1
|
Liu J, Khan M, Liu F. Sustainable management of family life and finance in the context of digital capabilities - data flow dynamics. Heliyon 2024; 10:e36304. [PMID: 39678387 PMCID: PMC11639324 DOI: 10.1016/j.heliyon.2024.e36304] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2023] [Revised: 08/04/2024] [Accepted: 08/13/2024] [Indexed: 12/17/2024] Open
Abstract
In recent years, biorefining Municipal Solid Waste (MSW) has gained attention as a promising solution to the challenges of waste management and resource shortages, while also advancing sustainability goals. This research focuses on the European Union, analyzing the material flow and sustainability of biorefining systems and evaluating their impact on society, the economy, and the natural environment. The final products of the integrated material recovery processes, including recycling (18.3 %), heavy metals (3.6 %), fiber (1.4 %), hydrogen sulfate (7.4 %), recoverable water (14.8 %), fertilizer (8.4 %), and electric power (0.126 MWH/t MSW), are derived from the combined operations of material recovery facilities, pulverization, chemical conversion, wastewater treatment plants (WWTP), and combined heat and power (CHP) systems. The CHP system recovers energy from sources such as refuse-derived fuel (RDF), other disposable waste, charcoal, and natural gas produced by material recovery facilities, chemical conversion, and anaerobic digestion (AD) systems. Levulinic acid (LA), priced at 52 Euro/t, generates a profit of 220 Euro/t, excluding any subsidies. Potential reductions in carbon dioxide emissions are estimated at 2.5 and 1.4 kg CO2 equivalents per kilogram of levulinic acid (LA) and fertilizer, respectively, and 0.18 kg CO2 equivalents per megajoule of electrical power. This study underscores the importance of sustainable management practices in the context of digital capabilities, emphasizing the data flow dynamics essential for optimizing family life and finance in achieving sustainability.
Collapse
Affiliation(s)
- Jing Liu
- Changchun Finance College, Jilin Province Financial Security Research Center, Jilin Province, Changchun, 130000, China
| | - Maahi Khan
- Anhui University of Finance and Economics, China
| | - Fang Liu
- Anhui University of Finance and Economics, China
| |
Collapse
|
2
|
Ahmad W, Makkawi Y, Samara F. Co-Pyrolysis of Date Palm Waste and Salicornia Bigelovii: Insights for Bioenergy Development in Arid and Semi-Arid Regions. ACS OMEGA 2024; 9:24082-24094. [PMID: 38854508 PMCID: PMC11154716 DOI: 10.1021/acsomega.4c02972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 05/07/2024] [Accepted: 05/15/2024] [Indexed: 06/11/2024]
Abstract
Bioenergy is predicted to significantly contribute to the global energy needs of both developed and developing economies. Co-pyrolysis of halophytes offers a solution for a sustainable supply of feedstock in coastal and water-scarce regions. This novel research introduces an experimental investigation of co-pyrolysis of saline-tolerant flora (date palm waste and Salicornia bigelovii) to address sustainable waste management, bioenergy production, and efficient resource utilization in xeric regions. To examine the impact of the thermic condition on the pyrolysis products (bio-oil, biochar, and gas), the experiments have been conducted at three different temperatures (400, 500, and 600 °C). This pioneering study revealed that the co-feed bio-oil is acidic (pH 3.76-4.39) and has a high energy content (HHV 32.29-36.29 MJ/kg) that surpasses most woody biomass. The produced biochar was chemically stable, high in ash (40.09-47.62 wt %), high in fixed carbon (30.12-38.12 wt %), highly alkaline (pH 9.37-10.69), and low in HHV (16.30-17.2 MJ/kg). Increased pyrolysis temperature enhances biochar stability and fixed carbon, thus benefiting long-term carbon sequestration if applied in the soil. However, due to its high alkalinity, the application of this biochar in naturally alkaline sandy soils, such as in coastal deserts, requires careful monitoring. The hydrogen content in the gaseous phase significantly improves with rising temperature, reaching HHV = 24.12 MJ/kg at 600 °C, due to the enhanced ash catalytic effect. Overall, this study constitutes an important contribution to advancing bioenergy, sustainable feedstock, carbon capture, and waste management strategies in drought-prone areas.
