1
|
Mattos de Oliveira Cruz L, Oliveira Menezes R, Salgado Duarte T, Camargo Bueno DA. Methods Influence in Surface Area Result from Polyurethane Used as Support Media. ACS OMEGA 2024; 9:14766-14770. [PMID: 38585129 PMCID: PMC10993272 DOI: 10.1021/acsomega.3c06098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/17/2023] [Revised: 10/23/2023] [Accepted: 01/10/2024] [Indexed: 04/09/2024]
Abstract
We evaluated if different measurement methods influence the surface area results from a polyurethane sponge used as support media in biofilm reactors. The surface area values are normally used to characterize and present advantages from supported medias. However, the methodology to determine it is barely discussed. We compared two specific surface area methodologies: Brunauer-Emmett-Teller (BET) and analysis of images obtained by a scanning electron microscope (SEM). Specific surface area by BET was 93769.1 m2 m-3 (average); for SEM methodology, 10586.6 m2 m-3. The BET value was higher than expected in reality, and the SEM method result was more suitable and used as data input in a mathematical modeling.
Collapse
Affiliation(s)
- Luana Mattos de Oliveira Cruz
- School of Civil Engineering,
Architecture and Urban Planning − FECFAU, UNICAMP (University of Campinas). Avenida Albert Einstein, 951, Cidade Universitária
“Zeferino Vaz”, P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Rosana Oliveira Menezes
- School of Civil Engineering,
Architecture and Urban Planning − FECFAU, UNICAMP (University of Campinas). Avenida Albert Einstein, 951, Cidade Universitária
“Zeferino Vaz”, P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Tammy Salgado Duarte
- School of Civil Engineering,
Architecture and Urban Planning − FECFAU, UNICAMP (University of Campinas). Avenida Albert Einstein, 951, Cidade Universitária
“Zeferino Vaz”, P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| | - Daniel Augusto Camargo Bueno
- School of Civil Engineering,
Architecture and Urban Planning − FECFAU, UNICAMP (University of Campinas). Avenida Albert Einstein, 951, Cidade Universitária
“Zeferino Vaz”, P.O. Box 6021, 13083-852 Campinas, SP, Brazil
| |
Collapse
|
2
|
Vo NXP, Dang Nguyen Hoang D, Doan Huu T, Doan Van T, Lam Pham Thanh H, Vo Nguyen Xuan Q. Performance of vertical up-flow-constructed wetlands integrating with microbial fuel cell (VFCW-MFC) treating ammonium in domestic wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:1822-1837. [PMID: 34859740 DOI: 10.1080/09593330.2021.2014574] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2021] [Accepted: 11/25/2021] [Indexed: 06/13/2023]
Abstract
Vertical up-flow-constructed wetlands integrating with microbial fuel cell (VFCW-MFC) were evaluated for NH4+-N removal and bioelectricity recovery. The experiments were carried out in lab-scale VFCW-MFC microcosms treating synthetic domestic wastewater under different operational conditions of pH, hydraulic retention time, and mass loading rate. Effects of wild ornamental grass (Cenchrus setaceus) on treatment performance and voltage output were investigated simultaneously. Experiments demonstrated that the neutral pH of influents favoured NH4+-N removal and power generation. Extended retention time improved treatment capacity and power output but likely depended on the substrate availability. COD removal and power output increased, while NH4+-N removal decreased with increasing mass loading rates. At the loading rate of 88.31 mg COD/L.day, planted VFCW-MFCs exhibited better NH4+-N treatment performance (36.9%) and higher voltage output (132%-143%) than unplanted systems. Plants did not affect the COD removal efficiency of VFCW-MFCs (>95%). Power density was in the range of 1.26-1.59 mW/m2 in planted microcosms with a maximum CE of 13.6%. The anode layer accounted for a major proportion of NH4+-N removal in VFCW-MFCs. This study implies that NH4+-N in domestic wastewaters with relatively high COD:N ratios can be treated effectively in up-flow CW-MFCs via anaerobic processes, including anammox and heterotrophic denitrifying processes. The mass loading rate could be a critical parameter to balance different microbial processes, thus, coincidently determining the potential of power recovery from wastewaters.
