1
|
Liu Y, Zhang C, Zeng AP. Advances in biosynthesis and downstream processing of diols. Biotechnol Adv 2024; 77:108455. [PMID: 39306147 DOI: 10.1016/j.biotechadv.2024.108455] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 08/27/2024] [Accepted: 08/29/2024] [Indexed: 09/30/2024]
Abstract
Diols are important platform chemicals with a wide range of applications in the fields of chemical and pharmaceutical industries, food, feed and cosmetics. In particular, 1,3-propanediol (PDO), 1,4-butanediol (1,4-BDO) and 1,3-butanediol (1,3-BDO) are appealing monomers for producing industrially important polymers and plastics. Therefore, the commercialization of bio-based diols is highly important for supporting the growth of biomanufacturing for the fiber industry. This review focuses primarily on the microbial production of PDO, 1,4-BDO and 1,3-BDO with respect to different microbial strains and biological routes. In addition, metabolic platforms which are designed to produce various diols using generic bioconversion strategies are reviewed for the first time. Finally, we also summarize and discuss recent developments in the downstream processing of PDO according to their advantages and drawbacks, which is taken as an example to present the prospects and challenges for industrial separation and purification of diols from microbial fermentation broth.
Collapse
Affiliation(s)
- Yongfei Liu
- Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China; School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Hangzhou 310030, Zhejiang, China; Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, 310030, Zhejiang Province, China
| | - Chijian Zhang
- Guangdong C1 Life Biotech Co., Ltd., Guangzhou 510630, Guangdong, China.; Hua An Tang Biotech Group Co. Ltd., GuangZhou 510630, Guangdong, China
| | - An-Ping Zeng
- Center for Synthetic Biology and Integrated Bioengineering, Westlake University, Hangzhou 310030, Zhejiang, China; School of Engineering, Westlake University, Hangzhou 310030, Zhejiang, China; Zhejiang Provincial Key Laboratory of Intelligent Low-Carbon Biosynthesis, Hangzhou 310030, Zhejiang, China; Research Center for Industries of the Future, Westlake University, No. 600 Dunyu Road, 310030, Zhejiang Province, China.
| |
Collapse
|
2
|
Wang XL, Zhou JJ, Liu S, Sun YQ, Xiu ZL. In situ carbon dioxide capture to co-produce 1,3-propanediol, biohydrogen and micro-nano calcium carbonate from crude glycerol by Clostridium butyricum. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:91. [PMID: 36057610 PMCID: PMC9440576 DOI: 10.1186/s13068-022-02190-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Accepted: 08/26/2022] [Indexed: 11/30/2022]
Abstract
Background Climate change caused by greenhouse gas emission has become a global hot topic. Although biotechnology is considered as an environmentally friendly method to produce chemicals, almost all biochemicals face carbon dioxide emission from inevitable respiration and energy metabolism of most microorganisms. To cater for the broad prospect of biochemicals, bioprocess optimization of diverse valuable products is becoming increasingly important for environmental sustainability and cleaner production. Based on Ca(OH)2 as a CO2 capture agent and pH regulator, a bioprocess was proposed for co-production of 1,3-propanediol (1,3-PDO), biohydrogen and micro-nano CaCO3 by Clostridium butyricum DL07. Results In fed-batch fermentation, the maximum concentration of 1,3-PDO reached up to 88.6 g/L with an overall productivity of 5.54 g/L/h. This productivity is 31.9% higher than the highest value previously reports (4.20 g/L/h). In addition, the ratio of H2 to CO2 in exhaust gas showed a remarkable 152-fold increase in the 5 M Ca(OH)2 group compared to 5 M NaOH as the CO2 capture agent. Green hydrogen in exhaust gas ranged between 17.2% and 20.2%, with the remainder being N2 with negligible CO2 emissions. During CO2 capture in situ, micro-nano calcite particles of CaCO3 with sizes in the range of 300 nm to 20 µm were formed simultaneously. Moreover, when compared with 5M NaOH group, the concentrations of soluble salts and proteins in the fermentation broth of 5 M Ca(OH)2 group were notably reduced by 53.6% and 44.1%, respectively. The remarkable reduction of soluble salts and proteins would contribute to the separation of 1,3-PDO. Conclusions Ca(OH)2 was used as a CO2 capture agent and pH regulator in this study to promote the production of 1,3-PDO. Meanwhile, micro-nano CaCO3 and green H2 were co-produced. In addition, the soluble salts and proteins in the fermentation broth were significantly reduced. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02190-2.
