1
|
Bootrak D, Rongsayamanont W, Jaidumrong T, Rongsayamanont C. Effect of phosphorylated polyvinyl alcohol matrix size of cell entrapment on partial nitrification of ammonia in wastewater. ENVIRONMENTAL TECHNOLOGY 2023; 44:4033-4045. [PMID: 35549830 DOI: 10.1080/09593330.2022.2078231] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Accepted: 04/12/2022] [Indexed: 06/15/2023]
Abstract
Partial nitrification is known as first and critical step for autotrophic nitrogen removal in high strength nitrogenous wastewater. Phosphorylated polyvinyl alcohol gel entrapment was used for suppressing oxygen to nitrite-oxidizing bacteria (NOB) in the gel matrix. The study investigated the effect of the size of gel matrix on partial nitrification. Results show that ammonia-oxidizing bacteria (AOB) proportion in the inoculum rather than the size of gel matrix governed ammonia oxidation. Nitrite oxidation depended on the size of gel matrix not the relative proportions of NOB and AOB in the inoculum. Larger size of gel matrix lead to less in situ oxygen penetration and available for NOB resulting in higher nitrite accumulation. This finding gains a better understanding of using suitable inoculum to control partial nitrification that is beneficial for the preparation of anaerobic ammonium oxidation-suited effluent.
Collapse
Affiliation(s)
- Darak Bootrak
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | | | - Tunyakamon Jaidumrong
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| | - Chaiwat Rongsayamanont
- Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
- Environmental Assessment and Technology for Hazardous Waste Management Research Center, Faculty of Environmental Management, Prince of Songkla University, Songkhla, Thailand
| |
Collapse
|
2
|
Sarvajith M, Nancharaiah YV. De novo granulation of sewage-borne microorganisms: A proof of concept on cultivating aerobic granular sludge without activated sludge and effective enhanced biological phosphorus removal. ENVIRONMENTAL RESEARCH 2023; 224:115500. [PMID: 36791839 DOI: 10.1016/j.envres.2023.115500] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 02/02/2023] [Accepted: 02/12/2023] [Indexed: 06/18/2023]
Abstract
Long start-up periods for granulating activated sludge and concerns on granular stability are the bottlenecks reported during implementation of novel aerobic granular sludge (AGS) technology in municipal wastewater treatment plants. Here, de novo granulation of sewage-borne microorganisms without using activated sludge (AS) inoculum was investigated in bench-scale sequencing batch reactors (SBR). Data showed that formation of AGS from sewage-borne microorganisms was rapid and first granules appeared within one week. Granulation was indicated by appearance of biomass particles (size >0.12 mm), high biomass levels (∼8 g/L) and superior settling properties (SVI30 min: 30 mL/g). Granulation process involved distinct stages like formation of aggregates, retention of aggregates, and growth of millimetre sized granules. Simultaneous COD, nitrogen and phosphorous removal was established within 10 days of start-up in the SBR without using AS inoculum. However, phosphorus removal became stable after 50 days of start-up. Total nitrogen (TN) and total phosphorus (TP) removals of 92% and 70%, respectively, were achieved from real domestic wastewater. Furthermore, addition of granular activated carbon (GAC) had improved both granulation and biological nutrient removals. Interestingly, phosphorus removal became quite stable within 10 days of start-up in the SBR operated with GAC particles. TN and TP removals were found to be higher at >98% and >94%, respectively, in GAC-augmented SBR. Removal of ammonia and phosphorus were mediated by nitritation-denitritation and enhanced biological phosphorus removal (EBPR) pathways, respectively. The bacterial diversity of AGS was lower than that of sewage. Quantitative PCR indicated enrichment of ammonia oxidizing bacteria, denitrifying bacteria and polyphosphate accumulating organisms during granulation. De novo granulation of sewage-borne microorganisms is a promising approach for rapidly cultivating AGS and establishing biological nutrient removal in sewage treatment plants.
Collapse
Affiliation(s)
- M Sarvajith
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India
| | - Y V Nancharaiah
- Biofouling and Biofilm Processes Section, WSCD, Chemistry Group, Bhabha Atomic Research Centre, Kalpakkam, 603102, India; Homi Bhabha National Institute, Anushakti Nagar, Mumbai, 400 094, India.
| |
Collapse
|
3
|
Zhao K, Zhang T, Tian Y, Li H, Wan J, Wang Y. Efficient partial nitrification with hybrid nitrifying granular sludge based on a simultaneous fill/draw SBR mode. CHEMOSPHERE 2023; 313:137579. [PMID: 36529172 DOI: 10.1016/j.chemosphere.2022.137579] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/29/2022] [Accepted: 12/14/2022] [Indexed: 06/17/2023]
Abstract
In this study, a simultaneous fill/draw SBR was applied to investigate the feasibility of partial nitrification process with inoculation of matured aerobic granular sludge. The system operated stably over 120 days with the relatively high ammonium removal efficiency (≥ 98.83%) and nitrite accumulation rate (≥ 89.60%). Moreover, a hybrid flocs/granules system was formed stably after long-term operation. The nitrite-oxidizing bacteria (NOB) was suppressed effectively because of the combined effect of simultaneous fill/draw mode and intermittent aeration conditions. Furthermore, batch tests were separately tested with isolated granules (> 200 μm) and flocs (< 200 μm), showing that the specific ammonia oxidation rate of granules and flocs were 15.94 ± 2.85 and 66.77 ± 0.83 mg N/(g MLSS·h), respectively. Correspondingly, the abundance of Nitrosomonas as a typical AOB in granules (6.24%) and flocs (11.94%) was obtained via the microbial diversity analysis, while NOB was almost hardly detected in granules and flocs.