Collapse
Affiliation(s)
- Waqas Ahmad
- Materials
Science and Engineering Program, College of Arts and Sciences, American University of Sharjah, 26666 Sharjah, UAE
- Bioenergy
and Solar Conversion Research Group (BSCRG), College of Engineering, American University of Sharjah, P.O. Box 26666 Sharjah, UAE
| | - Yassir Makkawi
- Bioenergy
and Solar Conversion Research Group (BSCRG), College of Engineering, American University of Sharjah, P.O. Box 26666 Sharjah, UAE
| | - Fatin Samara
- Department
of Biology, Chemistry and Environmental Science, American University of Sharjah, P.O.
Box 26666 Sharjah, UAE
| |
Collapse
|
3
|
Alharbi H, Hameed BH, Alotaibi KD, Aloud SS, Al-Modaihsh AS. Mesoporous Activated Carbon from Leaf Sheath Date Palm Fibers by Microwave-Assisted Phosphoric Acid Activation for Efficient Dye Adsorption. ACS OMEGA 2022; 7:46079-46089. [PMID: 36570315 PMCID: PMC9773966 DOI: 10.1021/acsomega.2c03755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2022] [Accepted: 11/22/2022] [Indexed: 06/17/2023]
Abstract
Remazol Brilliant Blue R (RBBR) is a common dye used in the industry, and its presence in wastewater and discharge into the environment can create a serious concern for the ecosystem and human health. Activated carbon produced from crop residues has emerged as a promising technique for removing contaminants from wastewater. In this study, leaf sheath date palm fiber-based activated carbon (LSDAC) was synthesized via phosphoric acid, H3PO4, treatment, followed by a microwave-induced carbonization process. The produced LSDAC was found to have a BET surface area of 604.61 m2/g, a Langmuir surface area of 922.05 m2/g, a total pore volume of 0.35 cm3/g, and an average pore size of 2.75 nm. The highest removal of RBBR was achieved at a solution pH of 3 (92.56 mg/g) and a solution temperature of 50 °C (90.37 mg/g). Adsorption of RBBR onto LSDAC followed the Langmuir isotherm model with a maximum monolayer capacity, Q m, of 243.43 mg/g, whereas in terms of kinetics, this adsorption system was best described by the pseudo-first-order (PFO) model. The calculated thermodynamic parameters ΔH°, ΔS°, ΔG°, and Arrhenius activation energy, E a, were 4.71 kJ/mol, 0.10 kJ/mol·K, -26.25 kJ/mol, and 5.88 kJ/mol, respectively, indicating that the adsorption of RBBR onto LSDAC was endothermic in nature, exhibited increased randomness at the solid-liquid interface, and was spontaneous and controlled by physisorption.
Collapse
Affiliation(s)
- Hattan
A. Alharbi
- Department
of Plant Protection, College of Food and Agriculture Sciences, King Saud University, P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Bassim H. Hameed
- Department
of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar
| | - Khaled D. Alotaibi
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Saud S. Aloud
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| | - Abdullah S. Al-Modaihsh
- Department
of Soil Science, College of Food and Agriculture Sciences, King Saud University,
P.O. Box 2460, Riyadh11451, Saudi Arabia
| |
Collapse
|
4
|
Abstract
Sustainable biofuel production is the most effective way to mitigate greenhouse gas emissions associated with fossil fuels while preserving food security and land use. In addition to producing bioenergy, waste biorefineries can be incorporated into the waste management system to solve the future challenges of waste disposal. Biomass waste, on the other hand, is regarded as a low-quality biorefinery feedstock with a wide range of compositions and seasonal variability. In light of these factors, biomass waste presents limitations on the conversion technologies available for value addition, and therefore more research is needed to enhance the profitability of waste biorefineries. Perhaps, to keep waste biorefineries economically and environmentally sustainable, bioprocesses need to be integrated to process a wide range of biomass resources and yield a diverse range of bioenergy products. To achieve optimal integration, the classification of biomass wastes to match the available bioprocesses is vital, as it minimizes unnecessary processes that may increase the production costs of the biorefinery. Based on biomass classification, this study discusses the suitability of the commonly used waste-to-energy conversion methods and the creation of integrated biorefineries. In this study, the integration of waste biorefineries is discussed through the integration of feedstocks, processes, platforms, and the symbiosis of wastes and byproducts. This review seeks to conceptualize a framework for identifying and integrating waste-to-energy technologies for the varioussets of biomass wastes.
