1
|
Ebrahimi M, Acha V, Hoang L, Martínez-Abad A, López-Rubio A, Rhazi L, Aussenac T. Extraction of homogeneous lignin oligomers by ozonation of Miscanthus giganteus and vine shoots in a pilot scale reactor. BIORESOURCE TECHNOLOGY 2024; 402:130804. [PMID: 38718904 DOI: 10.1016/j.biortech.2024.130804] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 04/30/2024] [Accepted: 05/05/2024] [Indexed: 05/13/2024]
Abstract
Lignin, a complex phenolic polymer crucial for plant structure, is mostly used as fuel but it can be harnessed for environmentally friendly applications. This article explores ozonation as a green method for lignin extraction from lignocellulosic biomass, aiming to uncover the benefits of the extracted lignin. A pilot-scale ozonation reactor was employed to extract lignin from Miscanthus giganteus (a grass variety) and vine shoots (a woody biomass). The study examined the lignin extraction and modification of the fractions and identified the generation of phenolic and organic acids. About 48 % of lignin was successfully extracted from both biomass types. Phenolic monomers were produced, vine shoots yielding fewer monomers than Miscanthus giganteus. Ozonation generated homogeneous lignin oligomers, although their molecular weight decreased during ozonation, with vine shoot oligomers exhibiting greater resistance to ozone. Extracted fractions were stable at 200 °C, despite the low molecular weight, outlining the potential of these phenolic fractions.
Collapse
Affiliation(s)
- M Ebrahimi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France; Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - V Acha
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - L Hoang
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - A Martínez-Abad
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - A López-Rubio
- Food Safety and Preservation Department, IATA-CSIC, Avda. Agustín Escardino 7, 46980 Paterna, Valencia, Spain
| | - L Rhazi
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France
| | - T Aussenac
- Institut Polytechnique UniLaSalle, Université d'Artois, ULR 7519, 19 rue Pierre Waguet, BP 30313, 60026 Beauvais Cédex, France.
| |
Collapse
|
2
|
Reena R, Alphy MP, Reshmy R, Thomas D, Madhavan A, Chaturvedi P, Pugazhendhi A, Awasthi MK, Ruiz H, Kumar V, Sindhu R, Binod P. Sustainable valorization of sugarcane residues: Efficient deconstruction strategies for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 361:127759. [PMID: 35961508 DOI: 10.1016/j.biortech.2022.127759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.
Collapse
Affiliation(s)
- Rooben Reena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Hector Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Vinod Kumar
- Fermentation Technology Division, CSIR - Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, J & K, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
3
|
Removing Calcium Ions from Remelt Syrup with Rosin-Based Macroporous Cationic Resin. Polymers (Basel) 2022; 14:polym14122397. [PMID: 35745973 PMCID: PMC9231033 DOI: 10.3390/polym14122397] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2022] [Revised: 05/31/2022] [Accepted: 06/09/2022] [Indexed: 02/04/2023] Open
Abstract
Mineral ions (mainly calcium ions) from sugarcane juice can be trapped inside the heating tubes of evaporators and vacuum boiling pans, and calcium ions are precipitated. Consequently, sugar productivity and yield are negatively affected. Calcium ions can be removed from sugarcane juice using adsorption. This paper described the experimental condition for the batch adsorption performance of rosin-based macroporous cationic resins (RMCRs) for calcium ions. The kinetics of adsorption was defined by the pseudo-first-order model, and the isotherms of calcium ions followed the Freundlich isotherm model. The maximal monolayer adsorption capacity of calcium ions was 37.05 mg·g-1 at a resin dosage of 4 g·L-1, pH of 7.0, temperature of 75 °C, and contact time of 10 h. It appeared that the adsorption was spontaneous and endothermic based on the thermodynamic parameters. The removal rate of calcium ions in remelt syrup by RMCRs was 90.71%. Calcium ions were effectively removed from loaded RMCRs by 0.1 mol·L-1 of HCl, and the RMCRs could be recycled. The dynamic saturated adsorption capacity of RMCRs for calcium ions in remelt syrup was 37.90 mg·g-1. These results suggest that RMCRs are inexpensive and efficient adsorbents and have potential applications for removing calcium ions in remelt syrup.