Collapse
Affiliation(s)
| | - Dat Dang Nguyen Hoang
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Thuy Doan Huu
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | | | - Hien Lam Pham Thanh
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| | - Que Vo Nguyen Xuan
- Faculty of Environment and Natural Resources, Ho Chi Minh City University of Technology (HCMUT), Ho Chi Minh City, Vietnam
- Vietnam National University Ho Chi Minh City, Ho Chi Minh City, Vietnam
| |
Collapse
|
3
|
Du R, Cao S, Jin R, Li X, Fan J, Peng Y. Beyond an Applicable Rate in Low-Strength Wastewater Treatment by Anammox: Motivated Labor at an Extremely Short Hydraulic Retention Time. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:8650-8662. [PMID: 35537060 DOI: 10.1021/acs.est.1c05123] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The application of anammox technology in low-strength wastewater treatment is still challenging due to unstable nitrite (NO2--N) generation. Partial denitrification (PD) of nitrate (NO3--N) reduction ending with NO2--N provides a promising solution. However, little is known about the feasibility of accelerating nitrogen removal toward the practical application of anammox combined with heterotrophic denitrification. In this work, an ultrafast, highly stable, and impressive nitrogen removal performance was demonstrated in the PD coupling with an anammox (PD/A) system. With a low-strength influent [50 mg/L each of ammonia (NH4+-N) and NO3--N] at a low chemical oxygen demand/NO3--N ratio of 2.2, the hydraulic retention time could be shortened from 16.0 to 1.0 h. Remarkable nitrogen removal rates of 1.28 kg N/(m3 d) and excellent total nitrogen removal efficiency of 94.1% were achieved, far exceeding the applicable capacity for mainstream treatment. Stimulated enzymatic reaction activity of anammox was obtained due to the fast NO2--N jump followed by a famine condition with limited organic carbon utilization. This high-rate PD/A system exhibited efficient renewal of bacteria with a short sludge retention time. The 16S rRNA sequencing unraveled the rapid growth of the genus Thauera, possibly responsible for the incomplete reduction of NO3--N to NO2--N and a decreasing abundance of anammox bacteria. This provides new insights into the practical application of the PD/A process in the energy-efficient treatment of low-strength wastewater with less land occupancy and desirable effluent quality.
Collapse
Affiliation(s)
- Rui Du
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Shenbin Cao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Rencun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xiangchen Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Jiarui Fan
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, China
| |
Collapse
|
4
|
Watari T, Vazquez CL, Hatamoto M, Yamaguchi T, van Lier JB. Development of a single-stage mainstream anammox process using a sponge-bed trickling filter. ENVIRONMENTAL TECHNOLOGY 2021; 42:3036-3047. [PMID: 31987004 DOI: 10.1080/09593330.2020.1720309] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Accepted: 01/15/2020] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonia oxidation to nitrogen gas using nitrite as the electron acceptor (anammox process) is considered a cost-effective solution for nitrogen removal after an anaerobic pre-treatment process. In this study, we conducted a laboratory-scale experiment to develop a single-stage partial nitritation-anammox process in a sponge-based trickling filter (STF) reactor, inoculated with anammox sludge, simulating the treatment of anaerobically pretreated concentrated domestic sewage without mechanical oxygen control. The influent ammonia concentration was 100 mg-N·L-1. The KLa of the STF reactor was higher than those observed for conventional activated sludge processes. The STF reactor performed at 89.8 ± 8.2% and 42.7 ± 16.9% ammonia and TN removal efficiency, respectively, with a nitrogen loading rate of 0.55 ± 0.20 kg-N·m-3·day-1 calculated based on sponge volume. Microbial community analysis of the STF-retained sludge indicated that both autotrophic and heterotrophic nitrogen removal occurred in the reactor.