Collapse
|
5
|
El Sheikha AF, Ray RC. Bioprocessing of Horticultural Wastes by Solid-State Fermentation into Value-Added/Innovative Bioproducts: A Review. FOOD REVIEWS INTERNATIONAL 2022. [DOI: 10.1080/87559129.2021.2004161] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/04/2022]
Affiliation(s)
- Aly Farag El Sheikha
- College of Bioscience and Bioengineering, Jiangxi Agricultural University, Nanchang, China
- Department of Biology, McMaster University, Hamilton, Ontario, Canada
- School of Nutrition Sciences, Faculty of Health Sciences, University of Ottawa, Canada
- Bioengineering and Technological Research Centre for Edible and Medicinal Fungi, Jiangxi Agricultural University, Nanchang, China
- Jiangxi Key Laboratory for Conservation and Utilization of Fungal Resources, Jiangxi Agricultural University, Nanchang, China
| | - Ramesh C. Ray
- ICAR-Central Tuber Crops Research Institute (Regional Centre), Bhubaneswar, India
- Centre for Food Biology & Environment Studies, Bhubaneswar, India
| |
Collapse
|
6
|
Dynamic model of simultaneous enzymatic cellulose hydrolysis and product separation in a membrane bioreactor. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108107] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
7
|
Process integration for recovering high added-value products from Genipa americana L.: Process optimization and economic evaluation. J Supercrit Fluids 2020. [DOI: 10.1016/j.supflu.2020.104897] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
8
|
Brown biotechnology: a powerful toolbox for resolving current and future challenges in the development of arid lands. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-2980-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022] Open
|
9
|
Chandrasekhar K, Kumar S, Lee BD, Kim SH. Waste based hydrogen production for circular bioeconomy: Current status and future directions. BIORESOURCE TECHNOLOGY 2020; 302:122920. [PMID: 32029301 DOI: 10.1016/j.biortech.2020.122920] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/24/2020] [Accepted: 01/25/2020] [Indexed: 05/08/2023]
Abstract
The present fossil fuel-based energy sector has led to significant industrial growth. On the other hand, the dependence on fossil fuels leads to adverse impact on the environment through releases of greenhouse gases. In this scenario, one possible substitute is biohydrogen, an eco-friendly energy carrier as high-energy produces. The substrates rich in organic compounds like organic waste/wastewater are very useful for improved hydrogen generation through the dark fermentation. Thus, this review article, initially, the status of biohydrogen production from organic waste and various strategies to enhance the process efficiency are concisely discussed. Then, the practical confines of biohydrogen processes are thoroughly discussed. Also, alternate routes such as multiple process integration approach by adopting biorefinery concept to increase overall process efficacy are considered to address industrial-level applications. To conclude, future perspectives besides with possible ways of transforming dark fermentation effluent to biofuels and biochemicals, which leads to circular bioeconomy, are discussed.
Collapse
Affiliation(s)
- K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Sunil Kumar
- CSIR-National Environmental Engineering Research Institute (NEERI), Nehru Marg, Nagpur 440 020, India
| | - Byung-Don Lee
- Institute of Chemical and Environmental Process, JEONJIN ENTECH,.LTD, Busan 46729, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
10
|
Srivastava V, Vaish B, Singh RP, Singh P. An insight to municipal solid waste management of Varanasi city, India, and appraisal of vermicomposting as its efficient management approach. ENVIRONMENTAL MONITORING AND ASSESSMENT 2020; 192:191. [PMID: 32080774 DOI: 10.1007/s10661-020-8135-3] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Accepted: 02/05/2020] [Indexed: 06/10/2023]
Abstract
Varanasi, India's historic cultural capital, struggles with efficient waste management practices. This impacts environment and human well-being in terms of waste generation that is estimated around 550-650 TPD with a generation rate of 0.42 kg capita-1 day-1 (n = 117). The present study aims to explore and characterize wastes, current practices, ecological profiling, and phytotoxicity of an abandoned open dumping site, and vermicomposting of organic fraction of municipal solid waste (OFMSW) as sustainable waste management approach. Compositional analysis of waste indicates organic fraction (46.13%) as a major component along with a considerable amount of heavy metals. The calorific value and moisture content of municipal solid waste (MSW) was 2351.4 cal g-1 and 34.72%, respectively. Ecological profiling of the dumping site revealed that floral diversity and ecological species/indicators were negatively affected. Likewise, phytotoxicity results displayed a negative impact on germination and physiology of maize (Zea mays L.) plants grown on dumping site soil. Vermistabilization of OFMSW showed a significant increase in N (56.10-89.48%), P (33.93-82.87%), and K (25.55-50.42%) and a decrease in total organic carbon (15.15-24.81%). Similarly, C/N and C/P ratios decreased by 1.89-2.51 and 1.72-2.18 folds, respectively. A survey of stakeholders suggested that open dumping was the main practice adopted by Varanasi Municipal Corporation (VMC) during 2013-2015. Recently (2017-2018), VMC adopted different methods, such as door-to-door collection and source segregation for effective waste management. Waste characteristics and nutrient profile of the vermicompost explains that vermicomposting could be used for efficient waste management in Varanasi, further reducing the collection, transportation, and disposal costs of waste, which enables to close the loop and move towards a circular economy. Moreover, implications of existing waste management practices and possible management options need to be addressed scientifically. Therefore, this research outcome will help in designing a successful waste management plan for Varanasi and other cities with similar waste characteristics.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Barkha Vaish
- Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India
| | - Rajeev Pratap Singh
- Department of Environment and Sustainable Development, Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, 221005, India.
| | - Pooja Singh
- Department of Science, Institute of Computer Science and Technology, SHEPA, Varanasi, India
| |
Collapse
|
11
|
Moreno AD, Susmozas A, Oliva JM, Negro MJ. Overview of bio-based industries. BIOBASED PRODUCTS AND INDUSTRIES 2020:1-40. [DOI: 10.1016/b978-0-12-818493-6.00001-4] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
|
12
|
Evaluation of Biogas Production from the Co-Digestion of Municipal Food Waste and Wastewater Sludge at Refugee Camps Using an Automated Methane Potential Test System. ENERGIES 2018. [DOI: 10.3390/en12010032] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
The potential benefits of the application of a circular economy—converting biomass at Za'atari Syrian refugee camps into energy—was investigated in this study. Representative organic waste and sludge samples were collected from the camp, mixed in different ratios, and analyzed in triplicate for potential biogas yield. Numerous calorific tests were also carried out. The tangential benefit of the co-digestion that was noticed was that it lowered the value of the total solid content in the mixture to the recommended values for wet digestion without the need for freshwater. To test the potential methane production, the automated methane potential test system (AMPTS) and the graduated tubes in the temperature-controlled climate room GB21 were utilized. Also, calorific values were determined for the organic waste and sludge on both a dry and a wet basis. The maximum biogas production from 100% organic waste and 100% sludge using AMPTS was 153 m3 ton-1 and 5.6 m3 ton-1, respectively. Methane yield reached its maximum at a Vs sub/ Vs inoculum range of 0.25–0.3. In contrast, the methane yield decreased when the Vs sub/ Vs inoculum exceeded 0.46. The optimum ratio of mixing of municipal food waste to sludge must be carefully selected to satisfy the demands of an energy production pilot plant and avoid the environmental issues associated with the sludge amount at wastewater treatment plants (WWTPs). A possible ratio to start with is 60–80% organic waste, which can produce 21–65 m3· biogas ton-1 fresh matter (FM). The co-digestion of organic waste and sludge can generate 38 Nm3/day of methane, which, in theory, can generate about 4 MW in remote refugee camps.
Collapse
|
13
|
Pyrolysis Kinetics of the Arid Land Biomass Halophyte Salicornia Bigelovii and Phoenix Dactylifera Using Thermogravimetric Analysis. ENERGIES 2018. [DOI: 10.3390/en11092283] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Biomass availability in arid regions is challenging due to limited arable land and lack of fresh water. In this study, we focus on pyrolysis of two biomasses that are typically abundant agricultural biomasses in arid regions, focusing on understanding the reaction rates and Arrhenius kinetic parameters that describe the pyrolysis reactions of halophyte Salicornia bigelovii, date palm (Phoenix dactylifera) and co-pyrolysis biomass using thermo-gravimetric analysis under non-isothermal conditions. The mass loss data obtained from thermogravimetric analysis of S. bigelovii and date palm revealed the reaction rate peaked between 592 K and 612 K for P. dactylifera leaves and 588 K and 609 K for S. bigelovii at heating rates, 5 K/min, 10 K/min and 15 K/min during the active pyrolysis phase. The activation energy for S. bigelovii and P. dactylifera leaves during this active pyrolysis phase were estimated using the Kissinger method as 147.6 KJ/mol and 164.7 KJ/mol respectively with pre-exponential factors of 3.13 × 109/min and 9.55 × 1010/min for the respective biomasses. Other isoconversional models such as the Flynn-Wall-Ozawa were used to determine these kinetic parameters during other phases of the pyrolysis reaction and gave similar results.