Collapse
|
4
|
Prado CA, Antunes FAF, Rocha TM, Sánchez-Muñoz S, Barbosa FG, Terán-Hilares R, Cruz-Santos MM, Arruda GL, da Silva SS, Santos JC. A review on recent developments in hydrodynamic cavitation and advanced oxidative processes for pretreatment of lignocellulosic materials. BIORESOURCE TECHNOLOGY 2022; 345:126458. [PMID: 34863850 DOI: 10.1016/j.biortech.2021.126458] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/25/2021] [Accepted: 11/26/2021] [Indexed: 06/13/2023]
Abstract
Environmental problems due to utilization of fossil-derived materials for energy and chemical generation has prompted the use of renewable alternative sources, such as lignocellulose biomass (LB). Indeed, the production of biomolecules and biofuels from LB is among the most important current research topics aiming to development a sustainable bioeconomy. Yet, the industrial use of LB is limited by the recalcitrance of biomass, which impairs the hydrolysis of the carbohydrate fractions. Hydrodynamic cavitation (HC) and Advanced Oxidative Processes (AOPs) has been proposed as innovative pretreatment strategies aiming to reduce process time and chemical inputs. Therefore, the underlying mechanisms, procedural strategies, influence on biomass structure, and research gaps were critically discussed in this review. The performed discussion can contribute to future developments, giving a wide overview of the main involved aspects.
Collapse
Affiliation(s)
- C A Prado
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F A F Antunes
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - T M Rocha
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S Sánchez-Muñoz
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - F G Barbosa
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - R Terán-Hilares
- Laboratorio de Materiales, Universidad Católica de Santa María - UCSM, Urb. San José, San Jose S/n, Yanahuara, Arequipa, Perú
| | - M M Cruz-Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - G L Arruda
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - S S da Silva
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil
| | - J C Santos
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, postal code 12602-810 Lorena, Brazil.
| |
Collapse
|
5
|
Sarker TR, Pattnaik F, Nanda S, Dalai AK, Meda V, Naik S. Hydrothermal pretreatment technologies for lignocellulosic biomass: A review of steam explosion and subcritical water hydrolysis. CHEMOSPHERE 2021; 284:131372. [PMID: 34323806 DOI: 10.1016/j.chemosphere.2021.131372] [Citation(s) in RCA: 65] [Impact Index Per Article: 21.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2021] [Revised: 04/26/2021] [Accepted: 06/26/2021] [Indexed: 05/10/2023]
Abstract
The pretreatment of lignocellulosic biomass enhances the conversion efficiency to produce biofuels and value-added chemicals, which have the potential to replace fossil fuels. Compared to physicochemical and other pretreatment techniques, the hydrothermal methods are considered eco-friendly and cost-effective. This paper reviews the strengths, weaknesses, opportunities and threats of steam explosion and subcritical water hydrolysis as the two promising hydrothermal technologies for the pretreatment of lignocellulosic biomass. Although the principle of the steam explosion in depolymerizing the lignin and exposing the cellulose fibers for bioconversion to liquid fuels is well known, its underlying mechanism for solid biofuel production is less identified. Therefore, this review provides an insight into different operating conditions of steam explosion and subcritical water hydrolysis for a wide variety of feedstocks. The mechanisms of subcritical water hydrolysis including dehydration, decarboxylation and carbonization of waste biomass are comprehensively described. Finally, the role of microwave heating in the hydrothermal pretreatment of biomass is elucidated.
Collapse
Affiliation(s)
- Tumpa R Sarker
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Falguni Pattnaik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| | - Sonil Nanda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Ajay K Dalai
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada.
