1
|
Chen CX, Koskue V, Duan H, Gao L, Shon HK, Martin GJO, Chen GQ, Freguia S. Impact of nutrient deficiency on biological sewage treatment - Perspectives towards urine source segregation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 946:174174. [PMID: 38925384 DOI: 10.1016/j.scitotenv.2024.174174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 05/30/2024] [Accepted: 06/19/2024] [Indexed: 06/28/2024]
Abstract
Human urine contains 9 g/L of nitrogen (N) and 0.7 g/L of phosphorus (P). The recovery of N and P from urine helps close the nutrient loop and increase resource circularity in the sewage treatment sector. Urine contributes an average of 80 % N and 50 % P in sewage, whereby urine source segregation could reduce the burden of nutrient removal in sewage treatment plants (STPs) but result in N and P deficiency and unintended negative consequences. This review examines the potential impacts of N and P deficiency on the removal of organic carbon and nutrients, sludge characteristics and greenhouse gas emissions in activated sludge processes. The details of how these impacts affect the operation of STPs were also included. This review helps foresee operational challenges that established STPs may face when dealing with nutrient-deficient sewage in a future where source separation of urine is the norm. The findings indicate that the requirement of nitrification-denitrification and biological P removal processes could shrink at urine segregation above 80 % and 100 %, respectively. Organic carbon, N and biological P removal processes can be severely affected under full urine segregation. The decrease in solid retention time due to urine segregation increases treatment capacity up to 48 %. Sludge flocculation and settleability would deteriorate due to changes in extracellular polymeric substances and induce various forms of bulking. Beneficially, N deficiency reduces nitrous oxide emissions. These findings emphasise the importance of considering and preparing for impacts caused by urine source segregation-induced nutrient deficiency in sewage treatment processes.
Collapse
Affiliation(s)
- Chee Xiang Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Veera Koskue
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Haoran Duan
- School of Chemical Engineering, The University of Queensland, Brisbane, Queensland 4072, Australia; Australian Centre for Water and Environmental Biotechnology (formerly AWMC), The University of Queensland, Brisbane, Queensland 4072, Australia
| | - Li Gao
- South East Water Corporation, 2268, Seaford, VIC 3198, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology, Sydney (UTS), Broadway, NSW 2007, Australia
| | - Gregory J O Martin
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - George Q Chen
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia
| | - Stefano Freguia
- Department of Chemical Engineering, The University of Melbourne, Parkville, VIC 3010, Australia.
| |
Collapse
|
2
|
Lu T, Lü F, Liao N, Chai H, Zhang H, He P. Material flow analysis and global warming potential assessment of an industrial insect-based bioconversion plant using housefly larvae. J Environ Sci (China) 2024; 139:483-495. [PMID: 38105071 DOI: 10.1016/j.jes.2023.05.007] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Revised: 05/06/2023] [Accepted: 05/07/2023] [Indexed: 12/19/2023]
Abstract
The significant increase in the demand for biomass waste treatment after garbage classification has led to housefly larvae treatment becoming an attractive treatment option. It can provide a source of protein while treating biomass waste, which means that nutrients can be returned to the natural food chain. However, the performance of this technology in terms of its environmental impacts is still unclear, particularly with regards to global warming potential (GWP).This study used a life cycle assessment (LCA) approach to assess a housefly larvae treatment plant with a treatment capacity of 50 tons of biomass waste per day. The LCA results showed that the 95% confidence intervals for the GWP in summer and winter were determined to be 24.46-32.81 kg CO2 equivalent (CO2-eq)/ton biomass waste and 5.37-10.08 kg CO2-eq/ton biomass waste, respectively. The greater GWP value in summer is due to the longer ventilation time and higher ventilation intensity in summer, which consumes more power. The main GWP contributions are from (1) electricity needs (accounting for 78.6% of emissions in summer and 70.2% in winter) and (2) product substitution by mature housefly larvae and compost (both summer and winter accounting for 96.8% of carbon reduction).