Collapse
|
3
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
4
|
Gupta P, Kumar M, Gupta RP, Puri SK, Ramakumar SSV. Fermentative reforming of crude glycerol to 1,3-propanediol using Clostridium butyricum strain L4. CHEMOSPHERE 2022; 292:133426. [PMID: 34971623 DOI: 10.1016/j.chemosphere.2021.133426] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Revised: 12/20/2021] [Accepted: 12/22/2021] [Indexed: 06/14/2023]
Abstract
Repurposed used cooking oil is a sustainable alternative to other feedstocks for biodiesel production offering enviro-economic benefits. Residual crude glycerol (RCG) from such biodiesel production plants is difficult to utilize due to presence of numerous toxic impurities with various inhibitory effects on biological fermentative reforming process. However, it is a new industrial feedstock for bio-based production of 1,3-propanediol. In this work, a new Clostridium butyricum strain L4 was isolated from biogas reactor leachate after rigorous adaption and 35 subcultures under increasing stress conditions and studied for green production of 1,3-propanediol (PDO) from RCG and further process development. Evaluation of fermentative reforming kinetics was performed and the optimal reaction conditions are pH 7.0, temperature 30 °C, 2 g yeast extract/L and 15 g ammonium sulphate/L. Glycerol-glucose co-fermentation (10:1) enhanced cell growth and thus, PDO output by 11.6 g/L. In comparison to batch fermentation (24.8 g PDO/L; 0.58 mol PDO/mol glycerol) there was 2.8-fold improvement with fed-batch process resulting in accumulation of 70.1 g PDO/L (Yield = 0.65 mol PDO/mol glycerol) using the studied biocatalyst in 150 h. In order to predict yields under different operational conditions a multiple linear regression model was developed (r2 = 0.783) with six independent variables (p < 0.05), where biomass (g/L) and temperature (oC) were forecasted as top contributors to PDO yield. Finally, this biocatalyst appears as a potential candidate for industrial use due to its non-pathogenic nature, ability to grow in wide pH and temperature conditions, tolerance to high substrate and product concentration, insignificant generation of by-products and Coenzyme B12 independent biotransformation. The study can add value to bio-utilization of RCG to produce green 1,3-propanediol.
Collapse
Affiliation(s)
- Pragya Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| | - Manoj Kumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad, 121007, Haryana, India.
| | - Ravi Prakash Gupta
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| | - Suresh Kumar Puri
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| | - S S V Ramakumar
- Indian Oil Corporation Limited, R&D Centre, Sector 13, Faridabad, 121007, Haryana, India
| |
Collapse
|
5
|
Effect of Calcium Doping Using Aqueous Phase Reforming of Glycerol over Sonochemically Synthesized Nickel-Based Supported ZrO2 Catalyst. Catalysts 2021. [DOI: 10.3390/catal11080977] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022] Open
Abstract
The aqueous phase reforming (APR) of glycerol was studied using sonochemically synthesized 10%Ni-x%Ca/ZrO2 catalysts (where x = 0, 0.5, 3, and 5) for the production of value-added liquid products. The APR reaction was performed in a batch reactor under the following conditions: 20 bar, 230 °C 450 rpm, and 1 h of reaction time. The synthesized catalysts were characterized using XRD, FESEM, BET, and H2-TPR to observe the effect of Ca doping on the physio-chemical properties of the catalysts. The results revealed that, at higher Ca loading, the catalysts experienced serious particles’ agglomeration, which resulted in a larger particles’ size, smaller surface area, and smaller pore volume owing to uneven distribution of the particles. The characterization results of the catalysts confirmed that the Us catalysts have a slightly higher surface area, pore volume, and pore size, as well as highly reducible and fine crystalline structure, compared with WI catalysts. The catalytic performance of the catalysts shows that 1,3-propanediol (1,3-PDO) and 1,2-propanediol (1,2-PDO) were the two main liquid products produced from this reaction. The highest selectivity of 1,3-PDO (23.84%) was obtained over the 10%Ni/ZrO2 catalyst, while the highest selectivity of 1,2-PDO (25.87%) was obtained over the 10%Ni-5%Ca/ZrO2 catalyst.