Collapse
Affiliation(s)
- Takahiro Watari
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
- Environmental Engineering and Water Technology Department, UNESCO-IHE, Delft, The Netherlands
- Department of Chemical Engineering, Hanoi University of Science and Technology, Hanoi, Vietnam
| | - Carlos Lopez Vazquez
- Environmental Engineering and Water Technology Department, UNESCO-IHE, Delft, The Netherlands
| | - Masashi Hatamoto
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Takashi Yamaguchi
- Department of Civil and Environmental Systems Engineering, Nagaoka University of Technology, Nagaoka, Japan
| | - Jules B van Lier
- Environmental Engineering and Water Technology Department, UNESCO-IHE, Delft, The Netherlands
- Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, Delft, The Netherlands
| |
Collapse
|
5
|
Tao R, Zheng X, Guo X, Li M, Shen S, Yang M, Sun Y, Wu F. Pilot-scale enrichment of anammox biofilm using secondary effluent as source water. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:894-905. [PMID: 33617496 DOI: 10.2166/wst.2021.015] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Enough biomass of anaerobic ammonium oxidation (anammox) bacteria is essential for maintaining a stable partial nitrification/anammox (PN/A) wastewater treatment system. Present enrichment procedures are mainly labor-intensive and inconvenient for up-scaling. A simplified procedure was developed for enrichment of anammox biofilm by using secondary effluent as source water with no supplement of mineral medium and unstrict control of influent dissolved oxygen (DO). Anammox biofilm was successfully enriched in two pilot-scale reactors (XQ-cul and BT-cul) within 250 and 120 days, respectively. The specific anammox activity increased rapidly during the last 2 months in both reactors and achieved 2.54 g N2-N/(m2·d) in XQ-cul and 1.61 g N2-N/(m2·d) in BT-cul. Similar microbial diversity and community structure were obtained in the two reactors despite different secondary effluent being applied from two wastewater treatment plants. Anaerobic ammonium oxidizing bacteria genera abundance reached up to 37.4% and 43.1% in XQ-cul and BT-cul biofilm, respectively. Candidatus Brocadia and Ca. Kuenenia dominated the enriched biofilm. A negligible adverse effect of residual organics and influent DO was observed by using secondary effluent as source water. This anammox biofilm enrichment procedure could facilitate the inoculation and/or bio-augmentation of large-scale mainstream PN/A reactors.
Collapse
Affiliation(s)
- Runxian Tao
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Xingcan Zheng
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Xingfang Guo
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Mai Li
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Shifeng Shen
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Min Yang
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Yongli Sun
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| | - Fansong Wu
- North China Municipal Engineering Design & Research Institute Co., Tianjin 300074, China E-mail:
| |
Collapse
|
6
|
Aoki M, Kowada T, Hirakata Y, Watari T, Yamaguchi T. Enrichment of microbial communities for hexavalent chromium removal using a biofilm reactor. JOURNAL OF ENVIRONMENTAL SCIENCE AND HEALTH. PART A, TOXIC/HAZARDOUS SUBSTANCES & ENVIRONMENTAL ENGINEERING 2020; 55:1589-1595. [PMID: 32998606 DOI: 10.1080/10934529.2020.1826791] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/09/2020] [Revised: 09/10/2020] [Accepted: 09/11/2020] [Indexed: 06/11/2023]
Abstract
Given the toxicity and widespread occurrence of hexavalent chromium [Cr(VI)] in aquatic environments, we investigated the feasibility of a down-flow hanging sponge (DHS) biofilm reactor for the enrichment of microbial communities capable of Cr(VI) removal. In the present study, a laboratory-scale DHS reactor fed with a molasses-based medium containing Cr(VI) was operated for 112 days for the investigation. The enrichment of Cr(VI)-removing microbial communities was evaluated based on water quality and prokaryotic community analyses. Once the DHS reactor began to operate, high average volumetric Cr(VI) removal rates of 1.21-1.45 mg L-sponge-1 h-1 were confirmed under varying influent Cr(VI) concentrations (approximately 20-40 mg L-1). 16S rRNA gene amplicon sequencing analysis suggested the presence of phylogenetically diverse prokaryotic lineages, including phyla that contain well-known Cr(VI)-reducing bacteria (e.g., Bacteroidetes, Firmicutes, and Proteobacteria) in the polyurethane sponge media of the DHS reactor. Therefore, our findings indicate that DHS reactors have great potential for the enrichment of Cr(VI)-removing microbial communities.
