1
|
Liu Z, Hao N, Hou Y, Wang Q, Liu Q, Yan S, Chen F, Zhao L. Technologies for harvesting the microalgae for industrial applications: Current trends and perspectives. BIORESOURCE TECHNOLOGY 2023; 387:129631. [PMID: 37544545 DOI: 10.1016/j.biortech.2023.129631] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2023] [Revised: 08/02/2023] [Accepted: 08/03/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are emerging as a promising source for augmenting the supply of essential products to meet global demands in an environmentally sustainable manner. Despite the potential benefits of microalgae in industry, the high energy consumption for harvesting remains a significant obstacle. This review offers a comprehensive overview of microalgae harvesting technologies and their industrial applications, with particular emphasis on the latest advances in flocculation techniques. These cutting-edge methods have been applied to biodiesel production, food and nutraceutical processing, and wastewater treatment. Large-scale harvesting is still severely impeded by the high cost despite progress has been made in laboratory studies. In the future, cost-effective microalgal harvesting will rely on efficient resource utilization, including the use of waste materials and the reuse of media and flocculants. Additionally, precise regulation of biological metabolism will be necessary to overcome algal species-related limitations through the development of extracellular polymeric substance-induced flocculation technology.
Collapse
Affiliation(s)
- Zhiyong Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Nahui Hao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Yuyong Hou
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qing Wang
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Qingling Liu
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Suihao Yan
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China; College of Biotechnology, Tianjin University of Science and Technology, Tianjin, China
| | - Fangjian Chen
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China
| | - Lei Zhao
- Key Laboratory of Engineering Biology for Low-carbon Manufacturing, Tianjin Institute of Industrial Biotechnology, Chinese Academy of Sciences, Tianjin, China; National Center of Technology Innovation for Synthetic Biology, Tianjin, China.
| |
Collapse
|
2
|
Datta SS, Battiato I, Fernø MA, Juanes R, Parsa S, Prigiobbe V, Santanach-Carreras E, Song W, Biswal SL, Sinton D. Lab on a chip for a low-carbon future. LAB ON A CHIP 2023; 23:1358-1375. [PMID: 36789954 DOI: 10.1039/d2lc00020b] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
Transitioning our society to a sustainable future, with low or net-zero carbon emissions to the atmosphere, will require a wide-spread transformation of energy and environmental technologies. In this perspective article, we describe how lab-on-a-chip (LoC) systems can help address this challenge by providing insight into the fundamental physical and geochemical processes underlying new technologies critical to this transition, and developing the new processes and materials required. We focus on six areas: (I) subsurface carbon sequestration, (II) subsurface hydrogen storage, (III) geothermal energy extraction, (IV) bioenergy, (V) recovering critical materials, and (VI) water filtration and remediation. We hope to engage the LoC community in the many opportunities within the transition ahead, and highlight the potential of LoC approaches to the broader community of researchers, industry experts, and policy makers working toward a low-carbon future.
Collapse
Affiliation(s)
- Sujit S Datta
- Department of Chemical and Biological Engineering, Princeton University, Princeton NJ, USA.
| | - Ilenia Battiato
- Department of Energy Science and Engineering, Stanford University, Palo Alto CA, USA
| | - Martin A Fernø
- Department of Physics and Technology, University of Bergen, 5020, Bergen, Norway
| | - Ruben Juanes
- Department of Civil and Environmental Engineering, Massachusetts Institute of Technology, Cambridge MA, USA
| | - Shima Parsa
- School of Physics and Astronomy, Rochester Institute of Technology, Rochester NY, USA
| | - Valentina Prigiobbe
- Department of Civil, Environmental, and Ocean Engineering, Stevens Institute of Technology, Hoboken NJ, USA
- Department of Geosciences, University of Padova, Padova, Italy
| | | | - Wen Song
- Hildebrand Department of Petroleum and Geosystems Engineering, University of Texas at Austin, Austin TX, USA
| | - Sibani Lisa Biswal
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, USA
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto ON, Canada.