Collapse
|
6
|
Mojarrad M, Tajima T, Hida A, Kato J. Psychrophile-based simple biocatalysts for effective coproduction of 3-hydroxypropionic acid and 1,3-propanediol. Biosci Biotechnol Biochem 2021; 85:728-738. [PMID: 33624773 DOI: 10.1093/bbb/zbaa081] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Accepted: 11/06/2020] [Indexed: 11/14/2022]
Abstract
3-Hydroxypropionic acid (3-HP) and 1,3-propanediol (1,3-PDO) have tremendous potential markets in many industries. This study evaluated the simultaneous biosynthesis of the 2 compounds using the new psychrophile-based simple biocatalyst (PSCat) reaction system. The PSCat method is based on the expression of glycerol dehydratase, 1,3-propanediol dehydrogenase, and aldehyde dehydrogenase from Klebsiella pneumoniae in Shewanella livingstonensis Ac10 and Shewanella frigidimarina DSM 12253, individually. Heat treatment at 45 °C for 15 min deactivated the intracellular metabolic flux, and the production process was started after adding substrate, cofactor, and coenzyme. In the solo production process after 1 h, the maximum production of 3-HP was 62.0 m m. For 1,3-PDO, the maximum production was 25.0 m m. In the simultaneous production process, productivity was boosted, and the production of 3-HP and 1,3-PDO increased by 13.5 and 4.9 m m, respectively. Hence, the feasibility of the individual production and the simultaneous biosynthesis system were verified in the new PSCat approach.
Collapse
Affiliation(s)
- Mohammad Mojarrad
- Department of Molecular Biotechnology, Graduate School of Advanced Sciences of Matter, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
| | - Takahisa Tajima
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
| | - Akiko Hida
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
| | - Junichi Kato
- Program of Biotechnology, Graduate School of Integrated Sciences for Life, Hiroshima University, 1-3-1 Kagamiyama, Higashi-Hiroshima, Hiroshima, 739-8530, Japan
| |
Collapse
|
7
|
Vivek N, Hazeena SH, Alphy MP, Kumar V, Magdouli S, Sindhu R, Pandey A, Binod P. Recent advances in microbial biosynthesis of C3 - C5 diols: Genetics and process engineering approaches. BIORESOURCE TECHNOLOGY 2021; 322:124527. [PMID: 33340948 DOI: 10.1016/j.biortech.2020.124527] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/01/2020] [Accepted: 12/05/2020] [Indexed: 05/22/2023]
Abstract
Diols derived from renewable feedstocks have significant commercial interest in polymer, pharmaceutical, cosmetics, flavors and fragrances, food and feed industries. In C3-C5 diols biological processes of 1,3-propanediol, 1,2-propanediol and 2,3-butanediol have been commercialized as other isomers are non-natural metabolites and lack natural biosynthetic pathways. However, the developments in the field of systems and synthetic biology paved a new path to learn, build, construct, and test for efficient chassis strains. The current review addresses the recent advancements in metabolic engineering, construction of novel pathways, process developments aimed at enhancing in production of C3-C5 diols. The requisites on developing an efficient and sustainable commercial bioprocess for C3-C5 diols were also discussed.