Collapse
Affiliation(s)
- Kaige Zhao
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Tianyi Zhang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yixing Tian
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Jiangsu University, School Environment & Safety Engineering, Zhenjiang, 212013, PR China
| | - Haisong Li
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| | - Junfeng Wan
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China.
| | - Yan Wang
- School of Ecology and Environment, Zhengzhou University, Zhengzhou, 450001, PR China; Henan International Joint Laboratory of Environment and Resources, Zhengzhou University, Zhengzhou, 450001, PR China
| |
Collapse
|
4
|
Wang L, Liu Z, Jiang X, Li A. Aerobic granulation of nitrifying activated sludge enhanced removal of 17α-ethinylestradiol. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 801:149546. [PMID: 34438142 DOI: 10.1016/j.scitotenv.2021.149546] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 07/25/2021] [Accepted: 08/05/2021] [Indexed: 06/13/2023]
Abstract
The positive correlation between the nitrification activity of activated sludge and 17α-ethinylestradiol (EE2) removal has been widely reported. However, up to now the effect of the granulation of nitrifying activated sludge (NAS) on EE2 removal has not been determined. In this study, nitrifying granular sludge (NGS) exhibited more effective EE2 removal efficiency with 3.705 μgEE2∙(gMLSS∙h)-1 in a sequential batch reactor (SBR). Through the artificial neural network (ANN) model and Spearman correlation analysis, nitrite accumulation was demonstrated to be the key factor affecting EE2 removal. Notably, under the same aeration condition (0.15 L/min), nitrite accumulation was more easily achieved in NGS because of its dense structure. Full-length 16S rRNA gene sequencing suggested that EE2 could strongly influence the microbial communities of NAS and NGS. NGS exhibited an increase in community diversity and richness, but NAS exhibited a decrease. In addition, the relative abundance of Nitrosomonas (ammonia-oxidizing bacteria, AOB) decreased considerably in both NAS and NGS, whereas the expression of amoA and nirK genes in Nitrosomonas was upregulated. It was suggested that Nitrosomonas was forced to regulate its gene expression to resist the negative effects of EE2. Denitrifying bacteria, such as Comamonas, were enriched in both NAS and NGS, and there were more species of heterotrophs that can degrade micropollutants in NGS with exposure to EE2. The transformation pathways of EE2 were uniform in NAS and NGS. Ammonia monooxygenase (AMO) in AOB directly biotransformed EE2 while reactive species produced by AOB chemically transformed EE2. Heterotrophs degraded EE2 and its transformation products (TPs) generated by AOB. According to TPs and microbial structure, NGS exhibited better performance than NAS regarding the collaborative removal of EE2 by AOB and heterotrophs. These results provide important information for the development and application of NGS to treat wastewater containing estrogen and high-strength ammonium.
Collapse
Affiliation(s)
- Lili Wang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Zhifang Liu
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Xiaoman Jiang
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China
| | - Anjie Li
- Key Laboratory of Water and sediment Sciences of Ministry of Education, State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing 100875, China.
| |
Collapse
|
5
|
Wen HQ, Ren HY, Xie GJ, Xing DF, Ren NQ, Liu BF. Accelerated start-up for photo-fermentative hydrogen production in biofilm reactor by adding waste effluent. ENVIRONMENTAL RESEARCH 2021; 198:111221. [PMID: 33971131 DOI: 10.1016/j.envres.2021.111221] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2020] [Revised: 02/28/2021] [Accepted: 04/22/2021] [Indexed: 06/12/2023]
Abstract
The difficulty and long duration of start-up wastes numerous costs, labors and time and a little fluctuate during the process might fail it. However, studies dealing with the problem hindering accelerated start-up are still insufficient. Current research focused to develop a method for accelerated start-up in an efficient way. This work outlined a novel alternative for accelerated start-up. This joint method, adding waste effluent with applying biofilm reactor, could successfully start up hydrogen production in the first 24 h via increasing ability of hydrogen producers while the control group produced little hydrogen. The two factors, biofilm formation and addition of waste effluent, expressed the combined effects on accelerated start-up. This study suggested that little molecules like quorum sensing system factors and indoles might be the crucial regulating and stimulating factors and express the accelerated start-up ability only in biofilm reactors.
Collapse
Affiliation(s)
- Han-Quan Wen
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China
| | - Hong-Yu Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China.
| | - Guo-Jun Xie
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China
| | - De-Feng Xing
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China
| | - Nan-Qi Ren
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China
| | - Bing-Feng Liu
- State Key Laboratory of Urban Water Resource and Environment, School of Environment, Harbin Institute of Technology, P.O. Box 2614, 73 Huanghe Road, Harbin, 150090, China.
| |
Collapse
|
6
|
Zhang B, Long B, Cheng Y, Wu J, Zhang L, Zeng Y, Zeng M, Huang S. Rapid domestication of autotrophic nitrifying granular sludge and its stability during long-term operation. ENVIRONMENTAL TECHNOLOGY 2021; 42:2587-2598. [PMID: 31869275 DOI: 10.1080/09593330.2019.1707881] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/27/2019] [Accepted: 12/14/2019] [Indexed: 06/10/2023]
Abstract
The nitrifying granular sludge process is a prospective technology for the efficient treatment of rare earth mine wastewater in southern Jiangxi, China. However, the long formation time of nitrifying granular sludge greatly restricted its application. In the present study, nitrifying granules were domesticated in a pilot-scale sequencing batch reactor by using heterotrophic granular sludge as carriers and adding exogenous nitrifying bacteria concentrate. According to variations of granular properties and ammonia removal, autotrophic nitrifying granules were successfully domesticated within 38 days using the strategy. It was found that the process involved secondary nucleation and microbial community evolution of the seed heterotrophic granules, and Nitrosomonas replaced most heterotrophic bacteria and became the dominant species with the largest relative abundance. During the subsequent 168 days of operation, the domesticated autotrophic nitrifying granules were stable, and their structures were denser than those of the inoculated granules. The ammonia nitrogen removal rate of the reactor was greater than 90% for a long period of time, and persistent partial nitrification was once achieved. However, severe fluctuation of influent ammonia nitrogen during the 120th to 206th day significantly inhibited the activity of nitrifying bacteria, which gradually led to the decrease of the ammonia nitrogen removal rate.