Collapse
Affiliation(s)
- Tao Lu
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai 200092, China
| | - Fan Lü
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai 200092, China
| | - Nanlin Liao
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai 200092, China
| | - Honghui Chai
- Zhejiang Qihe Ecological Technology Co., Ltd., Hangzhou 310052, China
| | - Hua Zhang
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China; State Key Laboratory of Pollution Control and Source Reuse, Tongji University, Shanghai 200092, China
| | - Pinjing He
- Institute of Waste Treatment and Reclamation, Tongji University, Shanghai 200092, China.
| |
Collapse
|
3
|
Wang S, Wang G, Yan P, Chen Y, Fang F, Guo J. Non-filamentous sludge bulking induced by exopolysaccharide variation in structure and properties during aerobic granulation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 876:162786. [PMID: 36907402 DOI: 10.1016/j.scitotenv.2023.162786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2022] [Revised: 02/13/2023] [Accepted: 03/06/2023] [Indexed: 06/18/2023]
Abstract
The forming mechanism of non-filamentous sludge bulking during aerobic granulation were investigated basing on three feeding strategies (R1 direct aeration after fast feeding, R2 anaerobic stirring after fast feeding and R3 anaerobic plug-flow slow feeding). Results showed that strong selection stress (shortening settling time) led to a sharp flocs washout and the subsequent increase of food to microorganisms (F/M) in R1 and R3 reactors, but not found in R2 due to the different strategies of feeding modes. With the increase of F/M, zeta potential and hydrophobicity of sludge surfaces significantly decreased and thus leading to an enhanced repulsive force and energy barriers for sludge aggregation. Particularly, when F/M exceeded 1.2 kgCOD/(kgMLSS·d), non-filamentous sludge bulking was ultimately triggered in R1 and R3. Further analysis showed that massive extracellular exopolysaccharide (PS) accumulated on the surfaces of non-filamentous bulking sludge due to the increased abundance of the microorganisms related to PS secretion during sludge bulking. In addition, significantly increased intracellular second messenger (c-di-GMP), a key substance regulating PS biosynthesis, was confirmed via its concentration determination as well as microbial function prediction analysis, which played a critical role in sludge bulking. Combing with the systematic detection from surface plasmon resonance system, rheometer and size-exclusion chromatography-multiangle laser light detection-refractive index system, higher molecular weight, compact conformation, higher viscosity and higher hydrophilicity was determined in sludge bulking PS relative to PS extracted from non-filamentous bulking sludge. Clearly, the changes of PS (content, structures and properties) driven by c-di-GMP are the dominant mechanism for the formation of non-filamentous sludge bulking during aerobic granulation. This work could provide theoretical support for successful start-up and application of aerobic granular sludge technology.
Collapse
Affiliation(s)
- Shuai Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China; College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China
| | - Gonglei Wang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Peng Yan
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Youpeng Chen
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| | - Fang Fang
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China.