Collapse
Affiliation(s)
- Narisetty Vivek
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sulfath Hakkim Hazeena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Vinod Kumar
- Centre for Climate and Environmental Protection, School of Water, Energy and Environment, Cranfield University, Cranfield MK43 0AL, UK
| | - Sara Magdouli
- Centre technologique des résidus industriels, University of Quebec in Abitibi Témiscamingue, Quebec, Canada
| | - Raveendran Sindhu
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India
| | - Ashok Pandey
- Centre for Innovation and Translational Research CSIR-Indian Institute of Toxicology Research (CSIR-IITR), 31MG Marg, Lucknow 226 001, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Thiruvananthapuram 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
8
|
Acedos MG, de la Torre I, Santos VE, García-Ochoa F, García JL, Galán B. Modulating redox metabolism to improve isobutanol production in Shimwellia blattae. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:8. [PMID: 33407735 PMCID: PMC7789792 DOI: 10.1186/s13068-020-01862-1] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/07/2020] [Accepted: 12/17/2020] [Indexed: 05/04/2023]
Abstract
BACKGROUND Isobutanol is a candidate to replace gasoline from fossil resources. This higher alcohol can be produced from sugars using genetically modified microorganisms. Shimwellia blattae (p424IbPSO) is a robust strain resistant to high concentration of isobutanol that can achieve a high production rate of this alcohol. Nevertheless, this strain, like most strains developed for isobutanol production, has some limitations in its metabolic pathway. Isobutanol production under anaerobic conditions leads to a depletion of NADPH, which is necessary for two enzymes in the metabolic pathway. In this work, two independent approaches have been studied to mitigate the co-substrates imbalance: (i) using a NADH-dependent alcohol dehydrogenase to reduce the NADPH dependence of the pathway and (ii) using a transhydrogenase to increase NADPH level. RESULTS The addition of the NADH-dependent alcohol dehydrogenase from Lactococcus lactis (AdhA) to S. blattae (p424IbPSO) resulted in a 19.3% higher isobutanol production. The recombinant strain S. blattae (p424IbPSO, pIZpntAB) harboring the PntAB transhydrogenase produced 39.0% more isobutanol than the original strain, reaching 5.98 g L-1 of isobutanol. In both strains, we observed a significant decrease in the yields of by-products such as lactic acid or ethanol. CONCLUSIONS The isobutanol biosynthesis pathway in S. blattae (p424IbPSO) uses the endogenous NADPH-dependent alcohol dehydrogenase YqhD to complete the pathway. The addition of NADH-dependent AdhA leads to a reduction in the consumption of NADPH that is a bottleneck of the pathway. The higher consumption of NADH by AdhA reduces the availability of NADH required for the transformation of pyruvate into lactic acid and ethanol. On the other hand, the expression of PntAB from E. coli increases the availability of NADPH for IlvC and YqhD and at the same time reduces the availability of NADH and thus, the production of lactic acid and ethanol. In this work it is shown how the expression of AdhA and PntAB enzymes in Shimwellia blattae increases yield from 11.9% to 14.4% and 16.4%, respectively.
Collapse
Affiliation(s)
- Miguel G Acedos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Isabel de la Torre
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Victoria E Santos
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - Félix García-Ochoa
- Chemical and Materials Engineering Department, Chemical Sciences School, Universidad Complutense de Madrid, 28040, Madrid, Spain
| | - José L García
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain
| | - Beatriz Galán
- Department of Microbial and Plant Biotechnology, Centro de Investigaciones Biológicas, CSIC, 28040, Madrid, Spain.