Collapse
Affiliation(s)
- Masataka Aoki
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Taisei Kowada
- Department of Civil Engineering, National Institute of Technology, Wakayama College, Gobo, Wakayama, Japan
| | - Yuga Hirakata
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takahiro Watari
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| | - Takashi Yamaguchi
- Department of Science of Technology Innovation, Nagaoka University of Technology, Nagaoka, Niigata, Japan
- Department of Civil and Environmental Engineering, Nagaoka University of Technology, Nagaoka, Niigata, Japan
| |
Collapse
|
7
|
Rahimi S, Modin O, Mijakovic I. Technologies for biological removal and recovery of nitrogen from wastewater. Biotechnol Adv 2020; 43:107570. [PMID: 32531318 DOI: 10.1016/j.biotechadv.2020.107570] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2019] [Revised: 05/22/2020] [Accepted: 05/22/2020] [Indexed: 12/11/2022]
Abstract
Water contamination is a growing environmental issue. Several harmful effects on human health and the environment are attributed to nitrogen contamination of water sources. Consequently, many countries have strict regulations on nitrogen compound concentrations in wastewater effluents. Wastewater treatment is carried out using energy- and cost-intensive biological processes, which convert nitrogen compounds into innocuous dinitrogen gas. On the other hand, nitrogen is also an essential nutrient. Artificial fertilizers are produced by fixing dinitrogen gas from the atmosphere, in an energy-intensive chemical process. Ideally, we should be able to spend less energy and chemicals to remove nitrogen from wastewater and instead recover a fraction of it for use in fertilizers and similar applications. In this review, we present an overview of various technologies of biological nitrogen removal including nitrification, denitrification, anaerobic ammonium oxidation (anammox), as well as bioelectrochemical systems and microalgal growth for nitrogen recovery. We highlighted the nitrogen removal efficiency of these systems at different temperatures and operating conditions. The advantages, practical challenges, and potential for nitrogen recovery of different treatment methods are discussed.
Collapse
Affiliation(s)
- Shadi Rahimi
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden.
| | - Oskar Modin
- Division of Water Environment Technology, Department of Architecture and Civil Engineering, Chalmers University of Technology, Gothenburg, Sweden
| | - Ivan Mijakovic
- Division of Systems and Synthetic Biology, Department of Biology and Biological Engineering, Chalmers University of Technology, Gothenburg, Sweden; The Novo Nordisk Foundation Center for Biosustainability, Technical University of Denmark, Lyngby, Denmark.
| |
Collapse
|
8
|
Wu P, Zhang X, Wang X, Wang C, Faustin F, Liu W. Characterization of the start-up of single and two-stage Anammox processes with real low-strength wastewater treatment. CHEMOSPHERE 2020; 245:125572. [PMID: 31846786 DOI: 10.1016/j.chemosphere.2019.125572] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Revised: 11/19/2019] [Accepted: 12/06/2019] [Indexed: 06/10/2023]
Abstract
In order to promote the application of anaerobic ammonium oxidation (Anammox) for municipal wastewater treatment, single and two-stage Anammox processes were started up for real low-strength wastewater treatment under similar conditions for the comparison. Results showed that the anaerobic baffled reactor (ABR)-Nitritation-Anammox and the ABR-Completely Autotrophic Nitrogen removal Over Nitrite (CANON) process took 75 days and 101 days to start up with a total nitrogen removal rate of 86-92% and 81-87% under steady state, respectively. The 16 S rRNA sequencing analysis revealed that the phylum of Proteobacteria dominated in CANON system and Anammox system with the relative abundance of 35.39% and 15.27%, respectively. Phylogenetic analysis showed that Anammox species, related to Ca. Brocadia Sinica JPN1 and Ca. Kuenenia stuttgartiensis, dominated in these two systems, respectively. The nitrogen removal performance of two-stage process was 5% higher than that of single stage process, while the start-up period and dominated Anammox species were different.
Collapse
Affiliation(s)
- Peng Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China.