| | - Venkatesh Meda
- Department of Chemical and Biological Engineering, University of Saskatchewan, Saskatoon, Saskatchewan, Canada
| | - Satyanarayan Naik
- Center for Rural Development and Technology, Indian Institute of Technology Delhi, New Delhi, India
| |
Collapse
|
6
|
Rojo EM, Piedra I, González AM, Vega M, Bolado S. Effect of process parameters on the valorization of components from microalgal and microalgal-bacteria biomass by enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2021; 335:125256. [PMID: 33991882 DOI: 10.1016/j.biortech.2021.125256] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2021] [Revised: 05/02/2021] [Accepted: 05/03/2021] [Indexed: 06/12/2023]
Abstract
Photobioreactors for wastewater treatment coupled with nutrient recovery from the biomass is a promising biorefinery platform but requires working with microalgae-bacteria consortia. This work compares the effect that hydrolysis time and different enzymes have on the solubilization and recovery of components from microalgae-bacteria grown in piggery wastewater and microalgae grown in synthetic media by enzymatic hydrolysis. Higher carbohydrate solubilizations were obtained from microalgae-bacteria than from pure microalgae (38.5% vs. 27% Celluclast, 5 h), as expected from the SEM images. Proteases solubilized xylose remarkably well, but xylose recovery was negligible in all experiments. Alcalase hydrolysis (5 h) provided the highest peptide recovery from both biomasses (≈34%), but the peptide sizes were lower than 10 kDa. Low peptide recoveries (<20%) but larger peptide sizes (up to 135 kDa) were obtained with Protamex. Pure microalgae resulted in remarkably higher losses, but similar amino acid profiles and peptide sizes were obtained from both biomasses.
Collapse
Affiliation(s)
- Elena M Rojo
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain
| | - Irene Piedra
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | | | - Marisol Vega
- Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain; Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid, Campus Miguel Delibes, Paseo de Belén 7, 47011 Valladolid, Spain
| | - Silvia Bolado
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr. Mergelina s/n, 47011 Valladolid. Spain.
| |
Collapse
|
7
|
Chemical and Structural Changes of Ozonated Empty Fruit Bunch (EFB) in a Ribbon-Mixer Reactor. BULLETIN OF CHEMICAL REACTION ENGINEERING & CATALYSIS 2021. [DOI: 10.9767/bcrec.16.2.10506.383-395] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
Agricultural wastes especially empty fruit bunch (EFB) are abundantly available to be utilized as a feedstock for biochemical synthesis or biofuel production. The components of the waste include lignin, hemicellulose and cellulose. Cellulose, the polymer of glucose, is the active component for producing bio-based chemicals. However, it is difficult to isolate cellulose since lignin, the most outer layer in the waste is recalcitrant. Therefore, the agricultural wastes need to be pre-treated prior to downstream processing. The aim of this study was to investigate the effect of ozone pretreatment on lignin degradation and total reducing sugar (TRS) yield. EFB was pre-treated using ozone gas in a ribbon-mixer reactor. The chemical and structural changes of ozonated EFB were analysed. The highest delignification obtained were 95.7 wt.% and TRS yield was enhanced to 84.9% at a moisture content of 40 wt.% with 60 g/m3 ozone concentration within one hour of reaction time. Both NMR and FTIR spectra conferred major peaks inferring higher lignin degradation could be achieved using ozonolysis. Copyright © 2021 by Authors, Published by BCREC Group. This is an open access article under the CC BY-SA License (https://creativecommons.org/licenses/by-sa/4.0).
Collapse
|
8
|
Martin Juárez J, Martínez-Páramo S, Maté-González M, García Encina PA, Muñoz Torre R, Bolado Rodríguez S. Evaluation of pretreatments for solubilisation of components and recovery of fermentable monosaccharides from microalgae biomass grown in piggery wastewater. CHEMOSPHERE 2021; 268:129330. [PMID: 33359992 DOI: 10.1016/j.chemosphere.2020.129330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2020] [Revised: 12/06/2020] [Accepted: 12/13/2020] [Indexed: 06/12/2023]
Abstract
Microalgae-bacteria biomass cultured in wastewater is an interesting renewable material capable of metabolising nutrients from wastes into carbohydrates, proteins, and lipids through photosynthesis. Despite the interest in the valorisation of this biomass to improve the viability of microalgae-based wastewater treatment processes, very scarce research has been devoted to the fractional recovery of its components. This work evaluates the effect of different pretreatments coupled with enzymatic hydrolysis on the solubilisation of biomass components and on the recovery of fermentable monosaccharides (glucose and xylose) from Scenedesmaceae based biomass grown in a thin layer reactor feed with piggery wastewater. Chemical pretreatments generated high concentrations of byproducts, mainly organic acids. No bacterial DNA was found in these pretreated biomasses. The acid pretreatment provided the highest carbohydrate solubilisation (98%) and monosaccharide recovery (81%). Enzymatic hydrolysis coupled with alkaline NaOH 2 M pretreatment achieved almost complete solubilisation of the biomass components, but high carbohydrate losses. Physical pretreatments remarkably increased the solubilisation of the biomass components during the enzymatic hydrolysis step, especially bead milling, which achieved solubilisation yields of 83% of carbohydrates, 43% of proteins, and 60% of lipids. The presence of viable bacteria in these pretreated biomasses could be related to the high carbohydrate losses and the generation of methanol and ethanol in addition to organic acids as byproducts.
