1
|
Wang JB, Kong B, Wang H, Cai LY, Zhang RJ, Cai FJ, Zhu ZJ, Cao JH, Xu J. Production of butanol from distillers' grain waste by a new aerotolerant strain of Clostridium beijerinckii LY-5. Bioprocess Biosyst Eng 2021; 44:2167-2179. [PMID: 34043089 DOI: 10.1007/s00449-021-02592-w] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Accepted: 05/12/2021] [Indexed: 11/28/2022]
Abstract
A new aerotolerant strain of Clostridium beijerinckii LY-5 was isolated from the pit mud of the Chinese Baijiu-making process for butanol production. Plackett-Burman design and artificial neural network were used to optimize the fermentation medium and a total of 13.54 ± 0.22 g/L butanol and 19.91 ± 0.52 g/L ABE were attained under aerotolerant condition. Moreover, distillers' grain waste (DGW), the main by-product in the Baijiu production process, was utilized as potential substrate for butanol production. DGW was hydrolyzed by α-amylase and glucoamylase and then fermented after a detoxifying process of overliming. Butanol and ABE concentrations were 9.02 ± 0.18 and 9.57 ± 0.19 g/L with the yield of 0.21 and 0.23 g/g sugar, respectively. The higher ratio of butanol to ABE might be caused by the inhibitors in DGW medium affecting the metabolic pathways of C. beijerinckii LY-5 and approximately 1.48 ± 0.04 g/L isopropanol was found at the end of fermentation. This work highlights the feasibility of using DGW as a promising feedstock for butanol production by a new aerotolerant strain of C. beijerinckii LY-5, with benefit to the environment.
Collapse
Affiliation(s)
- Jiang-Bo Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Bo Kong
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Hao Wang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Lin-Yang Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Rui-Jing Zhang
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Feng-Jiao Cai
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Zheng-Jun Zhu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Jing-Hua Cao
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China
| | - Jian Xu
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei Provincial Cooperative Innovation Center of Industrial Fermentation, Hubei Key Laboratory of Industrial Microbiology, School of Food and Biological Engineering, Hubei University of Technology, 28 Nanli Road, Wuhan, 430068, China.
| |
Collapse
|
2
|
Koo T, Lee J, Hwang S. Development of an interspecies interaction model: An experiment on Clostridium cadaveris and Clostridium sporogenes under anaerobic condition. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 237:247-254. [PMID: 30798043 DOI: 10.1016/j.jenvman.2019.02.084] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 05/26/2023]
Abstract
The specific primer and probe sets for quantifying Clostridium cadaveris and Clostridium sporogenes using a quantitative real-time PCR were designed. Each primer and probe set detected only the target species very specifically. The two species were cultivated in pure and mixed culture in batch mode with glucose as the only carbon source. The designed QPCR sets were used successfully to estimate the biokinetic parameters of each species in pure culture: i.e., maximum specific growth rate μmax, half saturation concentration Ks, growth yield Y, and decay coefficient Kd. of C. cadaveris and C. sporogenes were 0.311 ± 0.020 and 0.360 ± 0.019 h-1, 4.241 ± 1.653 and 5.171 ± 1.097 g/L, 0.301 ± 0.065 and 0.199 ± 0.037 1011 copies/g, 0.005 ± 0.043 and 0.009 ± 0.025 h-1, respectively. The effect of interspecific interaction of on substrate consumption rate and microbial growth was evaluated using mixed culture; curve fitting and comparison of coefficients detected increase in substrate consumption rate but decrease in microbial growth rate; these results imply interspecific interaction effect. A new model was of the interspecific interaction was developed, with focus on accuracy, realism, simplicity and biological significance. This interspecific interaction model may be extended to more-complex bioprocesses such as biological wastewater treatment systems and anaerobic digestion.