| |
Collapse
|
3
|
Verburg T, Schaap A, Zhang S, den Toonder J, Wang Y. Enhancement of microalgae growth using magnetic artificial cilia. Biotechnol Bioeng 2021; 118:2472-2481. [PMID: 33738795 PMCID: PMC8251745 DOI: 10.1002/bit.27756] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/10/2021] [Accepted: 03/16/2021] [Indexed: 12/18/2022]
Abstract
Microalgae have shown great potential as a source of biofuels, food, and other bioproducts. More recently, microfluidic devices have been employed in microalgae-related studies. However, at small fluid volumes, the options for controlling flow conditions are more limited and mixing becomes largely reliant on diffusion. In this study, we fabricated magnetic artificial cilia (MAC) and implemented them in millimeter scale culture wells and conducted growth experiments with Scenedesmus subspicatus while actuating the MAC in a rotating magnetic field to create flow and mixing. In addition, surface of MAC was made hydrophilic using plasma treatment and its effect on growth was compared with untreated, hydrophobic MAC. The experiments showed that the growth was enhanced by ten and two times with hydrophobic and hydrophilic MAC, respectively, compared with control groups which contain no MAC. This technique can be used to investigate mixing and flow in small sample volumes, and the enhancement in growth can be beneficial for the throughput of screening studies. Moreover, the methods used for creating and controlling MAC can be easily adopted in labs without microfabrication infrastructures, and they can be mastered by people with little prior experience in microfluidics.
Collapse
Affiliation(s)
- Thijn Verburg
- Eindhoven University of Technology, Eindhoven, The Netherlands
| | | | - Shuaizhong Zhang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Jaap den Toonder
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| | - Ye Wang
- Eindhoven University of Technology, Eindhoven, The Netherlands.,Institute of Complex Molecular Systems, Eindhoven University of Technology, Eindhoven, The Netherlands
| |
Collapse
|
4
|
Public-Health-Driven Microfluidic Technologies: From Separation to Detection. MICROMACHINES 2021; 12:mi12040391. [PMID: 33918189 PMCID: PMC8066776 DOI: 10.3390/mi12040391] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/28/2021] [Revised: 03/25/2021] [Accepted: 03/26/2021] [Indexed: 02/07/2023]
Abstract
Separation and detection are ubiquitous in our daily life and they are two of the most important steps toward practical biomedical diagnostics and industrial applications. A deep understanding of working principles and examples of separation and detection enables a plethora of applications from blood test and air/water quality monitoring to food safety and biosecurity; none of which are irrelevant to public health. Microfluidics can separate and detect various particles/aerosols as well as cells/viruses in a cost-effective and easy-to-operate manner. There are a number of papers reviewing microfluidic separation and detection, but to the best of our knowledge, the two topics are normally reviewed separately. In fact, these two themes are closely related with each other from the perspectives of public health: understanding separation or sorting technique will lead to the development of new detection methods, thereby providing new paths to guide the separation routes. Therefore, the purpose of this review paper is two-fold: reporting the latest developments in the application of microfluidics for separation and outlining the emerging research in microfluidic detection. The dominating microfluidics-based passive separation methods and detection methods are discussed, along with the future perspectives and challenges being discussed. Our work inspires novel development of separation and detection methods for the benefits of public health.