Collapse
Affiliation(s)
- Judit Martin Juárez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Sonia Martínez-Páramo
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - María Maté-González
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Pedro A García Encina
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Raúl Muñoz Torre
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| | - Silvia Bolado Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, Dr Mergelina S/n, 47011, Valladolid, Spain.
| |
Collapse
|
9
|
Integrated Ozonation-Enzymatic Hydrolysis Pretreatment of Sugarcane Bagasse: Enhancement of Sugars Released to Expended Ozone Ratio. Processes (Basel) 2020. [DOI: 10.3390/pr8101274] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The combined effects of three key ozonation process parameters on the integrated ozonation-enzymatic hydrolysis pretreatment of sugarcane bagasse (SCB) were investigated, with emphasis on the relationship between sugar release and ozone consumption. A lab-scale fixed bed reactor was employed for ozonation at varying ozone doses (50, 75 and 100 mg O3/g SCB), particle sizes (420, 710 and 1000 µm) and moisture contents (30, 45 and 60% w/w) in multifactorial experiments, keeping a residence time of 30 min. The ozonated SCB showed a reduction in the content of acid-insoluble lignin from 26.6 down to 19.1% w/w, while those of cellulose and hemicellulose were retained above 45.5 and 13.6% w/w, with recoveries of 100–89.9 and 83.5–72.7%, respectively. Ozone-assisted enzymatic hydrolysis allowed attaining glucose and xylose yields as high as 45.0 and 37.8%, respectively. The sugars released/ozone expended ratio ranged between 2.3 and 5.7 g sugars/g O3, being the higher value achieved with an applied ozone input of 50 mg O3/g SCB and SCB with 420 µm particle size and 60% moisture. Such operating conditions led to efficient ozone utilization (<2% unreacted ozone) with a yield of 0.29 g sugars/g SCB. Overall, the amount of sugars released relative to the ozone consumed was improved, entailing an estimated cost of ozonation of USD 34.7/ton of SCB, which could enhance the profitability of the process.
Collapse
|
10
|
Treichel H, Fongaro G, Scapini T, Frumi Camargo A, Spitza Stefanski F, Venturin B. Waste Biomass Pretreatment Methods. UTILISING BIOMASS IN BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-22853-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
11
|
Rahmati S, Doherty W, Dubal D, Atanda L, Moghaddam L, Sonar P, Hessel V, Ostrikov K(K. Pretreatment and fermentation of lignocellulosic biomass: reaction mechanisms and process engineering. REACT CHEM ENG 2020. [DOI: 10.1039/d0re00241k] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2022]
Abstract
At a time of rapid depletion of oil resources, global food shortages and solid waste problems, it is imperative to encourage research into the use of appropriate pre-treatment techniques using regenerative raw materials such as lignocellulosic biomass.