Collapse
Affiliation(s)
- Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Pingdingshan, People's Republic of China
| | - Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Minjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Ganzhou, People's Republic of China
| |
Collapse
|
7
|
Mendes Barros AR, Argenta TS, de Amorim de Carvalho C, da Silva Oliveira F, Milen Firmino PI, Bezerra Dos Santos A. Effects of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on granulation, microbiology, and performance of aerobic granular sludge systems. CHEMOSPHERE 2021; 262:127840. [PMID: 32763570 DOI: 10.1016/j.chemosphere.2020.127840] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/06/2020] [Revised: 07/08/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
This work assessed the effect of the antibiotics trimethoprim (TMP) and sulfamethoxazole (SMX) on the granulation process, microbiology, and organic matter and nutrient removal of an aerobic granular sludge (AGS) system. In addition, after the maturation stage, the impact of the redox mediator anthraquinone-2,6-disulfonate (AQDS) (25 μM) on the biotransformation of the antibiotics was evaluated. The reactor R1 was maintained as a control, and the reactor R2 was supplemented with TMP and SMX (200 μg L-1). The ability to remove C, N, and P was similar between the reactors. However, the structural integrity of the AGS was impaired by the antibiotics. Low TMP (∼30%) and SMX (∼60%) removals were achieved when compared to anaerobic or floccular biomass aerobic systems. However, when the system was supplemented with AQDS, an increase in the removal of TMP (∼75%) and SMX (∼95%) was observed, possibly due to the catalytic action of the redox mediator on cometabolic processes. Regarding the microbial groups, whereas Proteobacteria and Bacterioidetes increased, Planctomycetes decreased in both reactors. However, TMP and SMX presence seemed to inhibit or favor some genera during the formation of the granules, possibly due to their bactericidal action.
Collapse
Affiliation(s)
| | - Thaís Salvador Argenta
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Clara de Amorim de Carvalho
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Francisca da Silva Oliveira
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - Paulo Igor Milen Firmino
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil
| | - André Bezerra Dos Santos
- Department of Hydraulic and Environmental Engineering, Federal University of Ceará, Fortaleza, Ceará, Brazil.
| |
Collapse
|
8
|
Ren Y, Hao Ngo H, Guo W, Wang D, Peng L, Ni BJ, Wei W, Liu Y. New perspectives on microbial communities and biological nitrogen removal processes in wastewater treatment systems. BIORESOURCE TECHNOLOGY 2020; 297:122491. [PMID: 31810739 DOI: 10.1016/j.biortech.2019.122491] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2019] [Revised: 11/21/2019] [Accepted: 11/22/2019] [Indexed: 05/12/2023]
Abstract
Biological nitrogen removal (BNR) is a critical process in wastewater treatment. Recently, there have new microbial communities been discovered to be capable of performing BNR with novel metabolic pathways. This review presents the up-to-date status on these microorganisms, including ammonia oxidizing archaea (AOA), complete ammonia oxidation (COMAMMOX) bacteria, anaerobic ammonium oxidation coupled to iron reduction (FEAMMOX) bacteria, anaerobic ammonium oxidation (ANAMMOX) bacteria and denitrifying anaerobic methane oxidation (DAMO) microorganism. Their metabolic pathways and enzymatic reactions in nitrogen cycle are demonstrated. Generally, these novel microbial communities have advantages over canonical nitrifiers or denitrifiers, such as higher substrate affinities, better physicochemical tolerances and/or less greenhouse gas emission. Also, their recent development and/or implementation in BNR is discussed and outlook. Finally, the key implications of coupling these microbial communities for BNR are identified. Overall, this review illustrates novel microbial communities that could provide new possibilities for high-performance and energy-saving nitrogen removal from wastewater.
Collapse
Affiliation(s)
- Yi Ren
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China; Key Laboratory of Environmental Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, China
| | - Lai Peng
- School of Resources and Environmental Engineering, Wuhan University of Technology, Luoshi Road 122, Wuhan, Hubei 430070, China
| | - Bing-Jie Ni
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Wei Wei
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China; Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| |
Collapse
|
9
|
Wang J, Sheng J, Qian F, Ji X, Yin H, Wang J. Impacts of nanoscale zero-valent iron on nitrite accumulation performance of nitritation granular sludges with different spatial morphologies and its biosorption behavior. RESEARCH ON CHEMICAL INTERMEDIATES 2020. [DOI: 10.1007/s11164-019-03989-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
10
|
Zhang L, Long B, Cheng Y, Wu J, Zhang B, Zeng Y, Huang S, Zeng M. Rapid cultivation and stability of autotrophic nitrifying granular sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2020; 81:309-320. [PMID: 32333664 DOI: 10.2166/wst.2020.111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
Autotrophic nitrifying granular sludge (ANGS) was cultivated by gradually decreasing the influent organics and adding exogenous nitrifying bacteria. Under the strategy, ANGS was domesticated within 36 days. Stability of the seed heterotrophic granules decreased significantly during conversion of organic wastewater to inorganic ammonia wastewater. Obvious granular breakage was observed during these days. However, the granular debris still had good settlement performance. With microbes gradually acclimated to the new environment, the debris provided a large number of carriers for the attached growth of the exogenous nitrifying bacteria, and they replaced the heterotrophic bacteria and became the dominant species. The domesticated ANGS showed good nitrification performance during the 37th to the 183rd day (ammonia nitrogen load between 0.28 and 0.29 kg/m3 · d). The removal rate of ammonia nitrogen was usually more than 95%, and nitrite accumulation rate was always larger than 50%. However, nitrification ability was gradually lost with the increase of the ammonia nitrogen load (0.3-0.64 kg/m3 · d) from the 184th day, and it almost approached the influent ammonia nitrogen at the 269th day. Interestingly, good structure stability of the ANGS was maintained during long-term operation, and the ANGS became smoother and denser at the end of the experiment.
