrogen production using untreated inoculum in two-stage food waste digestion. BIORESOURCE TECHNOLOGY 2019; 282:189-196. [PMID: 30861448 DOI: 10.1016/j.biortech.2019.03.020] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 03/04/2019] [Accepted: 03/05/2019] [Indexed: 06/09/2023]
Abstract
This research investigated the possibility to enhance H2 production using untreated inoculum in a two-stage hydrogen-methane process from food waste. Batch experiments were conducted to evaluate the H2 production efficiency at different F/M ratios (ranging from 1:1 to 64:1). The results showed that when a proper F/M ratio was selected, significant H2 production was feasible to be achieved even inoculated with untreated anaerobic sludge. Among the F/M ratios studied, maximum H2 yield (217.98 mL H2 g VS-1 FW) was found in the digester at the F/M of 64:1, which was 93.75 times higher than that of the digester at the F/M of 1:1. Higher hydrogen yield was achieved at the greater F/M ratio, due to the enrichment of the H2 producing bacteria and the reduction of the antagonistic bacteria. The two-stage process allowed more stable methane production and higher overall energy yield compared to the single-stage process.
Collapse
Affiliation(s)
- Tugui Yuan
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Songwei Bian
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Jae Hac Ko
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Huanan Wu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China
| | - Qiyong Xu
- Shenzhen Engineering Laboratory for Eco-efficient Recycled Materials, School of Environment and Energy, Peking University Shenzhen Graduate School, University Town, Xili, Nanshan District, Shenzhen 518055, PR China.
| |
Collapse
|
15
|
pH shaped kinetic characteristics and microbial community of food waste hydrolysis and acidification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.03.004] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/21/2023]
|
16
|
Yin Y, Wang J. Pretreatment of macroalgal Laminaria japonica by combined microwave-acid method for biohydrogen production. BIORESOURCE TECHNOLOGY 2018; 268:52-59. [PMID: 30071413 DOI: 10.1016/j.biortech.2018.07.126] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/08/2018] [Revised: 07/24/2018] [Accepted: 07/25/2018] [Indexed: 06/08/2023]
Abstract
Suitable pretreatment can effectively enhance the fermentative hydrogen production from algae biomass. In this study, combined microwave-acid pretreatment was applied to disintegrate the biomass of macroalgae L. japonica, and dark fermentation in batch mode was conducted for hydrogen production. The results showed that combining microwave pretreatment at 140 °C and 2450 MHz with 1% H2SO4 for 15 min could effectively disrupt macroalgal cells and release the organic matters, and soluble chemical oxygen demand (SCOD) concentration increased by 1.92-fold and achieved 5.12 g/L. During the fermentation process, both polysaccharides and proteins were consumed. Hydrogen production process was dominated by acetate-type fermentation, and the dominance of genus Clostridium contributed to more efficient hydrogen production. After the pretreatment, hydrogen yield increased from 15 mL/g TSadded to 28 mL/g TSadded, and energy conversion efficiency increased from 9.5% to 23.8%. Combined microwave-acid pretreatment is potential in enhancing hydrogen production from the biomass of L. japonica.
Collapse
Affiliation(s)
- Yanan Yin
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Waste Treatment, INET, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
17
|
Tijani H, Yuzir A, Abdullah N. Producing desulfurized biogas using two-stage domesticated shear-loop anaerobic contact stabilization system. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 78:770-780. [PMID: 32559969 DOI: 10.1016/j.wasman.2018.06.045] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2018] [Revised: 05/10/2018] [Accepted: 06/23/2018] [Indexed: 06/11/2023]
Abstract
In this study, a two-stage domesticated shear-loop anaerobic contact stabilization (SLACS) system is introduced as a new reactor design to enhance methane productivity with significant reduction in hydrogen sulphide (H2S) synthesis. Due to the rich sulfate content in industrial wastewaters, the initial fermentation phase of anaerobic digestion is highly acidifying and often leads to severe performance losses, digester's instability, and even culture crash. The SLACS system functions as a dissimilatory sulfate reduction - methanogenic reactor consisting of two compartments, a shear-loop anaerobic bed (SLAB) unit and an anaerobic plug flow (APF) unit. The functional role of the SLAB unit is not limited to acidogenesis but also sulfidogenic processes, which curtails H2S generation in the APF unit (methanogenic stage). Experimental observations indicated that pH serves a critical role in the cohabitation of acidogenic and sulfidogenic microbes in the SLAB unit. Although acidogenesis was not influenced by pH within the range of 4.5-6.0, it is vital to stabilize the pH of this unit at 5.4 to establish a steady sulfate reduction of above 75%. The highest desulfurization achieved in this compartment was 88% under a hydraulic retention time (HRT) of 4 h. With an average methane productivity of 256 mL g-1 VS, the methanogenic performance of the two-stage domesticated SLACS system shows a 32% methanogenic proficiency higher than that of the one-stage digestion system. Microbial community structure within the system carried out via Next Generation Sequencing (NGS) provided qualitative data on the sludge's sulfidogenic and methanogenic performance.