| |
Collapse
|
9
|
Garcia-Ochoa F, Gomez E, Santos VE. Fluid dynamic conditions and oxygen availability effects on microbial cultures in STBR: An overview. Biochem Eng J 2020. [DOI: 10.1016/j.bej.2020.107803] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
10
|
Zhang AH, Zhuang XY, Chen KN, Huang SY, Xu CZ, Fang BS. Adaptive evolution of Clostridium butyricum
and scale-Up for high-Concentration 1,3-propanediol production. AIChE J 2018. [DOI: 10.1002/aic.16425] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/07/2022]
Affiliation(s)
- Ai-Hui Zhang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Xiao-Yan Zhuang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Kai-Nan Chen
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Shi-Yang Huang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Chao-Zhen Xu
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
| | - Bai-Shan Fang
- Dept. of Chemical and Biochemical Engineering; College of Chemistry and Chemical Engineering, Xiamen University; Xiamen Fujian 361005 China
- The Key Lab for Synthetic Biotechnology of Xiamen City; Xiamen University; Xiamen Fujian 361005 China
- The National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Esters; Xiamen University; Xiamen Fujian 361005 China
| |
Collapse
|
11
|
Pradima J, Kulkarni MR, Archna. Review on enzymatic synthesis of value added products of glycerol, a by-product derived from biodiesel production. RESOURCE-EFFICIENT TECHNOLOGIES 2017. [DOI: 10.1016/j.reffit.2017.02.009] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
12
|
Narisetty V, Astray G, Gullón B, Castro E, Parameswaran B, Pandey A. Improved 1,3-propanediol production with maintained physical conditions and optimized media composition: Validation with statistical and neural approach. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2017.07.003] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
13
|
Guo Y, Dai L, Xin B, Tao F, Tang H, Shen Y, Xu P. 1,3-Propanediol production by a newly isolated strain, Clostridium perfringens GYL. BIORESOURCE TECHNOLOGY 2017; 233:406-412. [PMID: 28315821 DOI: 10.1016/j.biortech.2017.02.116] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2016] [Revised: 02/23/2017] [Accepted: 02/24/2017] [Indexed: 06/06/2023]
Abstract
1,3-Propanediol (1,3-PD), a valuable bulk industrial material, has attracted increasing interest in recent years. A novel strain GYL isolated from soil samples could efficiently convert glycerol to 1,3-PD anaerobically. The physiological and biochemical characteristics of strain GYL were determined, indicating that strain GYL is a member of Clostridium perfringens with the neighbor-joining method of 16S rRNA gene sequences. The fermentation properties of strain GYL were also investigated systematically, which showed that the strain has a fast growth speed and high tolerance to 200g/L glycerol. Batch fermentation was carried out at a high glycerol concentration of 100g/L, and strain GYL produced 36.7g/L 1,3-PD. In fed-batch fermentation, strain GYL showed a maximum productivity of 2.0g/(L·h), and produced 40.0g/L 1,3-PD, with a high yield of 0.68mol 1,3-PD/mol glycerol. This study shows that the newly isolated strain GYL may have potential for 1,3-PD production from glycerol.
Collapse
Affiliation(s)
- Yali Guo
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Lu Dai
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Bo Xin
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Fei Tao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China; State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People's Republic of China.
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China
| | - Yaling Shen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai 200240, People's Republic of China; Shanghai Collaborative Innovation Center for Biomanufacturing, East China University of Science and Technology, Shanghai 200237, People's Republic of China
| |
Collapse
|
14
|
Jiang LL, Zhou JJ, Quan CS, Xiu ZL. Advances in industrial microbiome based on microbial consortium for biorefinery. BIORESOUR BIOPROCESS 2017; 4:11. [PMID: 28251041 PMCID: PMC5306255 DOI: 10.1186/s40643-017-0141-0] [Citation(s) in RCA: 36] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2016] [Revised: 01/13/2017] [Accepted: 01/29/2017] [Indexed: 01/09/2023] Open
Abstract
One of the important targets of industrial biotechnology is using cheap biomass resources. The traditional strategy is microbial fermentations with single strain. However, cheap biomass normally contains so complex compositions and impurities that it is very difficult for single microorganism to utilize availably. In order to completely utilize the substrates and produce multiple products in one process, industrial microbiome based on microbial consortium draws more and more attention. In this review, we first briefly described some examples of existing industrial bioprocesses involving microbial consortia. Comparison of 1,3-propanediol production by mixed and pure cultures were then introduced, and interaction relationships between cells in microbial consortium were summarized. Finally, the outlook on how to design and apply microbial consortium in the future was also proposed.