Collapse
|
14
|
Haris S, Fang C, Bastidas-Oyanedel JR, Prather KJ, Schmidt JE, Thomsen MH. Natural antibacterial agents from arid-region pretreated lignocellulosic biomasses and extracts for the control of lactic acid bacteria in yeast fermentation. AMB Express 2018; 8:127. [PMID: 30083790 PMCID: PMC6079112 DOI: 10.1186/s13568-018-0654-8] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2018] [Accepted: 07/28/2018] [Indexed: 01/05/2023] Open
Abstract
Bacterial contamination is one of the major challenges faced by yeast fermentation industries as the contaminating microorganisms produce lactic acid and acetic acid, which reduces the viability of yeast, and hence fermentation yields. The primary bacterial contaminants of yeast fermentations are lactic acid bacteria (LAB). This study aims to identify potential natural antibacterial fractions from raw and pretreated lignocellulosic biomasses found in Abu Dhabi, UAE, in terms of LAB inhibition capacity, allowing growth of the yeast. The analysis was carried out using plating technique. Pretreatment liquid of the mangrove stem Avicennia marina hydrothermally pretreated at 210 °C exhibited the widest inhibition zone with an average diameter of 14.5 mm, followed by the pretreatment liquid of mangrove leaf pretreated at 190 °C, Salicornia bigelovii pretreated at 202 °C and rachis of date palm Phoenix dactylifera pretreated at 200 °C. The compounds responsible for the antibacterial activity will be characterized in further study.
Collapse
|
15
|
Yousuf A, Bastidas-Oyanedel JR, Schmidt JE. Effect of total solid content and pretreatment on the production of lactic acid from mixed culture dark fermentation of food waste. WASTE MANAGEMENT (NEW YORK, N.Y.) 2018; 77:516-521. [PMID: 29716759 DOI: 10.1016/j.wasman.2018.04.035] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2017] [Revised: 04/23/2018] [Accepted: 04/25/2018] [Indexed: 06/08/2023]
Abstract
Food waste landfilling causes environmental degradation, and this work assesses a sustainable food valorization technique. In this study, food waste is converted into lactic acid in a batch assembly by dark fermentation without pH control and without the addition of external inoculum at 37 °C. The effect of total solid (TS), enzymatic and aeration pretreatment was investigated on liquid products concentration and product yield. The maximum possible TS content was 34% of enzymatic pretreated waste, and showed the highest lactic acid concentration of 52 g/L, with a lactic acid selectivity of 0.6 glactic/gtotalacids. The results indicated that aeration pretreatment does not significantly improve product concentration or yield. Non-pretreated waste in a 29% TS system showed a lactic acid concentration of 31 g/L. The results showed that enzymatic pretreated waste at TS of 34% results in the highest production of lactic acid.
Collapse
Affiliation(s)
- Ahasa Yousuf
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
16
|
|
17
|
Towards Drylands Biorefineries: Valorisation of Forage Opuntia for the Production of Edible Coatings. SUSTAINABILITY 2018. [DOI: 10.3390/su10061878] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
18
|
Salihoglu G, Salihoglu NK, Ucaroglu S, Banar M. Food loss and waste management in Turkey. BIORESOURCE TECHNOLOGY 2018; 248:88-99. [PMID: 28651872 DOI: 10.1016/j.biortech.2017.06.083] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 06/07/2023]
Abstract
Food waste can be an environmental and economic problem if not managed properly but it can meet various demands of a country if it is considered as a resource. The purpose of this report is to review the existing state of the field in Turkey and identify the potential of food waste as a resource. Food loss and waste (FLW) was examined throughout the food supply chain (FSC) and quantified using the FAO model. Edible FLW was estimated to be approximately 26milliontons/year. The amount of biodegradable waste was estimated based on waste statistics and research conducted on household food waste in Turkey. The total amount of biodegradable waste was found to be approximately 20milliontons/year, where more than 8.6milliontons/year of this waste is FLW from distribution and consumption in the FSC. Options for the end-of-life management of biodegradable wastes are also discussed in this review article.