Collapse
Affiliation(s)
- Linan Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Bei Long
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Yuanyuan Cheng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Junfeng Wu
- Henan Province Key Laboratory of Water Pollution Control and Rehabilitation Technology, Mingyue Road, Pingdingshan 467036, Henan, China
| | - Binchao Zhang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Yu Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Sinong Huang
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| | - Mingjing Zeng
- School of Architectural and Surveying & Mapping Engineering, Jiangxi University of Science and Technology, Hongqi Ave. 86, Ganzhou 341000, Jiangxi, China E-mail:
| |
Collapse
|
11
|
Yu H, Tian Z, Zuo J, Song Y. Enhanced nitrite accumulation under mainstream conditions by a combination of free ammonia-based sludge treatment and low dissolved oxygen: reactor performance and microbiome analysis. RSC Adv 2020; 10:2049-2059. [PMID: 35494565 PMCID: PMC9048193 DOI: 10.1039/c9ra07628j] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/20/2019] [Accepted: 11/29/2019] [Indexed: 11/21/2022] Open
Abstract
Partial nitritation under mainstream conditions is one of the major bottlenecks for the application of deammonification processes to municipal wastewater treatment plants. This study aimed at evaluating the combination effect of a side-stream free ammonia (FA) treatment and low dissolved oxygen (0.2 ± 0.1 mg L−1) on inhibiting nitrite oxidizing bacteria (NOB) from enhancing nitrite accumulation in long-term lab-scale experiments. Two continuous floccular sludge reactors treating low-strength synthetic wastewater (60 mg N–NH4+ L−1 without COD) with a fixed nitrogen loading rate of 0.22 ± 0.03 g N per L per day were operated in a varied temperature range of 7–31 °C, with one acting as the experimental reactor and the other as the control. Side-stream sludge treatment with a stepwise elevation of FA concentration (65.2–261.1 mg NH3 L−1) was carried out every day in the experimental reactor; the nitrite accumulation ratio (NAR, (NO2–N/(NO2−–N + NO3−–N) × 100%)) in the experimental reactor was always about twice that in the control one. Quantitative PCR (q-PCR) and high-throughput sequencing analyses showed the dominant NOB was mostly Nitrobacter, while there was an alternating trend between Nitrobacter and Nitrospira. Even though the whole microbial communities of each experimental stage between the two reactors were relatively clustered due to an incomplete NOB washout, three abundant metabolisms (amino acid metabolism, pyruvate metabolism and nitrogen metabolism) and key functional genes of nitrification predicted by PICRUSt in the experimental reactor were enriched, providing a better understanding of nitrite accumulation. These results have demonstrated that the positive hybrid effects of FA side-stream sludge treatment and a low DO could enhance nitrite accumulation. It is expected that a complete washout of NOB would be achieved after further process optimization. An introduction of the combination of side-stream sludge treatment using FA and low DO could more effectively enhance nitrite accumulation than single low DO.![]()
Collapse
Affiliation(s)
- Heng Yu
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Zhiyong Tian
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control
- School of Environment
- Tsinghua University
- Beijing 100084
- China
| | - Yonghui Song
- State Key Laboratory of Environmental Criteria and Risk Assessment
- Chinese Research Academy of Environmental Sciences
- Department of Urban Water Environmental Research
- Beijing 100012
- China
| |
Collapse
|
12
|
Li D, Zhang S, Li S, Zeng H, Zhang J. The nitrogen removal of autotrophic and heterotrophic bacteria in aerobic granular reactors with different feast/famine ratio. BIORESOURCE TECHNOLOGY 2019; 272:370-378. [PMID: 30384212 DOI: 10.1016/j.biortech.2018.10.046] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/17/2018] [Accepted: 10/19/2018] [Indexed: 05/21/2023]
Abstract
Aerobic granular sludge was cultivated in three column reactors, which had been operated for 120 days under different feast/famine ratio (1:7, 1:11, 1:15). The composition of total bacteria was analyzed by testing oxygen uptake rates of mixed liquor samples taken from the reactors and calculating according to activated sludge model. The results revealed that long famine phase favored the growth of heterotrophic bacteria. The heterotrophic bacteria accounts for 49.80, 53.37, 91.39% of total bacteria respectively in R1, R2 and R3. The heterotrophic nitrification was also observed in all the reactors, which accounts for 58.62, 58.33, 61.54% of total nitrification respectively in R1, R2 and R3. A novel nitrogen-removal pathway involving simultaneous nitrification-denitrification by heterotrophic nitrification bacteria was proposed. The results revealed that microbial system consisted of heterotrophic ammonia oxidizing bacteria showed stronger capacity of simultaneous nitrification-denitrification.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Shirui Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Shuai Li
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
13
|
Wei D, Ngo HH, Guo W, Xu W, Du B, Wei Q. Partial nitrification granular sludge reactor as a pretreatment for anaerobic ammonium oxidation (Anammox): Achievement, performance and microbial community. BIORESOURCE TECHNOLOGY 2018; 269:25-31. [PMID: 30149251 DOI: 10.1016/j.biortech.2018.08.088] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/17/2018] [Accepted: 08/20/2018] [Indexed: 06/08/2023]
Abstract
Partial nitrification granular sludge was successfully cultivated in a sequencing batch reactor as a pretreatment for anaerobic ammonium oxidation (Anammox) through shortening settling time. After 250-days operation, the effluent NH4+-N and NO2--N concentrations were average at 277.5 and 280.5 mg/L with nitrite accumulation rate of 87.8%, making it as an ideal influent for Anammox. Simultaneous free ammonia (FA) and free nitrous acid (FNA) played major inhibitory roles on the activity of nitrite oxidizing bacteria (NOB). The MLSS and SVI30 of partial nitrification reactor were 14.6 g/L and 25.0 mL/g, respectively. Polysaccharide (PS) and protein (PN) amounts in extracellular polymeric substances (EPS) from granular sludge were about 1.3 and 2.8 times higher than from seed sludge. High-throughput pyrosequencing results indicated that Nitrosomonas affiliated to the ammonia oxidizing bacteria (AOB) was the predominant group with a proportion of 24.1% in the partial nitrification system.