Collapse
Affiliation(s)
- Hamzat Tijani
- Algal Biomass iKohza, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| | - Ali Yuzir
- Department of Environmental Engineering & Green Technology, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia.
| | - Norhayati Abdullah
- Department of Environmental Engineering & Green Technology, Malaysia-Japan International Institute of Technology (MJIIT), Universiti Teknologi Malaysia, Jalan Sultan Yahya Petra, 54100 Kuala Lumpur, Malaysia
| |
Collapse
|
18
|
Parthiba Karthikeyan O, Trably E, Mehariya S, Bernet N, Wong JWC, Carrere H. Pretreatment of food waste for methane and hydrogen recovery: A review. BIORESOURCE TECHNOLOGY 2018; 249:1025-1039. [PMID: 29111164 DOI: 10.1016/j.biortech.2017.09.105] [Citation(s) in RCA: 93] [Impact Index Per Article: 15.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 09/11/2017] [Accepted: 09/15/2017] [Indexed: 05/16/2023]
Abstract
Food waste (FW) management by biological process is more attractive and eco-friendly approach than thermo-chemical conversion or landfilling. However, FW composition and physico-chemical and biological characteristics affect the overall biological process in terms of product yield and degradation rate. To overcome this major bottle-neck, the pretreatment of FW is proposed. Therefore this review aims to provide a comprehensive summary of the importance of pretreatment of FW with respect to FW management by anaerobic digestion (AD) and dark fermentation (DF). It also reviews the existing knowledge gaps and future research perspectives for better integration of FW pretreatments for AD and DF, which should include (i) the preservation of carbon mass through freeze and thaw, or drying; and (ii) improve the carbon accessibility through particle size reduction and thermal pretreatments for high-rate bioenergy recovery.
Collapse
Affiliation(s)
- Obulisamy Parthiba Karthikeyan
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | - Eric Trably
- LBE, INRA, Univ Montpellier, Narbonne, France
| | - Sanjeet Mehariya
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China
| | | | - Jonathan W C Wong
- Institute of Bioresource and Agriculture, Sino-Forest Applied Research Centre for Pearl River Delta Environment and Department of Biology, Hong Kong Baptist University, Kowloon Tong, Hong Kong, China.
| | | |
Collapse
|
19
|
Yang G, Wang J. Kinetics and microbial community analysis for hydrogen production using raw grass inoculated with different pretreated mixed culture. BIORESOURCE TECHNOLOGY 2018; 247:954-962. [PMID: 30060435 DOI: 10.1016/j.biortech.2017.09.041] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2017] [Revised: 09/05/2017] [Accepted: 09/06/2017] [Indexed: 06/08/2023]
Abstract
In this study, five pretreatment methods (heat shock, acid, base, aeration and gamma radiation) were applied for enriching hydrogen producers from anaerobically digested sludge, aiming to compare their hydrogen fermentation performance using raw ryegrass as substrate. Results showed that various pretreatment methods caused great variations on grass hydrogen fermentation performance. Acid pretreatment was most efficient compared with other tested pretreatment methods, with relevant hydrogen yield of 64.4mL/g dry grass and organics removal of 31.4%. Kinetics results showed that the first-order kinetic model fitted hydrogen evolution better than the modified Gompertz model. Microbiological analysis showed that various pretreatment methods caused great variations on microbial activity and microbial community composition. Clostridium and Enterococcus were two dominant genera, while relative abundances of these two genera varied greatly for different pretreated samples. Difference in microbial activity and microbial community distribution induced by the pretreatment methods might directly cause different ryegrass fermentation performance.
Collapse
Affiliation(s)
- Guang Yang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China
| | - Jianlong Wang
- Collaborative Innovation Center for Advanced Nuclear Energy Technology, INET, Tsinghua University, Beijing 100084, PR China; Beijing Key Laboratory of Radioactive Wastes Treatment, Tsinghua University, Beijing 100084, PR China.
| |
Collapse
|
20
|
Braguglia CM, Gallipoli A, Gianico A, Pagliaccia P. Anaerobic bioconversion of food waste into energy: A critical review. BIORESOURCE TECHNOLOGY 2018; 248:37-56. [PMID: 28697976 DOI: 10.1016/j.biortech.2017.06.145] [Citation(s) in RCA: 153] [Impact Index Per Article: 25.5] [Reference Citation Analysis] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2017] [Revised: 06/23/2017] [Accepted: 06/24/2017] [Indexed: 05/24/2023]
Affiliation(s)
- Camilla M Braguglia
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy.