Collapse
Affiliation(s)
- Li-Li Jiang
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Jin-Jie Zhou
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| | - Chun-Shan Quan
- Key Laboratory of Biotechnology and Bioresources Utilization, College of Life Science, Dalian Minzu University, Liaohe West Road 18, Jinzhou New District, Dalian, 116600 Liaoning Province China
| | - Zhi-Long Xiu
- School of Life Science and Biotechnology, Dalian University of Technology, Linggong Road 2, Dalian, 116024 Liaoning Province China
| |
Collapse
|
15
|
Jiang L, Liu H, Mu Y, Sun Y, Xiu Z. High tolerance to glycerol and high production of 1,3-propanediol in batch fermentations by microbial consortium from marine sludge. Eng Life Sci 2017; 17:635-644. [PMID: 32624809 DOI: 10.1002/elsc.201600215] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2016] [Revised: 12/10/2016] [Accepted: 12/22/2016] [Indexed: 11/06/2022] Open
Abstract
1,3-Propanediol (1,3-PD) is a versatile bulk chemical and widely used as a monomer to synthesis polymers, such as polyesters, polyethers and polyurethanes. 1,3-PD can be produced by microbial fermentation with the advantages of the environmental protection and sustainable development. Low substrate tolerance and wide by-product profile limit microbial production of 1,3-PD by Klebsiella pneumonia on industrial scale. In this study, microbial consortia were investigated to overcome some disadvantages of pure fermentation by single strain. Microbial consortium named DL38 from marine sludge gave the best performance. Its bacterial community composition was analyzed by 16S rRNA gene amplicon high-throughput sequencing and showed that Enterobacteriaceae was the most abundant family. Compared with three K. pneumonia strains isolated from DL38, the microbial consortium could grow well at an initial glycerol concentration of 200 g/L to produce 81.40 g/L of 1,3-PD with a yield of 0.63 mol/mol. This initial glycerol concentration is twice the highest concentration by single isolated strain and more than the critical value (188 g/L) extrapolated from the fermentation kinetics for K. pneumonia. On the other hand, a small amount of by-products were produced in batch fermentation of microbial consortium DL38, especially no 2,3-butanediol detected. The mixed culture of strain W3, Y5 and Y1 improved the tolerance to glycerol and changed the metabolite profile of single strain W3. The batch fermentation with the natural proportion (W3: Y5: Y1 = 208: 82: 17) was superior to that with other proportions and single strain. This study showed that microbial consortium DL38 possessed excellent substrate tolerance, narrow by-product profile and attractive potential for industrial production of 1,3-PD.