Collapse
Affiliation(s)
- Dong Wei
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Huu Hao Ngo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Wenshan Guo
- School of Civil and Environmental Engineering, University of Technology Sydney, Broadway, NSW 2007, Australia
| | - Weiying Xu
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China
| | - Bin Du
- School of Resources and Environment, University of Jinan, Jinan 250022, PR China.
| | - Qin Wei
- Key Laboratory of Chemical Sensing & Analysis in Universities of Shandong, School of Chemistry and Chemical Engineering, University of Jinan, Jinan 250022, PR China
| |
Collapse
|
14
|
Zhang J, Zhang Q, Miao Y, Sun Y, Chen J, Peng Y. Stable and efficient partial nitritation granular sludge reactor treating domestic sewage at low temperature. BIORESOURCE TECHNOLOGY 2018; 270:746-750. [PMID: 30301648 DOI: 10.1016/j.biortech.2018.09.110] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 06/08/2023]
Abstract
The success of combined partial nitritation (PN) and anammox process treating low-strength domestic wastewater depends on achieving a stable and efficient PN. In this study, desirable PN for domestic sewage with low temperature of 11.8-16.9 °C was achieved in a granular sludge reactor operated in anaerobic/aerobic (A/O) mode. Average nitrite accumulation ratio of 97.3% was obtained with an effluent nitrite/ammonium ratio of 1.2 for influent ammonium of 39.3-78.7 mg·L-1. Quantitative microbial analysis and activity batch test showed that nitrite oxidizing bacteria (NOB) were effectively suppressed, while ammonium oxidizing bacteria (AOB) were dominant. For the efficient suppression of NOB, A/O mode, aerobic phosphorus uptake and granular sludge could play important roles. Furthermore, high AOB activity was obtained with an average ammonium oxidation rate of 11.6 mg N·L-1·h-1, which could be due to the abundant psychrotolerant microorganisms, increased content of extracellular polymeric substances and relatively high dissolved oxygen condition of the reactor.
Collapse
Affiliation(s)
- Jianhua Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuanyuan Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yawen Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Jianfei Chen
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
15
|
Zhang X, Zhao B, Meng J, Zhou A, Yue X, Niu Y, Cui Y. Efficiency, granulation, and bacterial populations related to pollutant removal in an upflow microaerobic sludge reactor treating wastewater with low COD/TN ratio. BIORESOURCE TECHNOLOGY 2018; 270:147-155. [PMID: 30216924 DOI: 10.1016/j.biortech.2018.08.016] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 07/31/2018] [Accepted: 08/03/2018] [Indexed: 06/08/2023]
Abstract
In this study, a novel upflow microaerobic sludge reactor (UMSR) was constructed to conduct anaerobic digestion of municipal wastewater with low carbon and nitrogen ratio (C/N). Oxygen in the UMSR was supplied by falling water and external recirculation. Excellent nitrogen removal performance was obtained in the UMSR for treating wastewater with low C/N ratio at a temperature of 25 °C and a hydraulic retention time of 24 h. Ammonium and total nitrogen removal efficiencies averaged 92.35% and 90.41%, respectively, and sludge granulation occurred during acclimation. The inferred metabolism of nitrogen removal and ecological positions of functional microbe were integrated into a granule model by scanning electron microscopy. Additionally, the analysis of microbial community indicated that aerobic nitrifying bacteria and heterotrophic bacteria survived on the surface of sludge floc and granules while the anaerobic autotrophic, heterotrophic denitrifying, and anaerobic ammonia oxidation bacteria were present in the inner layer.
Collapse
Affiliation(s)
- Xiao Zhang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Bowei Zhao
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Jia Meng
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, 73 Huanghe Road, Harbin 150090, PR China
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China.
| | - Yukun Niu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| | - Ying Cui
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan 030024, PR China
| |
Collapse
|
16
|
Liu X, Ni SQ, Guo W, Wang Z, Ahmad HA, Gao B, Fang X. N 2O emission and bacterial community dynamics during realization of the partial nitrification process. RSC Adv 2018; 8:24305-24311. [PMID: 35539160 PMCID: PMC9082017 DOI: 10.1039/c8ra03032d] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2018] [Accepted: 06/12/2018] [Indexed: 12/27/2022] Open
Abstract
In this study, greenhouse gas emissions and microbial community succession during the realization of the partial nitrification (PN) process were studied. The results show that N2O emission mainly occurred in the aerobic stage and the PN reactor released about 20 mg of N2O gas each cycle. There is a positive correlation between the dissolved N2O concentration and the temperature of a typical cycle. High-throughput sequencing was used to illustrate succession in the microbial community structure. The most significant microfloral change during the PN startup process was that some aerobic bacteria were relatively enriched and some anaerobic bacteria were weeded out. The ammonia oxidizing bacteria (AOB) like Nitrosomonadaceae were enriched on account of the suitable external environment. Pseudomonas whose main function is denitrification declined and Planctomyces (anammox) showed the same tendency. This study comprehensively demonstrates the fluctuations of dissolved and emitted N2O while researching the succession of the microbial community in the culture of the PN process.