| | - Jinsong Guo
- College of Environment and Ecology, Chongqing University, Chongqing 400045, China
| |
Collapse
|
4
|
Chen Y, Geng N, Hu T, Baeyens J, Wang S, Su H. Adaptive regulation of activated sludge's core functional flora based on granular internal spatial microenvironment. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 319:115714. [PMID: 35839647 DOI: 10.1016/j.jenvman.2022.115714] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/04/2022] [Accepted: 07/07/2022] [Indexed: 06/15/2023]
Abstract
A great deal of efforts has been put into studying the influence of the external macroenvironment for activated sludge to survive on microbial community succession, while granular internal spatial microenvironment should be given equal attention, because it is more directly involved in the information exchange and material transfer among microorganisms. This study systematically investigated the effects of granular microenvironment on spatial colonization and composition of sludge's core functional flora, and the corresponding difference of biological treatment performance. High content of extracellular-proteins (67.53 mg/gVSS) or extracellular-polysaccharide (65.02 mg/gVSS) stimulated the microbial flocculation and aggregation of 0.5-1.5 mm granules (GS) or 1.5-3.0 mm granules (GM), respectively, which was resulted from excellent cell hydrophobicity (59.26%) or viscosity (3.47 mPa s), therefore, constituted relatively dense porous frame. More hollow space existed in 3.0-5.0 mm granules (GL), which formed loose skeleton with 0.213 mL/g of total pore volume and 17.21 nm of average pore size. Combining scanning electron microscope images and fluorescent in-situ hybridization based microbiological analysis, aerobic nitrifiers were observed to wrap or surround anaerobic bacteria, or facultative/anaerobic bacteria were self-encapsulated, which created granule's unique microenvironment with alternating aerobic and anaerobic zones. GS has the most rich organic matter degrading bacteria and anaerobic heterotrophic denitrifiers, while GM and GL presented the greatest relative abundance of facultative and aerobic denitrifiers, respectively. The activity of dehydrogenase and nitrogen invertase of GM showed be 1.32-3.09 times higher than those of GS and GL, contributing to its higher carbon and nitrogen removal. These findings highlight the importance of granular microenvironment to adaptive regulation of activated sludge's core functional flora and corresponding pollutant removal performance.
Collapse
Affiliation(s)
- Yingyun Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Nanfei Geng
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Tenghui Hu
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Jan Baeyens
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China
| | - Shaojie Wang
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| | - Haijia Su
- State Key Laboratory of Chemical Resource Engineering, Beijing Key Laboratory of Bioprocess, Beijing Advanced Innovation Center for Soft Matter Science and Engineering, Beijing University of Chemical Technology, Beijing, 100029, People's Republic of China.
| |
Collapse
|
5
|
Shi W, Feng X, Liu Y, Zhang B, Lens PNL. Role of rotating speed on the stability of a self-sustaining algal-bacterial photo-granules process. BIORESOURCE TECHNOLOGY 2022; 353:127134. [PMID: 35405212 DOI: 10.1016/j.biortech.2022.127134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/04/2022] [Accepted: 04/05/2022] [Indexed: 06/14/2023]
Abstract
The effects of rotating speed (120, 130, 140 and 150 rpm) of a photo-reactor on the self-sustaining algal-bacterial photo-granules sludge (ABPG) was investigated in this study. The ABPG process maintained good granular stability at 140 rpm with an integrity coefficient of 3.0% and excellent nutrient removal. The increases of the extracellular polymeric substances (EPS) content, the portions of α-helix (32.37%) in the secondary protein structure, and the relative abundance of functional bacteria (e.g. Candidatus_Competibacter), contributed to the maintenance of granular structure stability. However, the lower rotating speed (120 and 130 rpm) resulted in slow bacterial growth and reproduction while a higher rotating speed (150 rpm) caused the disintegration of photo-granules. Overall, the results reveal the influencing mechanisms of photo-reactor rotating speed on the self-sustaining ABPG process and provide an effective approach to maintain the system stability.
Collapse
Affiliation(s)
- Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueli Feng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yi Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Piet N L Lens
- UNESCO-IHE, Institute for Water Education, Westvest 7, 2601, DA, Delft, The Netherlands
| |
Collapse
|
6
|
Huang S, Zhang B, Liu Y, Feng X, Shi W. Revealing the influencing mechanisms of polystyrene microplastics (MPs) on the performance and stability of the algal-bacterial granular sludge. BIORESOURCE TECHNOLOGY 2022; 354:127202. [PMID: 35460843 DOI: 10.1016/j.biortech.2022.127202] [Citation(s) in RCA: 23] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2022] [Revised: 04/15/2022] [Accepted: 04/18/2022] [Indexed: 06/14/2023]
Abstract
Algal-bacterial granular sludge (ABGS) is an energy-saving and environment-friendly wastewater treatment technology; however, the effects of microplastics (MPs) on the performance and stability of the ABGS system remain unknown. Herein, the influencing mechanisms of polystyrene MPs (50 μm) on the ABGS were systematically investigated. The ABGS exhibited a high removal efficiency of MPs (over 96%) at 1 mg/L and 20 mg/L. Although the biomass content, sludge settling and particle size were not obviously affected by MPs, the COD and total phosphorus (TP) removal efficiencies were inhibited by 2.6%-4.1% and 2.9%-5.8%, respectively. Meanwhile, the structural stability of ABGS was damaged by MPs, owing to the excessive oxidative stress, low content of protein-like substance (especially tryptophan and tyrosine), and the large portion of loose protein secondary structure. Microbial community analysis revealed that the relative abundance of some functional bacteria (Candidatus_Competibacter and Rhodobacter) and algal species (Tetradesmus) were decreased under the MPs stress.