Collapse
|
5
|
Laamanen C, Desjardins S, Senhorinho G, Scott J. Harvesting microalgae for health beneficial dietary supplements. ALGAL RES 2021. [DOI: 10.1016/j.algal.2021.102189] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/19/2023]
|
6
|
Effect of pluronic block polymers and N-acetylcysteine culture media additives on growth rate and fatty acid composition of six marine microalgae species. Appl Microbiol Biotechnol 2021; 105:2139-2156. [PMID: 33576880 PMCID: PMC7907027 DOI: 10.1007/s00253-021-11147-8] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 01/19/2021] [Accepted: 01/26/2021] [Indexed: 11/13/2022]
Abstract
Abstract The efficiency of microalgal biomass production is a determining factor for the economic competitiveness of microalgae-based industries. N-acetylcysteine (NAC) and pluronic block polymers are two compounds of interest as novel culture media constituents because of their respective protective properties against oxidative stress and shear-stress-induced cell damage. Here we quantify the effect of NAC and two pluronic (F127 and F68) culture media additives upon the culture productivity of six marine microalgal species of relevance to the aquaculture industry (four diatoms-Chaetoceros calcitrans, Chaetoceros muelleri, Skeletonema costatum, and Thalassiosira pseudonana; two haptophytes-Tisochrysis lutea and Pavlova salina). Algal culture performance in response to the addition of NAC and pluronic, singly or combined, is dosage- and species-dependent. Combined NAC and pluronic F127 algal culture media additives resulted in specific growth rate increases of 38%, 16%, and 24% for C. calcitrans, C. muelleri, and P. salina, respectively. Enhanced culture productivity for strains belonging to the genus Chaetoceros was paired with an ~27% increase in stationary-phase cell density. For some of the species examined, culture media enrichments with NAC and pluronic resulted in increased omega-3-fatty acid content of the algal biomass. Larval development (i.e., growth and survival) of the Pacific oyster (Crassostrea gigas) was not changed when fed a mixture of microalgae grown in NAC- and F127-supplemented culture medium. Based upon these results, we propose that culture media enrichment with NAC and pluronic F127 is an effective and easily adopted approach to increase algal productivity and enhance the nutritional quality of marine microalgal strains commonly cultured for live-feed applications in aquaculture. Key points • Single and combined NAC and pluronic F127 culture media supplementation significantly enhanced the productivity of Chaetoceros calcitrans and Chaetoceros muelleri cultures. • Culture media enrichments with NAC and F127 can increase omega-3-fatty acid content of algal biomass. • Microalgae grown in NAC- and pluronic F127-supplemented culture media are suitable for live-feed applications. Supplementary Information The online version contains supplementary material available at 10.1007/s00253-021-11147-8.
Collapse
|
7
|
Ozdalgic B, Ustun M, Dabbagh SR, Haznedaroglu BZ, Kiraz A, Tasoglu S. Microfluidics for microalgal biotechnology. Biotechnol Bioeng 2021; 118:1545-1563. [PMID: 33410126 DOI: 10.1002/bit.27669] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/16/2020] [Revised: 01/01/2021] [Accepted: 01/02/2021] [Indexed: 01/09/2023]
Abstract
Microalgae have expanded their roles as renewable and sustainable feedstocks for biofuel, smart nutrition, biopharmaceutical, cosmeceutical, biosensing, and space technologies. They accumulate valuable biochemical compounds from protein, carbohydrate, and lipid groups, including pigments and carotenoids. Microalgal biomass, which can be adopted for multivalorization under biorefinery settings, allows not only the production of various biofuels but also other value-added biotechnological products. However, state-of-the-art technologies are required to optimize yield, quality, and the economical aspects of both upstream and downstream processes. As such, the need to use microfluidic-based devices for both fundamental research and industrial applications of microalgae, arises due to their microscale sizes and dilute cultures. Microfluidics-based devices are superior to their competitors through their ability to perform multiple functions such as sorting and analyzing small amounts of samples (nanoliter to picoliter) with higher sensitivities. Here, we review emerging applications of microfluidic technologies on microalgal processes in cell sorting, cultivation, harvesting, and applications in biofuels, biosensing, drug delivery, and nutrition.