| | - Agata Gallipoli
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Andrea Gianico
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| | - Pamela Pagliaccia
- Istituto di Ricerca sulle Acque (IRSA-CNR), Area della Ricerca RM1, Via Salaria km 29,300, 00015 Monterotondo, Italy
| |
Collapse
|
21
|
Yun YM, Lee MK, Im SW, Marone A, Trably E, Shin SR, Kim MG, Cho SK, Kim DH. Biohydrogen production from food waste: Current status, limitations, and future perspectives. BIORESOURCE TECHNOLOGY 2018; 248:79-87. [PMID: 28684176 DOI: 10.1016/j.biortech.2017.06.107] [Citation(s) in RCA: 49] [Impact Index Per Article: 8.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2017] [Revised: 06/19/2017] [Accepted: 06/20/2017] [Indexed: 06/07/2023]
Abstract
Among the various biological routes for H2 production, dark fermentation is considered the most practically applicable owing to its capability to degrade organic wastes and high H2 production rate. Food waste (FW) has high carbohydrate content and easily hydrolysable in nature, exhibiting higher H2 production potential than that of other organic wastes. In this review article, first, the current status of H2 production from FW by dark fermentation and the strategies applied for enhanced performance are briefly summarized. Then, the technical and economic limitations of dark fermentation of FW are thoroughly discussed. Economic assessment revealed that the economic feasibility of H2 production from FW by dark fermentation is questionable. Current efforts to further increase H2 yield and waste removal efficiency are also introduced. Finally, future perspectives along with possible routes converting dark fermentation effluent to valuable fuels and chemicals are discussed.
Collapse
Affiliation(s)
- Yeo-Myeong Yun
- Department of Civil and Environmental Engineering, KAIST, 373-1 Guseong-dong, Yuseong-gu, Daejeon 305-701, Republic of Korea
| | - Mo-Kwon Lee
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Seong-Won Im
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Antonella Marone
- INRA, UR0050 Laboratoire de Biotechnologie de l'Environnement, F-11100 Narbonne, France
| | - Eric Trably
- INRA, UR0050 Laboratoire de Biotechnologie de l'Environnement, F-11100 Narbonne, France
| | - Sang-Ryong Shin
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Min-Gyun Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea
| | - Si-Kyung Cho
- Department of Biological and Environmental Science, Dongguk University, 32 Dongguk-ro, Ilsandong-gu, Goyang, Gyeonggi-do, Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering, Inha University, 100 Inharo, Nam-gu, Incheon 402-751, Republic of Korea.
| |
Collapse
|
22
|
Ding L, Cheng J, Qiao D, Yue L, Li YY, Zhou J, Cen K. Investigating hydrothermal pretreatment of food waste for two-stage fermentative hydrogen and methane co-production. BIORESOURCE TECHNOLOGY 2017; 241:491-499. [PMID: 28600943 DOI: 10.1016/j.biortech.2017.05.114] [Citation(s) in RCA: 63] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2017] [Revised: 05/17/2017] [Accepted: 05/18/2017] [Indexed: 06/07/2023]
Abstract
The growing amount of food waste (FW) in China poses great pressure on the environment. Complex solid organics limit the hydrolysis of FW, hence impairing anaerobic digestion. This study employed hydrothermal pretreatment (HTP) to facilitate the solubilization of FW. When HTP temperature increased from 100 to 200°C, soluble carbohydrate content first increased to a peak at 140°C and then decreased, whereas total carbohydrate content was negatively correlated with increasing temperature due to the enhanced degradation and Maillard reactions. Protein solubilization was dramatically promoted after HTP, whereas protein degradation was negligibly enhanced. The hydrogen and methane yields from hydrothermally pretreated FW under the optimum condition (140°C, 20min) through two-stage fermentation were 43.0 and 511.6mL/g volatile solids, respectively, resulting in an energy conversion efficiency (ECE) of 78.6%. The ECE of pretreated FW was higher than that of untreated FW by 31.7%.
Collapse
Affiliation(s)
- Lingkan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Dan Qiao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Liangchen Yue
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Tohoku University, Sendai 9808579, Japan
| | - Junhu Zhou
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Kefa Cen
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| |
Collapse
|
23
|
Yun YM, Sung S, Shin HS, Han JI, Kim HW, Kim DH. Producing desulfurized biogas through removal of sulfate in the first-stage of a two-stage anaerobic digestion. Biotechnol Bioeng 2017; 114:970-979. [DOI: 10.1002/bit.26233] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2016] [Revised: 12/01/2016] [Accepted: 12/04/2016] [Indexed: 11/05/2022]
Affiliation(s)
- Yeo-Myeong Yun
- College of Agriculture, Forestry and Natural Resource Management; University of Hawaii at Hilo; 200 W. Kawili Street Hilo Hawaii 96720
| | - Shihwu Sung
- College of Agriculture, Forestry and Natural Resource Management; University of Hawaii at Hilo; 200 W. Kawili Street Hilo Hawaii 96720
| | - Hang-Sik Shin
- Department of Civil and Environmental Engineering; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Jong-In Han
- Department of Civil and Environmental Engineering; KAIST; 291 Daehak-ro Yuseong-gu Daejeon 305-701 Republic of Korea
| | - Hyun-Woo Kim
- Department of Environmental Engineering; Chonbuk National University; 567 Baekjedae-ro Deokjin-gu Jeonju Jeonbuk 561-756 Republic of Korea
| | - Dong-Hoon Kim
- Department of Civil Engineering; Inha University; 100 Inha-ro Nam-gu Incheon Republic of Korea
| |
Collapse
|
24
|
Wang J, Yin Y. Pretreatment of Organic Wastes for Hydrogen Production. BIOHYDROGEN PRODUCTION FROM ORGANIC WASTES 2017. [DOI: 10.1007/978-981-10-4675-9_4] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|