Collapse
Affiliation(s)
- Shahrooz Rahmati
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - William Doherty
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Deepak Dubal
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Materials Science
| | - Luqman Atanda
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Lalehvash Moghaddam
- Centre for Agriculture and the Bioeconomy
- Institute for Future Environments
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
| | - Prashant Sonar
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| | - Volker Hessel
- School of Chemical Engineering and Advanced Materials
- The University of Adelaide
- Adelaide
- Australia
- School of Engineering
| | - Kostya (Ken) Ostrikov
- School of Chemistry and Physics
- Queensland University of Technology (QUT)
- Brisbane 4000
- Australia
- Centre for Agriculture and the Bioeconomy
| |
Collapse
|
12
|
Martín-Juárez J, Vega-Alegre M, Riol-Pastor E, Muñoz-Torre R, Bolado-Rodríguez S. Optimisation of the production of fermentable monosaccharides from algal biomass grown in photobioreactors treating wastewater. BIORESOURCE TECHNOLOGY 2019; 281:239-249. [PMID: 30825827 DOI: 10.1016/j.biortech.2019.02.082] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2018] [Revised: 02/16/2019] [Accepted: 02/18/2019] [Indexed: 06/09/2023]
Abstract
Biomass grown in wastewater treatment photobioreactors is a cheap raw material with high contents of carbohydrates, proteins and lipids. This work studies the production of fermentable monosaccharides from three biomasses grown in piggery wastewater (P), domestic wastewater (W) and synthetic medium (S) by applying chemical pretreatment and enzymatic hydrolysis, using a Taguchi design. ANOVA identified temperature, chemical reagent type and chemical reagent concentration as significant operational parameters. However, the biomass concentration, pretreatment time, enzyme dosage and enzymatic hydrolysis time had no remarkable effect. The bacterial content of the biomass had no relevant impact on carbohydrate and protein solubilisation but had a remarkable effect on the degradation of the released carbohydrates (57, 60 and 37% for P, W and S), while also affecting lipid solubilisation. Pretreatment with HCl 2 M at 120 °C resulted the optimal conditions, achieving a monosaccharide recovery of 53, 59 and 80% for P, W and S biomasses, respectively.
Collapse
Affiliation(s)
- Judit Martín-Juárez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain.
| | - Marisol Vega-Alegre
- Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain; Department of Analytical Chemistry, University of Valladolid, Campus Miguel Delibes, Paseo Belén 7, 47011 Valladolid, Spain.
| | - Elena Riol-Pastor
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain.
| | - Raúl Muñoz-Torre
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain.
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain; Institute of Sustainable Processes, University of Valladolid, 47011 Valladolid, Spain.
| |
Collapse
|
13
|
Lorenzo-Hernando A, Martín-Juárez J, Bolado-Rodríguez S. Study of steam explosion pretreatment and preservation methods of commercial cellulose. Carbohydr Polym 2018; 191:234-241. [DOI: 10.1016/j.carbpol.2018.03.021] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2017] [Revised: 02/13/2018] [Accepted: 03/12/2018] [Indexed: 11/24/2022]
|
14
|
Abstract
The global push toward an efficient and economical biobased economy has driven research to develop more cost-effective applications for the entirety of plant biomass, including lignocellulosic crops. As discussed elsewhere (Karlsson M, Atanasova L, Funck Jensen D, Zeilinger S, in Heitman J et al. [ed], Tuberculosis and the Tubercle Bacillus, 2nd ed, in press), significant progress has been made in the use of polysaccharide fractions from lignocellulose, cellulose, and various hemicellulose types. However, developing processes for use of the lignin fraction has been more challenging. In this chapter, we discuss characteristics of lignolytic enzymes and the fungi that produce them as well as potential and current uses of lignin-derived products.
Collapse
|
15
|
Vanneste J, Ennaert T, Vanhulsel A, Sels B. Unconventional Pretreatment of Lignocellulose with Low-Temperature Plasma. CHEMSUSCHEM 2017; 10:14-31. [PMID: 27922209 DOI: 10.1002/cssc.201601381] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2016] [Revised: 12/04/2016] [Indexed: 05/22/2023]
Abstract
Lignocellulose represents a potential supply of sustainable feedstock for the production of biofuels and chemicals. There is, however, an important cost and efficiency challenge associated with the conversion of such lignocellulosics. Because its structure is complex and not prone to undergo chemical reactions very easily, chemical and mechanical pretreatments are usually necessary to be able to refine them into the compositional building blocks (carbohydrates and lignin) from which value-added platform molecules, such as glucose, ethylene glycol, 5-hydroxymethylfurfural, and levulinic acid, and biofuels, such as bioderived naphtha, kerosene, and diesel fractions, will be produced. Conventional (wet) methods are usually polluting, aggressive, and highly energy consuming, so any alternative activation procedure of the lignocellulose is highly recommended and anticipated in recent and future biomass research. Lignocellulosic plasma activation has emerged as an interesting (dry) treatment technique. In the long run, in particular, in times of fairly accessible renewable electricity, plasma may be considered as an alternative to conventional pretreatment methods, but current knowledge is too little and examples too few to guarantee that statement. This review therefore highlights recent knowledge, advancements, and shortcomings in the field of plasma treatment of cellulose and lignocellulose with regard to the (structural and chemical) effects and impact on the future of pretreatment methods.