Collapse
Affiliation(s)
- Xiaolin Liu
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China +86-531-88365660 +86-531-88365660
| | - Shou-Qing Ni
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China +86-531-88365660 +86-531-88365660
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney Sydney NSW 2007 Australia
| | - Zhibin Wang
- State Key Laboratory of Microbial Technology, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China
- Institute of Marine Science and Technology, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China
| | - Hafiz Adeel Ahmad
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China +86-531-88365660 +86-531-88365660
| | - Baoyu Gao
- Shandong Provincial Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China +86-531-88365660 +86-531-88365660
| | - Xu Fang
- State Key Laboratory of Microbial Technology, Shandong University No. 27 Shanda South Road Jinan 250100 Shandong PR China
| |
Collapse
|
17
|
Optimization of Nitrogen Removal in Solid Carbon Source SND for Treatment of Low-Carbon Municipal Wastewater with RSM Method. WATER 2018. [DOI: 10.3390/w10070827] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Wang J, Zhang Z, Qian F, Shen Y, Qi Z, Ji X, Kajamisso EML. Rapid start-up of a nitritation granular reactor using activated sludge as inoculum at the influent organics/ammonium mass ratio of 2/1. BIORESOURCE TECHNOLOGY 2018; 256:170-177. [PMID: 29438917 DOI: 10.1016/j.biortech.2018.02.017] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Revised: 02/01/2018] [Accepted: 02/02/2018] [Indexed: 06/08/2023]
Abstract
Partial oxidation of ammonium to nitrite is a pre- and crucial step to achieve shortcut biological nitrogen removal from ammonium-rich wastewater. In the present study, a nitritation granular reactor using activated sludge as inoculum was started up in a sequencing batch reactor (SBR) at a fixed influent C/N ratio of 2:1. Variations in the reactor performance, functional bacteria activities, sludge morphology and bacterial community structure were investigated. Results showed the formation of compact granules was achieved in 55 days, and a stable nitrite accumulation rate of 0.68 kg N·m-3·d-1 was maintained in the following period. With a rapid growth of granular size, the total nitrogen removal by simultaneous nitritation/denitritation was progressively increased to 50%. In sludge granulation, the significant enrichment of r-strategist ammonium oxidizing bacteria (Nitrosomonas) was identified. Additionally, both high free ammonia concentration and extra nitrite competition by heterotrophic denitrifiers were critical to suppress nitrite oxidizing bacteria effectively.
Collapse
Affiliation(s)
- Jianfang Wang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Zeyu Zhang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Feiyue Qian
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China.
| | - Yaoliang Shen
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Zekun Qi
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Xiaoqing Ji
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| | - Emma Marcello Lagu Kajamisso
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009 Suzhou, People's Republic of China
| |
Collapse
|
19
|
Zeng M, Hu J, Wang D, Wang H, Wang Y, Wu N, Zhang Z, Wang C. Improving a compact biofilm reactor to realize efficient nitrogen removal performance: step-feed, intermittent aeration, and immobilization technique. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2018; 25:6240-6250. [PMID: 29243151 DOI: 10.1007/s11356-017-0935-9] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2017] [Accepted: 12/03/2017] [Indexed: 06/07/2023]
Abstract
Purifying tank as a compact biofilm reactor has been widely used to remove organic matter in rural sewage, but its potential for nitrogen removal is rare to be discussed. This study developed a lab-scale compact biofilm reactor to realize an efficient nitrogen removal performance by step-feed, intermittent aeration, and immobilization technique. The results show that an efficient simultaneous nitrification and denitrification (SND) process took place by feeding with synthetic wastewater under high C/N ratio of 2 and with real sewage as well, mainly due to the step-feed. The average removal efficiency of total inorganic nitrogen arrived at 72.7 and 63.3% for synthetic wastewater and real sewage, respectively. Besides the step-feed operation, the intermittent aeration was adopted to enhance SND, which allowed hydraulic behavior of compact biofilm reactor following the model of completely stirred tank reactor. The high-throughput sequencing analysis indicates that Sphaerotilus became the dominant genera with relative abundance of 30.29% under high C/N ratio, and the nitrifiers were not greatly inhibited. Moreover, the immobilization technique helped restore microbial activity under low temperature, promoting the satisfactory nitrogen removal performance of recovered microorganism to be rebuilt by feeding nutrient solution. Overall, the long-term SND process and maintaining effective biofilm activity can be established in the compact biofilm reactor through several improving alternatives.
Collapse
Affiliation(s)
- Ming Zeng
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Jie Hu
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Denghui Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Hongting Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Yaochen Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China
| | - Nan Wu
- College of Engineering and Technology, Tianjin Agricultural University, Tianjin, 300384, China
| | - Zongpeng Zhang
- Fukai Diwo (Tianjin) Environmental Protection Technology Co., Ltd, Tianjin, 300457, China
| | - Chang Wang
- College of Marine and Environmental Sciences, Tianjin University of Science & Technology, Tianjin, 300457, China.
| |
Collapse
|
20
|
Ma B, Yang L, Wang Q, Yuan Z, Wang Y, Peng Y. Inactivation and adaptation of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria when exposed to free nitrous acid. BIORESOURCE TECHNOLOGY 2017; 245:1266-1270. [PMID: 28893505 DOI: 10.1016/j.biortech.2017.08.074] [Citation(s) in RCA: 66] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2017] [Revised: 08/09/2017] [Accepted: 08/13/2017] [Indexed: 06/07/2023]
Abstract
Inactivation and adaptation of ammonia-oxidizing bacteria (AOB) and nitrite-oxidizing bacteria (NOB) to free nitrous acid (FNA) was investigated. Batch test results showed that AOB and NOB were inactivated when treated with FNA. After an 85-day operating period, AOB in a continuous pre-denitrification reactor did not adapt to the FNA that was applied to treat some of the return activated sludge. In contrast, NOB did adapt to FNA. NOB activity in the seed sludge was only 11% of the original activity after FNA batch treatment, at 0.75mg HNO2-N/L. NOB activity in the pre-denitrification reactor was not affected after being exposed to this FNA level. Nitrosomonas was the dominant AOB before and after long-term FNA treatment. However, dominant NOB changed from Nitrospira to Candidatus Nitrotoga, a novel NOB genus, after long-term FNA treatment. This adaptation of NOB to FNA may be due to the shift in NOB population makeup.