Collapse
Affiliation(s)
- LiLi Jiang
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - HuiFang Liu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - Ying Mu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - YaQin Sun
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| | - ZhiLong Xiu
- School of Life Science and Biotechnology Dalian University of Technology Dalian China
| |
Collapse
|
16
|
Rodriguez A, Wojtusik M, Masca F, Santos VE, Garcia-Ochoa F. Kinetic modeling of 1,3-propanediol production from raw glycerol by Shimwellia blattae : Influence of the initial substrate concentration. Biochem Eng J 2017. [DOI: 10.1016/j.bej.2016.09.018] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2022]
|
17
|
Vivek N, Pandey A, Binod P. Biological valorization of pure and crude glycerol into 1,3-propanediol using a novel isolate Lactobacillus brevis N1E9.3.3. BIORESOURCE TECHNOLOGY 2016; 213:222-230. [PMID: 26920628 DOI: 10.1016/j.biortech.2016.02.020] [Citation(s) in RCA: 39] [Impact Index Per Article: 4.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2015] [Revised: 02/04/2016] [Accepted: 02/05/2016] [Indexed: 06/05/2023]
Abstract
The aim of the study was to evaluate a novel onsite enrichment approach to isolate a crude glycerol utilizing facultative anaerobic bacteria. An onsite enrichment in natural conditions resulted an isolate, Lactobacillus brevis N1E9.3.3, that can utilize glycerol and produce 1,3-propanediol with a yield of 0.89g1,3-PDO/gGlycerol and productivity of 0.78g1,3-PDO/l/h at pH-8.5 under anaerobic conditions. Batch fermentation experiments with glycerol-glucose co-fermentation strategy was carried out to evaluate the production of 1,3-propanediol and other byproducts. The effect of other carbon sources as co-substrate was also evaluated. At the optimized condition, 18.6g/l 1,3-propanediol was monitored when biodiesel industry generated crude glycerol and 2.5% glucose were used as the substrate.
Collapse
Affiliation(s)
- Narisetty Vivek
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), CSIR-NIIST, Thiruvananthapuram 695019, Kerala, India
| | - Ashok Pandey
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India
| | - Parameswaran Binod
- Biotechnology Division, CSIR-National Institute for Interdisciplinary Science and Technology, Thiruvananthapuram 695019, Kerala, India.
| |
Collapse
|
18
|
Zhu C, Fang B, Wang S. Effects of culture conditions on the kinetic behavior of 1,3-propanediol fermentation by Clostridium butyricum with a kinetic model. BIORESOURCE TECHNOLOGY 2016; 212:130-137. [PMID: 27089428 DOI: 10.1016/j.biortech.2016.04.028] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2016] [Revised: 04/05/2016] [Accepted: 04/06/2016] [Indexed: 06/05/2023]
Abstract
The effects of culture conditions on the kinetic behavior of 1,3-propanediol (PD) fermentation were investigated with a kinetic model. First, with initial glycerol concentration (S0) increasing, μmax and PD inhibition increased. Glycerol assimilation was harder and a little glycerol was consumed on cell maintenance at high S0. Second, with yeast extract concentration increasing, PD inhibition decreased. However, μmax decreased and glycerol assimilation became harder. It seems that the stimulus effect of yeast extract resulted from decreased PD inhibition. Glycerol amount consumed on cell maintenance also decreased. Third, with temperature decreasing, μmax and PD inhibition decreased. Glycerol assimilation was harder and a little more glycerol was consumed on cell maintenance at low temperature. Fourth, with pH increasing, μmax and PD inhibition decreased. Glycerol assimilation was harder and much more glycerol was consumed on cell maintenance at pH 6.5 and 7.5 than 7.0. This work facilitates further fermentation process optimization.
Collapse
Affiliation(s)
- Chunjie Zhu
- School of Biological and Chemical Engineering, Jiangsu Food and Pharmaceutical Science College, Huai'an, Jiangsu 223003, China
| | - Baishan Fang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian 361005, China; National Engineering Laboratory for Green Chemical Productions of Alcohols-Ethers-Ester, Xiamen University, Xiamen, Fujian 361005, China; The Key Laboratory for Chemical Biology of Fujian Province, Xiamen University, Xiamen, Fujian 361005, China.
| | - Shizhen Wang
- Department of Chemical and Biochemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, Fujian 361005, China; The Key Laboratory for Synthetic Biotechnology of Xiamen City, Xiamen University, Xiamen, Fujian 361005, China
| |
Collapse
|
19
|
Ripoll V, de Vicente G, Morán B, Rojas A, Segarra S, Montesinos A, Tortajada M, Ramón D, Ladero M, Santos VE. Novel biocatalysts for glycerol conversion into 2,3-butanediol. Process Biochem 2016. [DOI: 10.1016/j.procbio.2016.03.006] [Citation(s) in RCA: 22] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|