| | - Xingxing Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Xinzhu Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Chaochao Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Fangnigbe Faustin
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China
| | - Wenru Liu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; National and Local Joint Engineering Laboratory of Municipal Sewage Resource Utilization Technology, No. 1 Kerui Road, 215009, Suzhou, PR China; Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, PR China
| |
Collapse
|
9
|
Nsenga Kumwimba M, Lotti T, Şenel E, Li X, Suanon F. Anammox-based processes: How far have we come and what work remains? A review by bibliometric analysis. CHEMOSPHERE 2020; 238:124627. [PMID: 31548173 DOI: 10.1016/j.chemosphere.2019.124627] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 08/05/2019] [Accepted: 08/19/2019] [Indexed: 06/10/2023]
Abstract
Nitrogen contamination remains a severe environmental problem and a major threat to sustainable development worldwide. A systematic analysis of the literature indicates that the partial nitritation-anammox (PN/AMX) process is still actively studied as a viable option for energy-efficient and feasible technology for the sustainable treatment of N- rich wastewaters, since its initial discovery in 1990. Notably, the mainstream PN/AMX process application remains the most challenging bottleneck in AMX technology and fascinates the world's attention in AMX studies. This paper discusses the recent trends and developments of PN/AMX research and analyzes the results of recent years of research on the PN/AMX from lab-to full-scale applications. The findings would deeply improve our understanding of the major challenges under mainstream conditions and next-stage research on the PN/AMX process. A great deal of efforts has been made in the process engineering, PN/AMX bacteria populations, predictive modeling, and the full-scale implementations during the past 22 years. A series of new and excellent experimental findings at lab, pilot and full-scale levels including good nitrogen removal performance even under low temperature (15-10 °C) around the world were achieved. To date, pilot- and full-scale PN/AMX have been successfully used to treat different types of industrial sewage, including black wastewater, sludge digester liquids, landfill leachate, monosodium glutamate wastewater, etc. Supplementing the qualitative analysis, this review also provides a quantitative bibliometrics study and evaluates global perspectives on PN/AMX research published during the past 22 years. Finally, general trends in the development of PN/AMX research are summarized with the aim of conveying potential future trajectories. The current review offers a valuable orientation and global overview for scientists, engineers, readers and decision makers presently focusing on PN/AMX processes.
Collapse
Affiliation(s)
- Mathieu Nsenga Kumwimba
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China; Guangdong Provincial Key Laboratory of Environmental Pollution Control and Remediation Technology, Sun Yat-sen University, Guangzhou, 510275, China; School of Environmental Science and Engineering, Sun Yat-sen University, Guangzhou, 510275, China; Faculty of Agronomy, Department of Natural Resources and Environmental Management, University of Lubumbashi, Congo
| | - Tommaso Lotti
- Civil and Environmental Engineering Department, University of Florence, Via di Santa Marta 3, 50139, Florence, Italy
| | - Engin Şenel
- Hitit University Faculty of Medicine, Department of Dermatology, Çorum, Turkey
| | - Xuyong Li
- State Key Laboratory of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; University of Chinese Academy of Sciences, Beijing, 100049, China.
| | - Fidèle Suanon
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing, 210008, China
| |
Collapse
|
10
|
He S, Yang W, Li W, Zhang Y, Qin M, Mao Z. Impacts of salt shocking and the selection of a suitable reversal agent on anammox. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 692:602-612. [PMID: 31539968 DOI: 10.1016/j.scitotenv.2019.07.215] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2019] [Revised: 07/12/2019] [Accepted: 07/14/2019] [Indexed: 06/10/2023]
Abstract
In this study, an anaerobic ammonium oxidation (anammox) reactor, which was inhibited by a salinity of 50 g NaCl L-1 during a long-term experiment, was rapidly restarted by decreasing the salinity to 20 g NaCl L-1 and adding biomass. The effects of exposure time and shock concentrations on the anammox reactor indicate that anammox granular sludge has a high tolerance to salinity and strong ability for self-recovery. The nitrogen removal efficiency was higher than 50% after exposure to 50 g NaCl L-1 for 66 h. To shorten the time taken for effluent nitrogen concentrations to attain national standards (GB18918-2002) after the anammox reactor was shocked with NaCl, reactor performance (i.e., recovery) after the addition of K+, glycine betaine, Fe2+, and hydroxylamine were compared after the reactor was inhibited by 80 g NaCl L-1. The results indicate that hydroxylamine was the best reversal agent. The recovery time of the anammox reactor could be shortened by 50% following the addition of hydroxylamine. The most favorable NH2OH-N/NO2--N concentration ratio for improving nitrogen removal of anammox was 1:11. The abundances of Planctomycetes and its genera Candidatus Kuenenia and Brocadiaceae_g_unclassified increased after repeated salinity shock-recovery phases, indicating that Candidatus Kuenenia and Brocadiaceae_g_unclassified are able to adapt to NaCl shocking and recovery.