Collapse
Affiliation(s)
- Jens Vanneste
- Materials Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| | - Thijs Ennaert
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| | - Annick Vanhulsel
- Materials Department, Flemish Institute for Technological Research (VITO), Boeretang 200, 2400, Mol, Belgium
| | - Bert Sels
- Centre for Surface Chemistry and Catalysis, KU Leuven, Celestijnenlaan 200f, 3001, Heverlee, Belgium
| |
Collapse
|
16
|
Perrone OM, Rossi JS, Moretti MMDS, Nunes CDCC, Bordignon SE, Gomes E, Da-Silva R, Boscolo M. Influence of ozonolysis time during sugarcane pretreatment: Effects on the fiber and enzymatic saccharification. BIORESOURCE TECHNOLOGY 2017; 224:733-737. [PMID: 27889354 DOI: 10.1016/j.biortech.2016.11.043] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2016] [Revised: 11/09/2016] [Accepted: 11/11/2016] [Indexed: 06/06/2023]
Abstract
Modifications in sugarcane bagasse (SCB) from ozonolysis (O) NaOH (B) and ultrasound (U) (OBU) treatment for cellulosic ethanol production by enzymatic hydrolysis, were evaluated when increasing the exposure time of SCB to ozone. The lignin, cellulose, and hemicellulose after treatment were quantified: lignin removal and a consequent increase in cellulose content were shown using an infrared spectroscopic technique (ATR-FTIR) and chemical characterization. X-ray diffraction analysis (XRD) proved that OBU treatment does not affect the crystalline cellulose portion and electron microscopy techniques established that the fiber region most affected by the OBU treatment was the secondary cell wall, where the greatest lignin content is located. For OBU-60 treatment the lignin content was reduced and consequently there was a significant increase in cellulose content. After enzymatic hydrolysis, this pretreated SCB released 418mgglucose/g, corresponding to six times more than untreated SCB and a yield of 93% of the cellulose available.
Collapse
Affiliation(s)
- Olavo Micali Perrone
- Univ. Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil.
| | - Jessika Souza Rossi
- Univ. Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | | | | | | | - Eleni Gomes
- Univ. Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Roberto Da-Silva
- Univ. Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| | - Mauricio Boscolo
- Univ. Estadual Paulista - IBILCE/UNESP, São José do Rio Preto, São Paulo, Brazil
| |
Collapse
|
17
|
Udeh BA, Erkurt EA. Compositional and structural changes in Phoenix canariensis and Opuntia ficus-indica with pretreatment: Effects on enzymatic hydrolysis and second generation ethanol production. BIORESOURCE TECHNOLOGY 2017; 224:702-707. [PMID: 27847237 DOI: 10.1016/j.biortech.2016.11.015] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2016] [Revised: 11/02/2016] [Accepted: 11/03/2016] [Indexed: 06/06/2023]
Abstract
Two different plants namely Phoenix canariensis and Opuntia ficus-indica were used as substrate for reducing sugar generation and ethanol production. Dilute acid, alkaline and steam explosion were used as pretreatment methods in order to depolymerize lignin and/or hemicellulose and recover cellulose. By using alkaline pretreatment with 2.5% NaOH 71.08% for P. canariensis and 74.61% for O. ficus-indica lignin removal and 81.84% for P. canariensis and 72.66% for O. ficus-indica cellulose recovery yields were obtained. Pretreated materials were hydrolyzed by cellulase with high efficiency (87.0% and 84.5% cellulose conversion yields for P. canariensis and O. ficus-indica) and used as substrate for fermentation. Maximum ethanol production of 15.75g/L and 14.71g/L were achieved from P. canariensis and O. ficus-indica respectively. Structural differences were observed by XRD, FTIR and SEM for untreated, pretreated, hydrolyzed and fermented samples and were highly correlated with compositional analysis results.