Collapse
Affiliation(s)
- Berin Ozdalgic
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey.,Department of Medical Services and Techniques, Advanced Vocational School, Dogus University, Istanbul, Turkey
| | - Merve Ustun
- Graduate School of Sciences and Engineering, Koc University, Sariyer, Istanbul, Turkey
| | - Sajjad Rahmani Dabbagh
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey
| | - Berat Z Haznedaroglu
- Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Institute of Environmental Sciences, Bogazici University, Bebek, Istanbul, Turkey
| | - Alper Kiraz
- Department of Physics, Koc University, Sariyer, Istanbul, Turkey.,Department of Electrical Engineering, Koc University, Sariyer, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey
| | - Savas Tasoglu
- Department of Mechanical Engineering, Engineering Faculty, Koc University, Sariyer, Istanbul, Turkey.,Koc University Arcelik Research Center for Creative Industries (KUAR), Koc University, Sariyer, Istanbul, Turkey.,Center for Life Sciences and Technologies, Bogazici University, Bebek, Istanbul, Turkey.,Koc University Research Center for Translational Medicine, Koc University, Sariyer, Istanbul, Turkey.,Institute of Biomedical Engineering, Bogazici University, Cengelkoy, Istanbul, Turkey
| |
Collapse
|
8
|
Mossige EJ, Jensen A. Clog-Free Trilobite Filtration: Tunable Flow Setup and Velocity Measurements. MICROMACHINES 2020; 11:mi11100904. [PMID: 33003618 PMCID: PMC7600505 DOI: 10.3390/mi11100904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 09/24/2020] [Accepted: 09/25/2020] [Indexed: 11/16/2022]
Abstract
The ability to separate and filter out microscopic objects lies at the core of many biomedical applications. However, a persistent problem is clogging, as biomaterials stick to the internal chip surface and limit device efficiency and liability. Here, we review an alternative technique that could solve these clogging issues. By leveraging tunable flow fields and particle inertia around special trilobite-shaped filtration units, we perform filtration of plastic beads by size and we demonstrate sorting of live cells. The separation and filtration are performed completely without signs of clogging. However, a clog-free operation relies on a controlled flow configuration to steer the particles and cells away from the filter structures. In this paper, we describe the tunable flow system for such an operation and we describe an optical setup enabling hydrodynamical interactions between particles and cells with the flow fields and direct interactions with the filter structures to be characterized. The optical setup is capable of measuring particle and flow velocities (by Particle Tracking Velocimetry (PTV), Micro Particle Image Velocimetry (μPIV), and streakline visualization) in meters per second necessary to avoid clogging. However, accurate measurements rely on strict calibration and validation procedures to be followed, and we devote a substantial portion of our paper to laying out such procedures. A comparison between μPIV data and a known flow profile is particularly valuable for assessing measurement accuracy, and this important validation has not been previously published by us. The detail level in our description of the flow configuration and optical system is sufficient to replicate the experiments. In the last part of the paper, we review an assessment of the device performance when handling rigid spheres and live cells. We deconvolute the influences of cell shape from effects of size and find that the shape has only a weak influence on device performance.
Collapse
|
9
|
Korensky G, Chen X, Bao M, Miller A, Lapizco‐Encinas B, Park M, Du K. Single
Chlamydomonas reinhardtii
cell separation from bacterial cells and auto‐fluorescence tracking with a nanosieve device. Electrophoresis 2020. [DOI: 10.1002/elps.202000146] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/08/2022]
Affiliation(s)
- Grant Korensky
- Department of Mechanical Engineering Rochester Institute of Technology Rochester NY USA
| | - Xinye Chen
- Department of Mechanical Engineering Rochester Institute of Technology Rochester NY USA
- Department of Microsystems Engineering Rochester Institute of Technology Rochester NY USA
| | - Mengdi Bao
- Department of Mechanical Engineering Rochester Institute of Technology Rochester NY USA
| | - Abbi Miller
- Department of Biomedical Engineering Rochester Institute of Technology Rochester NY USA
| | | | - Myeongkee Park
- Department of Chemistry Dong‐A University Busan Republic of Korea
| | - Ke Du
- Department of Mechanical Engineering Rochester Institute of Technology Rochester NY USA
- Department of Microsystems Engineering Rochester Institute of Technology Rochester NY USA