Collapse
Affiliation(s)
- Bin Ma
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Lan Yang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China
| | - Qilin Wang
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Zhiguo Yuan
- Advanced Water Management Center, The University of Queensland, St Lucia, QLD 4072, Australia
| | - Yayi Wang
- State Key Laboratory of Pollution Control and Resources Reuse, College of Environmental Science and Engineering, Tongji University, Siping Road, Shanghai 200092, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
21
|
Velho VF, Magnus BS, Daudt GC, Xavier JA, Guimarães LB, Costa RHR. Effect of COD/N ratio on N 2O production during nitrogen removal by aerobic granular sludge. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2017; 76:3452-3460. [PMID: 29236023 DOI: 10.2166/wst.2017.502] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
N2O-production was investigated during nitrogen removal using aerobic granular sludge (AGS) technology. A pilot sequencing batch reactor (SBR) with AGS achieved an effluent in accordance with national discharge limits, although presented a nitrite accumulation rate of 95.79% with no simultaneous nitrification-denitrification. N2O production was 2.06 mg L-1 during the anoxic phase, with N2O emission during air pulses and the aeration phase of 1.6% of the nitrogen loading rate. Batch tests with AGS from the pilot reactor verified that at the greatest COD/N ratio (1.55), the N2O production (1.08 mgN2O-N L-1) and consumption (up to 0.05 mgN2O-N L-1), resulted in the lowest remaining dissolved N2O (0.03 mgN2O-N L-1), stripping the minimum N2O gas (0.018 mgN2O-N L-1). Conversely, the carbon supply shortage, under low C/N ratios, increased N2O emission (0.040 mgN2O-N L-1), due to incomplete denitrification. High abundance of ammonia-oxidizing and low abundance of nitrite-oxidizing bacteria were found, corroborating the fact of partial nitrification. A denitrifying heterotrophic community, represented mainly by Pseudoxanthomonas, was predominant in the AGS. Overall, the AGS showed stable partial nitrification ability representing capital and operating cost savings. The SBR operation flexibility could be advantageous for controlling N2O emissions, and extending the anoxic phase would benefit complete denitrification in cases of low C/N influents.
Collapse
Affiliation(s)
- V F Velho
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail: ; Catarinense Federal Institute of Education, Science and Technology, Campus Camboriú, CEP: 88340 055 Camboriú, SC, Brazil
| | - B S Magnus
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail:
| | - G C Daudt
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail:
| | - J A Xavier
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail:
| | - L B Guimarães
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail:
| | - R H R Costa
- Federal University of Santa Catarina, Florianópolis, SC, Brazil E-mail:
| |
Collapse
|
22
|
Zhang J, Zhang Q, Li X, Miao Y, Sun Y, Zhang M, Peng Y. Rapid start-up of partial nitritation and simultaneously phosphorus removal (PNSPR) granular sludge reactor treating low-strength domestic sewage. BIORESOURCE TECHNOLOGY 2017; 243:660-666. [PMID: 28709071 DOI: 10.1016/j.biortech.2017.06.129] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2017] [Revised: 06/20/2017] [Accepted: 06/22/2017] [Indexed: 06/07/2023]
Abstract
Obtaining desirable partial nitritation (PN) is crucial for successful application of the combined PN and anammox process. In this study, the partial nitritation and simultaneously phosphorus removal (PNSPR)1 granular sludge reactor treating low-strength domestic sewage was rapidly started up in 67days through seeding denitrifying phosphorus removal (DPR)2 sludge. The nitrite/ammonium ratio in effluent was approximately 1 and the nitrite accumulation rate (NAR) was more than 95%, about 93% of orthophosphate was removed. The DPR sludge rich in phosphate accumulating organisms (PAOs) with few nitrifying bacteria could promote the achievement of PNSPR. Quantitative microbial analysis showed that the ammonium oxidizing bacteria (AOB) gene ratio in sludge increased from 0.21% to 3.43%, while nitrite oxidizing bacteria (NOB) gradually decreased to 0.07%. The average particle size of sludge increased from 114 to 421μm, indicating the formation of PNSPR granules. The high phosphorus content in sludge and phosphorus removal facilitated rapid granulation.
Collapse
Affiliation(s)
- Jianhua Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yuanyuan Miao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yawen Sun
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Miao Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
23
|
Dobbeleers T, Daens D, Miele S, D'aes J, Caluwé M, Geuens L, Dries J. Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry. BIORESOURCE TECHNOLOGY 2017; 226:211-219. [PMID: 28002781 DOI: 10.1016/j.biortech.2016.11.117] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2016] [Revised: 11/28/2016] [Accepted: 11/29/2016] [Indexed: 06/06/2023]
Abstract
In this study nitrogen removal via nitrite >80% was achieved after approximately 80days in a sequencing batch reactor (SBR) treating pre-treated industrial wastewater originating from the potato industry. Thereafter, SBR performance was investigated during the formation of aerobic nitrite granules (ANG). The first granules appeared after 26days leading to full granulation after 64days. ANG showed excellent settling properties, as the Sludge Volume Index (SVI) went down to 16mL/g and a SVI10/SVI30=1 was obtained. qPCR analysis showed that slow growing organisms, especially polyphosphate accumulating organisms (PAO) were stimulated by an anaerobic feeding strategy. The average nitrogen removal was 95.3% over the entire operational period, and it mainly followed the "nitrite-route". Moreover, with ANG also phosphorus removal efficiencies up to 65.7% could be achieved. However, it has to be mentioned that nitrous oxide was an important denitrification product, which implies some environmental concerns.