Collapse
Affiliation(s)
- Guray Salihoglu
- Environmental Engineering Department, Faculty of Engineering, Uludag University, 16059 Bursa, Turkey.
| | - Nezih Kamil Salihoglu
- Environmental Engineering Department, Faculty of Engineering, Uludag University, 16059 Bursa, Turkey
| | - Selnur Ucaroglu
- Environmental Engineering Department, Faculty of Engineering, Uludag University, 16059 Bursa, Turkey
| | - Mufide Banar
- Environmental Engineering Department, Faculty of Engineering & Architecture, Anadolu University, Iki Eylul Campus, 26555 Eskisehir, Turkey
| |
Collapse
|
19
|
Fang C, Thomsen MH, Frankær CG, Bastidas-Oyanedel JR, Brudecki GP, Schmidt JE. Factors affecting seawater-based pretreatment of lignocellulosic date palm residues. BIORESOURCE TECHNOLOGY 2017; 245:540-548. [PMID: 28898854 DOI: 10.1016/j.biortech.2017.08.184] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2017] [Revised: 08/24/2017] [Accepted: 08/29/2017] [Indexed: 06/07/2023]
Abstract
Seawater-based pretreatment of lignocellulosic biomass is an innovative process at research stage. With respect to process optimization, factors affecting seawater-based pretreatment of lignocellulosic date palm residues were studied for the first time in this paper. Pretreatment temperature (180°C-210°C), salinity of seawater (0ppt-50ppt), and catalysts (H2SO4, Na2CO3, and NaOH) were investigated. The results showed that pretreatment temperature exerted the largest influence on seawater-based pretreatment in terms of the enzymatic digestibility and fermentability of pretreated solids, and the inhibition of pretreatment liquids to Saccharomyces cerevisiae. Salinity showed the least impact to seawater-based pretreatment, which widens the application spectrum of saline water sources such as brines discharged in desalination plant. Sulfuric acid was the most effective catalyst for seawater-based pretreatment compared with Na2CO3 and NaOH.
Collapse
Affiliation(s)
- Chuanji Fang
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Mette Hedegaard Thomsen
- Department of Energy Technology, Aalborg University, Niels Bohrsvej 8, DK-6700 Esbjerg, Denmark
| | | | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Grzegorz P Brudecki
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City, P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| |
Collapse
|
20
|
Sadhukhan J, Martinez-Hernandez E. Material flow and sustainability analyses of biorefining of municipal solid waste. BIORESOURCE TECHNOLOGY 2017; 243:135-146. [PMID: 28651133 DOI: 10.1016/j.biortech.2017.06.078] [Citation(s) in RCA: 21] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/17/2017] [Revised: 06/13/2017] [Accepted: 06/14/2017] [Indexed: 05/21/2023]
Abstract
This paper presents material flow and sustainability analyses of novel mechanical biological chemical treatment system for complete valorization of municipal solid waste (MSW). It integrates material recovery facility (MRF); pulping, chemical conversion; effluent treatment plant (ETP), anaerobic digestion (AD); and combined heat and power (CHP) systems producing end products: recyclables (24.9% by mass of MSW), metals (2.7%), fibre (1.5%); levulinic acid (7.4%); recyclable water (14.7%), fertiliser (8.3%); and electricity (0.126MWh/t MSW), respectively. Refuse derived fuel (RDF) and non-recyclable other waste, char and biogas from MRF, chemical conversion and AD systems, respectively, are energy recovered in the CHP system. Levulinic acid gives profitability independent of subsidies; MSW priced at 50Euro/t gives a margin of 204Euro/t. Global warming potential savings are 2.4 and 1.3kg CO2 equivalent per kg of levulinic acid and fertiliser, and 0.17kg CO2 equivalent per MJ of grid electricity offset, respectively.