- School of Chemistry and Materials Science Rochester Institute of Technology Rochester NY USA
| |
Collapse
|
10
|
Yuan D, Zhao Q, Yan S, Tang SY, Zhang Y, Yun G, Nguyen NT, Zhang J, Li M, Li W. Sheathless separation of microalgae from bacteria using a simple straight channel based on viscoelastic microfluidics. LAB ON A CHIP 2019; 19:2811-2821. [PMID: 31312819 DOI: 10.1039/c9lc00482c] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Microalgae cells have been recognized as a promising sustainable resource to meet worldwide growing demands for renewable energy, food, livestock feed, water, cosmetics, pharmaceuticals, and materials. In order to ensure high-efficiency and high-quality production of biomass, biofuel, or bio-based products, purification procedures prior to the storage and cultivation of the microalgae from contaminated bacteria are of great importance. The present work proposed and developed a simple, sheathless, and efficient method to separate microalgae Chlorella from bacteria Bacillus Subtilis in a straight channel using the viscoelasticity of the medium. Microalgae and bacteria migrate to different lateral positions closer to the channel centre and channel walls respectively. Fluorescent microparticles with 1 μm and 5 μm diameters were first used to mimic the behaviours of bacteria and microalgae to optimize the separating conditions. Subsequently, size-based separation in Newtonian fluid and in viscoelastic fluid in straight channels with different aspect ratios was compared and demonstrated. Under the optimal condition, the removal ratio for 1 μm microparticles and separation efficiency for 5 μm particles can reach up to 98.28% and 93.85% respectively. For bacteria and microalgae cells separation, the removal ratio for bacteria and separation efficiency for microalgae cells is 92.69% and 100% respectively. This work demonstrated the continuous and sheathless separation of microalgae from bacteria for the first time by viscoelastic microfluidics. This technique can also be applied as an efficient and user-friendly method to separate mammalian cells or other kinds of cells.
Collapse
Affiliation(s)
- Dan Yuan
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia. and Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Qianbin Zhao
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Sheng Yan
- Department of Chemistry, University of Tokyo, Tokyo, Japan
| | - Shi-Yang Tang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Yuxin Zhang
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Guolin Yun
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| | - Nam-Trung Nguyen
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Jun Zhang
- Queensland Micro and Nanotechnology Centre, Griffith University, Brisbane, QLD 4111, Australia.
| | - Ming Li
- School of Engineering, Macquarie University, Sydney, NSW 2122, Australia.
| | - Weihua Li
- School of Mechanical, Materials, Mechatronic and Biomedical Engineering, University of Wollongong, Wollongong, NSW 2522, Australia.
| |
Collapse
|
11
|
Girault M, Beneyton T, Del Amo Y, Baret JC. Microfluidic technology for plankton research. Curr Opin Biotechnol 2018; 55:134-150. [PMID: 30326407 PMCID: PMC6378650 DOI: 10.1016/j.copbio.2018.09.010] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2018] [Revised: 09/19/2018] [Accepted: 09/20/2018] [Indexed: 02/06/2023]
Abstract
Plankton produces numerous chemical compounds used in cosmetics and functional foods. They also play a key role in the carbon budget on the Earth. In a context of global change, it becomes important to understand the physiological response of these microorganisms to changing environmental conditions. Their adaptations and the response to specific environmental conditions are often restricted to a few active cells or individuals in large populations. Using analytical capabilities at the subnanoliter scale, microfluidic technology has also demonstrated a high potential in biological assays. Here, we review recent advances in microfluidic technologies to overcome the current challenges in high content analysis both at population and the single cell level.
Collapse
Affiliation(s)
- Mathias Girault
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Thomas Beneyton
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France
| | - Yolanda Del Amo
- Université de Bordeaux - OASU, UMR CNRS 5805 EPOC (Environnements et Paléoenvironnements Océaniques et Continentaux), Station Marine d'Arcachon, 33120 Arcachon, France
| | - Jean-Christophe Baret
- Centre de Recherche Paul Pascal, Unité Mixte de Recherche 5031, Université de Bordeaux, Centre National de la Recherche Scientifique, 33600 Pessac, France.