Collapse
Affiliation(s)
- Thomas Dobbeleers
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium
| | - Dominique Daens
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium
| | - Solange Miele
- National University of Quilmes, Basic and Applied Microbiology Institute, Genetic Engineering and Cellular and Molecular Biology, Buenos Aires, Argentina
| | - Jolien D'aes
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium
| | - Michel Caluwé
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium
| | - Luc Geuens
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium
| | - Jan Dries
- Research Group BioGEM, Bio-Chemical Green Engineering & Materials, Faculty of Applied Engineering, University of Antwerp, Salesianenlaan 90, 2660 Antwerp, Belgium.
| |
Collapse
|
24
|
Liu T, Mao YJ, Shi YP, Quan X. Start-up and bacterial community compositions of partial nitrification in moving bed biofilm reactor. Appl Microbiol Biotechnol 2016; 101:2563-2574. [DOI: 10.1007/s00253-016-8003-9] [Citation(s) in RCA: 47] [Impact Index Per Article: 5.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2016] [Revised: 11/07/2016] [Accepted: 11/09/2016] [Indexed: 10/20/2022]
|
25
|
Li D, Lv Y, Zeng H, Zhang J. Long term operation of continuous-flow system with enhanced biological phosphorus removal granules at different COD loading. BIORESOURCE TECHNOLOGY 2016; 216:761-767. [PMID: 27295254 DOI: 10.1016/j.biortech.2016.06.022] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2016] [Revised: 06/03/2016] [Accepted: 06/06/2016] [Indexed: 06/06/2023]
Abstract
In this study, a continuous-flow system with enhanced biological phosphorus removal (EBPR) granules was operated at different COD concentrations (200, 300 and 400mgL(-)(1)) to investigate the effect of COD loading on this system. The results showed that when the COD concentration in influent was increased to 400mgL(-)(1), the anaerobic COD removal efficiency and total phosphorus removal efficiency reduced obviously and the settling ability of granules deteriorated due to the proliferation of filamentous bacteria. Moreover, high COD loading inhibited the EPS secretion and destroyed the stability of granules. Results of high-through pyrosequencing indicated that filamentous bacteria had a competitive advantage over polyphosphate-accumulating organisms (PAOs) at high COD loading. The performance of system, settling ability of granules and proportion of PAOs gradually recovered to the initial level after the COD concentration was reduced to 200mgL(-)(1) on day 81.
Collapse
Affiliation(s)
- Dong Li
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China.
| | - Yufeng Lv
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Huiping Zeng
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China
| | - Jie Zhang
- Key Laboratory of Water Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100123, China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China
| |
Collapse
|
26
|
Wang J, Qian F, Liu X, Liu W, Wang S, Shen Y. Cultivation and characteristics of partial nitrification granular sludge in a sequencing batch reactor inoculated with heterotrophic granules. Appl Microbiol Biotechnol 2016; 100:9381-9391. [PMID: 27557719 DOI: 10.1007/s00253-016-7797-9] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/03/2016] [Revised: 06/12/2016] [Accepted: 08/09/2016] [Indexed: 01/01/2023]
Abstract
The aim of this study was to develop a simple operation strategy for the cultivation of partial nitrification granules (PNGs) treating an autotrophic medium. For this strategy, aerobic granular sludge adapted to high concentration organics removal was seeded in a sequencing batch reactor (SBR) with a height/diameter ratio of 3.8, and the ratio of organics to the ammonia nitrogen-loading rate (C/N ratio) in the influent was employed as the main control parameter to start up the partial nitrification process. After 86 days of operation, the nitrite accumulation rate reached 1.44 kg/(m3 day) in the SBR, and the removal efficiency of ammonia nitrogen (NH4+-N) was over 95 %. The PNGs showed a dense and compact structure, with an excellent settling ability, a typical extracellular polymeric substance (EPS) composition, and a high ammonia oxidation activity. The high-throughput pyrosequencing results indicated that the microbial community structure in the granules was significantly influenced by the C/N ratio, and ammonia-oxidizing bacteria (AOB), including the r-strategist Nitrosomonas and k-strategist Nitrosospira genre, which accounted for approximately 40 % of the total biomass at the end of operation. The effective suppression of nitrite-oxidizing bacteria (NOB) growth was attributed to oxygen competition on the granular surface among functional bacteria, as well as the high free ammonia or free nitrous acid concentrations during the aeration period.
Collapse
Affiliation(s)
- Jianfang Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,College of Tianping, Suzhou University of Science and Technology, No. 55 Changjiang Road, 215009, Suzhou, People's Republic of China
| | - Feiyue Qian
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China. .,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.
| | - Xiaopeng Liu
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| | - Wenru Liu
- College of Environmental Science and Engineering, Tongji University, No. 1239 Siping Road, 200092, Shanghai, People's Republic of China
| | - Shuyong Wang
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| | - Yaoliang Shen
- College of Environmental Science and Engineering, Suzhou University of Science and Technology, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China.,Jiangsu Collaborative Innovation Center of Technology and Material of Water Treatment, No. 1 Kerui Road, 215009, Suzhou, People's Republic of China
| |
Collapse
|
27
|
Zhang Q, Hu J, Lee DJ. Aerobic granular processes: Current research trends. BIORESOURCE TECHNOLOGY 2016; 210:74-80. [PMID: 26873285 DOI: 10.1016/j.biortech.2016.01.098] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2015] [Revised: 01/23/2016] [Accepted: 01/25/2016] [Indexed: 06/05/2023]
Abstract
Aerobic granules are large biological aggregates with compact interiors that can be used in efficient wastewater treatment. This mini-review presents new researches on the development of aerobic granular processes, extended treatments for complicated pollutants, granulation mechanisms and enhancements of granule stability in long-term operation or storage, and the reuse of waste biomass as renewable resources. A discussion on the challenges of, and prospects for, the commercialization of aerobic granular process is provided.
Collapse
Affiliation(s)
- Quanguo Zhang
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Jianjun Hu
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China
| | - Duu-Jong Lee
- Collaborative Innovation Center of Biomass Energy, Henan Agricultural University, Henan Province, Zhengzhou, China; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan.
| |
Collapse
|