Collapse
Affiliation(s)
- Jhuma Sadhukhan
- Centre for Environmental and Sustainability, University of Surrey, GU2 7XH, UK.
| | | |
Collapse
|
21
|
Nizami AS, Rehan M, Waqas M, Naqvi M, Ouda OKM, Shahzad K, Miandad R, Khan MZ, Syamsiro M, Ismail IMI, Pant D. Waste biorefineries: Enabling circular economies in developing countries. BIORESOURCE TECHNOLOGY 2017; 241:1101-1117. [PMID: 28579178 DOI: 10.1016/j.biortech.2017.05.097] [Citation(s) in RCA: 159] [Impact Index Per Article: 19.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2017] [Revised: 05/15/2017] [Accepted: 05/16/2017] [Indexed: 05/25/2023]
Abstract
This paper aims to examine the potential of waste biorefineries in developing countries as a solution to current waste disposal problems and as facilities to produce fuels, power, heat, and value-added products. The waste in developing countries represents a significant source of biomass, recycled materials, chemicals, energy, and revenue if wisely managed and used as a potential feedstock in various biorefinery technologies such as fermentation, anaerobic digestion (AD), pyrolysis, incineration, and gasification. However, the selection or integration of biorefinery technologies in any developing country should be based on its waste characterization. Waste biorefineries if developed in developing countries could provide energy generation, land savings, new businesses and consequent job creation, savings of landfills costs, GHG emissions reduction, and savings of natural resources of land, soil, and groundwater. The challenges in route to successful implementation of biorefinery concept in the developing countries are also presented using life cycle assessment (LCA) studies.
Collapse
Affiliation(s)
- A S Nizami
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia.
| | - M Rehan
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Waqas
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Naqvi
- Future Energy Center, Department of Energy, Building and Environment, Mälardalen University, Sweden
| | - O K M Ouda
- Department of Civil Engineering, Prince Mohamed Bin Fahd University, Al Khobar, Saudi Arabia
| | - K Shahzad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - R Miandad
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - M Z Khan
- Environmental Research Laboratory, Department of Chemistry, Aligarh Muslim University, Aligarh, India
| | - M Syamsiro
- Department of Mechanical Engineering, Janabadra University, Yogyakarta, Indonesia
| | - I M I Ismail
- Centre of Excellence in Environmental Studies (CEES), King Abdulaziz University, Jeddah, Saudi Arabia
| | - Deepak Pant
- Separation & Conversion Technology, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400 Mol, Belgium
| |
Collapse
|
22
|
Bonk F, Bastidas-Oyanedel JR, Yousef AF, Schmidt JE. Exploring the selective lactic acid production from food waste in uncontrolled pH mixed culture fermentations using different reactor configurations. BIORESOURCE TECHNOLOGY 2017; 238:416-424. [PMID: 28458175 DOI: 10.1016/j.biortech.2017.04.057] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/12/2017] [Revised: 04/13/2017] [Accepted: 04/15/2017] [Indexed: 06/07/2023]
Abstract
Carboxylic acid production from food waste by mixed culture fermentation is an important future waste management option. Obstacles for its implementation are the need of pH control, and a broad fermentation product spectrum leading to increased product separation costs. To overcome these obstacles, the selective production of lactic acid (LA) from model food waste by uncontrolled pH fermentation was tested using different reactor configurations. Batch experiments, semi-continuously fed reactors and a percolation system reached LA concentrations of 32, 16 and 15gCODLA/L, respectively, with selectivities of 93%, 84% and 75% on COD base, respectively. The semi-continuous reactor was dominated by Lactobacillales. Our techno-economic analysis suggests that LA production from food waste can be economically feasible, with LA recovery and low yields remaining as major obstacles. To solve both problems, we successfully applied in-situ product extraction using activated carbon.