| |
Collapse
|
12
|
Syed MS, Rafeie M, Vandamme D, Asadnia M, Henderson R, Taylor RA, Warkiani ME. Selective separation of microalgae cells using inertial microfluidics. BIORESOURCE TECHNOLOGY 2018; 252:91-99. [PMID: 29306136 DOI: 10.1016/j.biortech.2017.12.065] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/23/2017] [Revised: 12/19/2017] [Accepted: 12/20/2017] [Indexed: 05/08/2023]
Abstract
Microalgae represent the most promising new source of biomass for the world's growing demands. However, the biomass productivity and quality is significantly decreased by the presence of bacteria or other invading microalgae species in the cultures. We therefore report a low-cost spiral-microchannel that can effectively separate and purify Tetraselmis suecica (lipid-rich microalgae) cultures from Phaeodactylum tricornutum (invasive diatom). Fluorescent polystyrene-microbeads of 6 μm and 10 μm diameters were first used as surrogate particles to optimize the microchannel design by mimicking the microalgae cell behaviour. Using the optimum flowrate, up to 95% of the P. tricornutum cells were separated from the culture without affecting the cell viability. This study shows, for the first time, the potential of inertial microfluidics to sort microalgae species with minimal size difference. Additionally, this approach can also be applied as a pre-sorting technique for water quality analysis.
Collapse
Affiliation(s)
- Maira S Syed
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Australia; Biomass Lab, School of Chemical Engineering, University of New South Wales, Australia.
| | - Mehdi Rafeie
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Australia
| | - Dries Vandamme
- Biomass Lab, School of Chemical Engineering, University of New South Wales, Australia; Laboratory for Aquatic Biology, KU Leuven, Campus Kulak, Belgium
| | - Mohsen Asadnia
- Department of Engineering, Macquarie University, Sydney, New South Wales, Australia
| | - Rita Henderson
- Biomass Lab, School of Chemical Engineering, University of New South Wales, Australia
| | - Robert A Taylor
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Australia; School of Photovoltaic and Renewable Energy Engineering, University of New South Wales, Australia
| | - Majid E Warkiani
- School of Biomedical Engineering, University of Technology Sydney, Australia; Center for Health Technologies, University of Technology Sydney, Australia.
| |
Collapse
|
13
|
|
14
|
Wang J, Zhao J, Wang Y, Wang W, Gao Y, Xu R, Zhao W. A New Microfluidic Device for Classification of Microalgae Cells Based on Simultaneous Analysis of Chlorophyll Fluorescence, Side Light Scattering, Resistance Pulse Sensing. MICROMACHINES 2016; 7:mi7110198. [PMID: 30404370 PMCID: PMC6190122 DOI: 10.3390/mi7110198] [Citation(s) in RCA: 14] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/29/2016] [Revised: 10/27/2016] [Accepted: 10/28/2016] [Indexed: 01/09/2023]
Abstract
Fast on-site monitoring of foreign microalgae species carried by ship ballast water has drawn more and more attention. In this paper, we presented a new method and a compact device of classification of microalgae cells by simultaneous detection of three kinds of signals of single microalgae cells in a disposable microfluidic chip. The microfluidic classification device has advantages of fast detection, low cost, and portability. The species of a single microalgae cell can be identified by simultaneous detection of three signals of chlorophyll fluorescence (CF), side light scattering (SLS), and resistance pulse sensing (RPS) of the microalgae cell. These three signals represent the different characteristics of a microalgae cell. A compact device was designed to detect these three signals of a microalgae cell simultaneously. In order to demonstrate the performance of the developed system, the comparison experiments of the mixed samples of three different species of microalgae cells between the developed system and a commercial flow cytometer were conducted. The results show that three kinds of microalgae cells can be distinguished clearly by our developed system and the commercial flow cytometer and both results have good agreement.
Collapse
Affiliation(s)
- Junsheng Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
- Collaborative Innovation Center for Vessel Pollution Monitoring and Control, Dalian Maritime University, Dalian 116026, China.
| | - Jinsong Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yanjuan Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wei Wang
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Yushu Gao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Runze Xu
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| | - Wenshuang Zhao
- College of Information and Science Technology, Dalian Maritime University, Dalian 116026, China.
| |
Collapse
|
15
|
Karle M, Vashist SK, Zengerle R, von Stetten F. Microfluidic solutions enabling continuous processing and monitoring of biological samples: A review. Anal Chim Acta 2016; 929:1-22. [DOI: 10.1016/j.aca.2016.04.055] [Citation(s) in RCA: 54] [Impact Index Per Article: 6.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2015] [Revised: 04/26/2016] [Accepted: 04/30/2016] [Indexed: 01/25/2023]
|