Collapse
Affiliation(s)
- Shilong He
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China.
| | - Wan Yang
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Wenji Li
- College of Environmental and Resource Sciences, Zhejiang University, Hangzhou 310058, Zhejiang Province, PR China
| | - Yanlong Zhang
- College of the Environment & Ecology, Xiamen University, South Xiangan Rd, Xiamen 361102, Fujian, PR China
| | - Meng Qin
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| | - Zhen Mao
- School of Environment Science and Spatial Informatics, China University of Mining and Technology, Xuzhou 221116, Jiangsu Province, PR China
| |
Collapse
|
11
|
Arora AS, Nawaz A, Yun CM, Cho H, Lee M. Ecofriendly Anaerobic Ammonium Oxidation System: Optimum Operation and Inhibition Control Strategies for Enhanced Nitrogen Removal. Ind Eng Chem Res 2019. [DOI: 10.1021/acs.iecr.9b04591] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Affiliation(s)
- Amarpreet Singh Arora
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Alam Nawaz
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| | - Chao Mun Yun
- Sherpa Space Inc., Daejeon 34051, Republic of Korea
| | - Hwanchul Cho
- Doosan Heavy Industries & Construction, Yongin 16858, Republic of Korea
| | - Moonyong Lee
- School of Chemical Engineering, Yeungnam University, Gyeongsan 38541, Republic of Korea
| |
Collapse
|
12
|
A new Sponge-GAC-Sponge membrane module for submerged membrane bioreactor use in hospital wastewater treatment. Biochem Eng J 2018. [DOI: 10.1016/j.bej.2018.02.007] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
13
|
Cao Y, van Loosdrecht MCM, Daigger GT. Mainstream partial nitritation-anammox in municipal wastewater treatment: status, bottlenecks, and further studies. Appl Microbiol Biotechnol 2017; 101:1365-1383. [PMID: 28084538 DOI: 10.1007/s00253-016-8058-7] [Citation(s) in RCA: 397] [Impact Index Per Article: 56.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2016] [Revised: 12/04/2016] [Accepted: 12/07/2016] [Indexed: 11/26/2022]
Abstract
Driven by energy neutral/positive of wastewater treatment plants, significant efforts have been made on the research and development of mainstream partial nitritation and anaerobic ammonium oxidation (anammox) (PN/A) (deammonification) process since the early 2010s. To date, feasibility of mainstream PN/A process has been demonstrated and proven by experimental results at various scales although with the low loading rates and elevated nitrogen concentration in the effluent at low temperatures (15-10 °C). This review paper provides an overview of the current state of research and development of mainstream PN/A process and critically analyzes the bottlenecks for its full-scale application. The paper discusses the following: (i) the current status of research and development of mainstream PN/A process; (ii) the interactions among aerobic ammonium-oxidizing bacteria, aerobic nitrite-oxidizing bacteria, anammox bacteria, and heterotrophic bacteria; (iii) the suppression of aerobic nitrite-oxidizing bacteria; (iv) process and bioreactors; and (v) suggested further studies including efficient and robust carbon concentrating pretreatment, deepening of understanding competition between autotrophic nitrogen-converting organisms, intensification of biofilm anammox activity, reactor design, and final polishing.
Collapse
Affiliation(s)
- Yeshi Cao
- , Blk 6, 41 Tiang Jia Xian, Suzhou, 215000, Jiangsu Province, China.
| | - Mark C M van Loosdrecht
- Department of Biotechnology, Delft University of Technology, Van der Maasweg 9, 2629 HZ, Delft, The Netherlands.
| | - Glen T Daigger
- Department of Civil and Environmental Engineering, University of Michigan, 2350 Hayward Street, Ann Arbor, MI, 48109, USA
| |
Collapse
|
14
|
Zhang Y, Niu Q, Ma H, He S, Kubota K, Li YY. Long-term operation performance and variation of substrate tolerance ability in an anammox attached film expanded bed (AAFEB) reactor. BIORESOURCE TECHNOLOGY 2016; 211:31-40. [PMID: 26995619 DOI: 10.1016/j.biortech.2016.03.055] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2016] [Revised: 03/08/2016] [Accepted: 03/10/2016] [Indexed: 06/05/2023]
Abstract
An anammox attached film expanded bed (AAFEB) reactor was operated to study the long-term performance and the variation of substrate tolerance ability. The results indicated that the nitrogen loading potential (NLP) was significantly enhanced from 13.56gN·(L·d)(-)(1) to 20.95gN·(L·d)(-)(1) during the stable operation period. The inhibitory concentration of 10% (IC10) for free ammonia (FA), free nitrous acid (FNA) and SNinf (diluted substrate concentration) increased from 18mg/L, 12μgL(-1) and 370mgNL(-)(1) to 31mg/L, 19μgL(-1) and 670mgNL(-)(1), respectively. However, the substrate shock of 2500mgNL(-)(1) for 24h terribly weakened the treatment performance and substrate tolerance ability of the reactor. The results of batch tests indicated that the existence of lag phase made the AAFEB reactor more vulnerable to substrate variation. The SNinf was accurate to be used to monitor the reactor performance and should be maintained below 320mgNL(-)(1) to ensure the absolute stable operation.