Collapse
Affiliation(s)
- Fabian Bonk
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates; UFZ - Helmholtz-Centre for Environmental Research, Department of Environmental Microbiology, Permoserstrasse 15, 04318 Leipzig, Germany
| | - Juan-Rodrigo Bastidas-Oyanedel
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates.
| | - Ahmed F Yousef
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| | - Jens Ejbye Schmidt
- Department of Chemical and Environmental Engineering, Khalifa University of Science and Technology, Masdar Institute, Masdar City P.O. Box 54224, Abu Dhabi, United Arab Emirates
| |
Collapse
|
23
|
Arevalo-Gallegos A, Ahmad Z, Asgher M, Parra-Saldivar R, Iqbal HMN. Lignocellulose: A sustainable material to produce value-added products with a zero waste approach-A review. Int J Biol Macromol 2017; 99:308-318. [PMID: 28254573 DOI: 10.1016/j.ijbiomac.2017.02.097] [Citation(s) in RCA: 149] [Impact Index Per Article: 18.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2016] [Revised: 02/21/2017] [Accepted: 02/27/2017] [Indexed: 02/08/2023]
Abstract
A novel facility from the green technologies to integrate biomass-based carbohydrates, lignin, oils and other materials extraction and transformation into a wider spectrum of marketable and value-added products with a zero waste approach is reviewed. With ever-increasing scientific knowledge, worldwide economic and environmental consciousness, demands of legislative authorities and the manufacture, use, and removal of petrochemical-based by-products, from the last decade, there has been increasing research interests in the value or revalue of lignocellulose-based materials. The potential characteristics like natural abundance, renewability, recyclability, and ease of accessibility all around the year, around the globe, all makes residual biomass as an eco-attractive and petro-alternative candidate. In this context, many significant research efforts have been taken into account to change/replace petroleum-based economy into a bio-based economy, with an aim to develop a comprehensively sustainable, socially acceptable, and eco-friendly society. The present review work mainly focuses on various aspects of bio-refinery as a sustainable technology to process lignocellulose 'materials' into value-added products. Innovations in the bio-refinery world are providing, a portfolio of sustainable and eco-efficient products to compete in the market presently dominated by the petroleum-based products, and therefore, it is currently a subject of intensive research.
Collapse
Affiliation(s)
- Alejandra Arevalo-Gallegos
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Zanib Ahmad
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Muhammad Asgher
- Industrial Biotechnology Laboratory, Department of Biochemistry, University of Agriculture, Faisalabad, Pakistan
| | - Roberto Parra-Saldivar
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico
| | - Hafiz M N Iqbal
- School of Engineering and Science, Tecnologico de Monterrey, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L., CP 64849, Mexico.
| |
Collapse
|
24
|
Detoxification of Sap from Felled Oil Palm Trunks for the Efficient Production of Lactic Acid. Appl Biochem Biotechnol 2017; 183:412-425. [DOI: 10.1007/s12010-017-2454-z] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/06/2016] [Accepted: 03/07/2017] [Indexed: 01/29/2023]
|
25
|
Srivastava V, de Araujo ASF, Vaish B, Bartelt-Hunt S, Singh P, Singh RP. Biological response of using municipal solid waste compost in agriculture as fertilizer supplement. RE/VIEWS IN ENVIRONMENTAL SCIENCE AND BIO/TECHNOLOGY 2016; 15:677-696. [PMID: 32214923 PMCID: PMC7088905 DOI: 10.1007/s11157-016-9407-9] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/27/2023]
Abstract
Waste management and declining soil fertility are the two main issues experienced by all developing nations, like India. Nowadays, agricultural utilization of Municipal Solid Waste (MSW) is one of the most promising and cost effective options for managing solid waste. It is helpful in solving two current burning issues viz. soil fertility and MSW management. However, there is always a potential threat because MSW may contain pathogens and toxic pollutants. Therefore, much emphasis has been paid to composting of MSW in recent years. Application of compost from MSW in agricultural land helps in ameliorating the soil's physico-chemical properties. Apart from that it also assists in improving biological response of cultivated land. Keeping the present situation in mind, this review critially discusses the current scenario, agricultural utilization of MSW compost, role of soil microbes and soil microbial response on municipal solid waste compost application.
Collapse
Affiliation(s)
- Vaibhav Srivastava
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | | | - Barkha Vaish
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Shannon Bartelt-Hunt
- Department of Civil Engineering, University of Nebraska-Lincoln, Lincoln, NE USA
| | - Pooja Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
| | - Rajeev Pratap Singh
- Institute of Environment and Sustainable Development, Banaras Hindu University, Varanasi, India
- WARI Fellow, Robert B. Daugherty Water for Food Institite, University of Nebraska-Lincoln, Lincoln, NE USA
| |
Collapse
|