Collapse
Affiliation(s)
- Taewoan Koo
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea
| | - Joonyeob Lee
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea
| | - Seokhwan Hwang
- Division of Environmental Science and Engineering, Pohang University of Science and Technology (POSTECH), Pohang, Gyeongbuk, South Korea.
| |
Collapse
|
3
|
Ahlawat S, Kaushal M, Palabhanvi B, Muthuraj M, Goswami G, Das D. Nutrient modulation based process engineering strategy for improved butanol production from Clostridium acetobutylicum. Biotechnol Prog 2018; 35:e2771. [PMID: 30592566 DOI: 10.1002/btpr.2771] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2018] [Revised: 12/22/2018] [Indexed: 01/08/2023]
Abstract
The present study demonstrates a process engineering strategy to achieve high butanol titer and productivity from wild type Clostridium acetobutylicum MTCC 11274. In the first step, two different media were optimized with the objectives of maximizing the biomass and butanol productivity, respectively. In the next step, attributes of these two media compositions were integrated to design a two-stage fed-batch process which resulted in maximal butanol productivity of 0.55 g L-1 h-1 with titer of 13.1 g L-1 . Further, two-stage fed-batch process along with combinatorial use of magnesium limitation and calcium supplementation resulted in the highest butanol titer and productivity of 16.5 g L-1 and 0.59 g L-1 h-1 , respectively. Finally, integration of the process with gas stripping and modulation of feeding duration resulted in a cumulative butanol titer of 54.3 g L-1 and productivity of 0.58 g L-1 h-1 . The strategy opens up possibility of developing a viable butanol bioprocess. © 2019 American Institute of Chemical Engineers Biotechnol. Prog., 35: e2771, 2019.
Collapse
Affiliation(s)
- Saumya Ahlawat
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Mehak Kaushal
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Basavaraj Palabhanvi
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Muthusivaramapandian Muthuraj
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Gargi Goswami
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| | - Debasish Das
- Dept. of Biosciences & Bioengineering, Indian Inst. of Technology, Guwahati, Assam, 781039, India.,DBT-PAN IIT Centre for Bioenergy, Indian Inst. of Technology, Guwahati, Assam, 781039, India
| |
Collapse
|
4
|
Kaushal M, Chary KVN, Ahlawat S, Palabhanvi B, Goswami G, Das D. Understanding regulation in substrate dependent modulation of growth and production of alcohols in Clostridium sporogenes NCIM 2918 through metabolic network reconstruction and flux balance analysis. BIORESOURCE TECHNOLOGY 2018; 249:767-776. [PMID: 29136931 DOI: 10.1016/j.biortech.2017.10.080] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/18/2017] [Accepted: 10/20/2017] [Indexed: 06/07/2023]
Abstract
Flux Balance Analysis was performed for Clostridium sporogenes NCIM 2918 grown on sole glucose and glycerol or glucose-glycerol combinations at varied concentrations. During acidogenesis, glucose and glucose-glycerol combinations favored improved growth and butyric acid production. Glycerol fermentation was however marked by reduced growth and predominant ethanol synthesis. Further, with increase of glycerol fraction in glucose-glycerol blend, flux towards ethanol synthesis linearly increased with simultaneous decrease in butanol flux. Elevated ATP demand due to improved growth was satisfied by upregulated carbon flux towards butyric acid synthesis during both glucose and dual substrate fermentations. Possible repression of pyruvate carboxylase by glycerol resulting in downturn of carbon uptake flux towards TCA cycle through anaplerotic reaction may be responsible for reduced growth in glycerol fermentation. Ammonium acetate mediated induction of acetic acid utilization, during acidogenesis, led to excess acetyl-CoA generation and its subsequent metabolism to lesser reduced products, butyric acid or ethanol.
Collapse
Affiliation(s)
- Mehak Kaushal
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - K Venkata Narayana Chary
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Saumya Ahlawat
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Basavaraj Palabhanvi
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Gargi Goswami
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India
| | - Debasish Das
- Department of Biosciences & Bioengineering, Indian Institute of Technology, Guwahati, Assam 781039, India; DBT-PAN IIT Centre for Bioenergy, Indian Institute of Technology, Guwahati, Assam 781039, India.
| |
Collapse
|