Collapse
Affiliation(s)
- Benard Anayo Udeh
- Cyprus International University, Department of Environmental Sciences, Haspolat - Nicosia, Turkish Republic of Northern Cyprus via Mersin 10, Turkey
| | - Emrah Ahmet Erkurt
- Cyprus International University, Department of Environmental Sciences, Haspolat - Nicosia, Turkish Republic of Northern Cyprus via Mersin 10, Turkey.
| |
Collapse
|
18
|
Kumari S, Das D. Biologically pretreated sugarcane top as a potential raw material for the enhancement of gaseous energy recovery by two stage biohythane process. BIORESOURCE TECHNOLOGY 2016; 218:1090-1097. [PMID: 27469089 DOI: 10.1016/j.biortech.2016.07.070] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2016] [Revised: 07/16/2016] [Accepted: 07/18/2016] [Indexed: 06/06/2023]
Abstract
The aim of the present study was to develop a suitable pretreatment method to enhance the microbial degradation of lignocellulosic biomass and to maximize the overall energy recovery by using biohythane process. An efficient and eco-friendly biological pretreatment was used. Maximum lignin removal using biological pretreatment of sugarcane top was 60.4% w/w after 21d incubation at 28°C in static condition. Confocal microscopy observation and FTIR analysis confirmed the removal of lignin from sugarcane top. The maximum hydrogen production rate (Rm), hydrogen production potential (P) and lag time (λ) using pretreated sugarcane top were 16.76mL/g-VS/h, 87.40mL/g-VS and 3.38h respectively. The maximum methane production potential using spent medium of dark fermentation was 180.86mL/g-VS with the lag time of 2.9d. The overall gaseous energy recovery was 37.7% which is 54% higher than that of the untreated one.
Collapse
Affiliation(s)
- Sinu Kumari
- Advanced Technology Development Center, Indian Institute of Technology, Kharagpur 721302, India
| | - Debabrata Das
- Department of Biotechnology, Indian Institute of Technology, Kharagpur 721302, India.
| |
Collapse
|
19
|
Travaini R, Barrado E, Bolado-Rodríguez S. Effect of ozonolysis parameters on the inhibitory compound generation and on the production of ethanol by Pichia stipitis and acetone-butanol-ethanol by Clostridium from ozonated and water washed sugarcane bagasse. BIORESOURCE TECHNOLOGY 2016; 218:850-858. [PMID: 27428302 DOI: 10.1016/j.biortech.2016.07.028] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2016] [Revised: 07/07/2016] [Accepted: 07/08/2016] [Indexed: 06/06/2023]
Abstract
Sugarcane bagasse (SCB) was ozone pretreated and detoxified by water washing, applying a L9(3)(4) orthogonal array (OA) design of experiments to study the effect of pretreatment parameters (moisture content, ozone concentration, ozone/oxygen flow and particle size) on the generation of inhibitory compounds and on the composition of hydrolysates of ozonated-washed samples. Ozone concentration resulted the highest influence process parameter on delignification and sugar release after washing; while, for inhibitory compound formation, moisture content also had an important role. Ozone expended in pretreatment related directly with sugar release and inhibitory compound formation. Washing detoxification was effective, providing non-inhibitory hydrolysates. Maximum glucose and xylose release yields obtained were 84% and 67%, respectively, for ozonated-washed SCB. Sugar concentration resulted in the decisive factor for biofuels yields. Ethanol production achieved an 88% yield by Pichia stipitis, whereas Clostridium acetobutylicum produced 0.072gBUTANOL/gSUGAR and 0.188gABE/gSUGAR, and, Clostridium beijerinckii 0.165gBUTANOL/gSUGAR and 0.257gABE/gSUGAR.
Collapse
Affiliation(s)
- Rodolfo Travaini
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid - UVa, Calle Doctor Mergelina, s/n, 47005 Valladolid, Spain
| | - Enrique Barrado
- Department of Analytical Chemistry, Faculty of Sciences, University of Valladolid - UVa, Paseo de Belén, 7, 47011 Valladolid, Spain
| | - Silvia Bolado-Rodríguez
- Department of Chemical Engineering and Environmental Technology, School of Industrial Engineering, University of Valladolid - UVa, Calle Doctor Mergelina, s/n, 47005 Valladolid, Spain.
| |
Collapse
|