Collapse
Affiliation(s)
- Yanlong Zhang
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Qigui Niu
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Haiyuan Ma
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Shilong He
- School of Environment Science and Spatial Informatics, CUMT, Xuzhou 221116, China
| | - Kengo Kubota
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan; Graduate School of Environmental Studies, Tohoku University, 6-6-06 Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan.
| |
Collapse
|
15
|
Sánchez Guillén J, Lopez Vazquez C, de Oliveira Cruz L, Brdjanovic D, van Lier J. Long-term performance of the Anammox process under low nitrogen sludge loading rate and moderate to low temperature. Biochem Eng J 2016. [DOI: 10.1016/j.bej.2016.02.004] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
16
|
Lv L, Ren LF, Ni SQ, Gao BY, Wang YN. The effect of magnetite on the start-up and N2O emission reduction of the anammox process. RSC Adv 2016. [DOI: 10.1039/c6ra19678k] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Abstract
A reactor combined with magnetite could enhance the anammox performance and enrich morePlanctomycetesbacteria.
Collapse
Affiliation(s)
- Lu Lv
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Long-Fei Ren
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Bao-Yu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| | - Yi-Nan Wang
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse
- School of Environmental Science and Engineering
- Shandong University
- Jinan 250100
- PR China
| |
Collapse
|
17
|
Sánchez Guillén JA, Jayawardana LKMCB, Lopez Vazquez CM, de Oliveira Cruz LM, Brdjanovic D, van Lier JB. Autotrophic nitrogen removal over nitrite in a sponge-bed trickling filter. BIORESOURCE TECHNOLOGY 2015; 187:314-325. [PMID: 25863209 DOI: 10.1016/j.biortech.2015.03.140] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/25/2015] [Revised: 03/27/2015] [Accepted: 03/29/2015] [Indexed: 06/04/2023]
Abstract
Partial nitritation in sponge-bed trickling filters (STF) under natural air circulation was studied in two reactors: STF-1 and STF-2 operated at 30°C with sponge thickness of 0.75 and 1.50cm, respectively. The coexistence of nitrifiers and Anammox bacteria was obtained and attributed to the favorable environment created by the reactors' design and operational regimes. After 114days of operation, the STF-1 had an average NH4(+)-N removal of 69.3% (1.17kgN/m(3)sponged) and a total nitrogen removal of 52.2% (0.88kgN/m(3)sponged) at a Nitrogen Loading Rate (NLR) of 1.68kgN/m(3)sponged and Hydraulic Retention Time (HRT) of 1.71h. The STF-2 showed an average NH4(+)-N removal of 81.6 % (0.77kgN/m(3)sponged) and a total nitrogen removal of 54% (0.51kgN/m(3)sponged), at an NLR of 0.95kgN/m(3)sponged and HRT of 2.96h. The findings suggest that autotrophic nitrogen removal over nitrite in STF systems is a feasible alternative.
Collapse
Affiliation(s)
- J A Sánchez Guillén
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| | - L K M C B Jayawardana
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - C M Lopez Vazquez
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - L M de Oliveira Cruz
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands.
| | - D Brdjanovic
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Applied Sciences, Department of Biotechnology, Delft University of Technology, Julianalaan 67, 2628 BC Delft, The Netherlands.
| | - J B van Lier
- Environmental Engineering and Water Technology Department, UNESCO-IHE, PO Box 3015, 2601 DA Delft, The Netherlands; Faculty of Civil Engineering and Geosciences, Department of Water Management, Delft University of Technology, PO Box 5048, 2600 GA Delft, The Netherlands.
| |
Collapse
|