Collapse
Affiliation(s)
- Shuchang Huang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Bing Zhang
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Yi Liu
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Xueli Feng
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wenxin Shi
- College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| |
Collapse
|
7
|
Hossain MI, Cheng L, Cord-Ruwisch R. Sustained and enhanced anaerobic removal of COD and nitrogen in a zeolite amended glycogen accumulating organism dominated biofilm process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 807:150602. [PMID: 34592273 DOI: 10.1016/j.scitotenv.2021.150602] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/29/2021] [Revised: 08/27/2021] [Accepted: 09/22/2021] [Indexed: 06/13/2023]
Abstract
Activated sludge, the most widely used biological wastewater treatment process is known to be expensive to operate, largely due to energy expense for oxygen transfer into the bulk wastewater solution. The alternative of using passive aeration facilitates oxygen supply directly from the air resulting in aeration energy savings. The current study demonstrated sustained and improved removal of chemical oxygen demand (COD) and nitrogen in a zeolite modified glycogen accumulating organisms (GAOs) dominated biofilm reactor, which achieved anaerobic removal of COD and ammonium by the activity of GAOs and zeolite, respectively. Draining of the batch-operated reactor enabled the biofilm to directly uptake oxygen from air (passive aeration) to carry out simultaneous nitrification and denitrification due to the activity of GAO (Candidatus competibacter) and nitrifying bacteria (Nitrosomonas and Nitrospira). Under stable long-term (4-months) operation, the process achieved COD and nitrogen removal at rates of 1354 and 79.1 g m-3 d-1, respectively. The biofilm process demonstrated >90% nitrogen removal efficiency in multi-cycle (4/8 cycles) strategy with a short treatment time of 8 h. Due to the passive aeration scheme, the energy consumption of the proposed wastewater treatment process is calculated to be about 13-times less than that of traditional activated sludge process. Therefore, the Passive Aeration Simultaneous Nitrification and Denitrification (PASND) biofilm process is a promising low-energy treatment step for efficient removal of COD and nitrogen from wastewater.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia.
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
8
|
Wang H, Lyu W, Song Q, Zhou D, Hu X, Wang B, Chen R. Role of weak magnetic strength in the operation of aerobic granular reactor for wastewater treatment containing ammonia nitrogen concentration gradient. BIORESOURCE TECHNOLOGY 2021; 322:124570. [PMID: 33384203 DOI: 10.1016/j.biortech.2020.124570] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/10/2020] [Revised: 12/13/2020] [Accepted: 12/15/2020] [Indexed: 06/12/2023]
Abstract
Weak magnetic field (WMF) and aerobic granular sludge (AGS) technology were both robust technologies in wastewater treatments. In this study, the AGS characteristics and nutrient removal performances were all estimated at the load of 20 to 40 mg/L ammonia nitrogen (NH4+-N) and 0 to 40mT magnetic field. Results showed that 10mT was beneficial for keeping stable structure of granules when increasing NH4+-N load, accompanied with increasing protein (PN) secretion in EPS. Besides, all the total nitrogen (TN) removal rate under 10mT reached above 90%, while they were all less than 80% under other WMF strength when loading with 40 mg/L NH4+-N. Moreover, the simultaneous nitrification and denitrification (SND) efficiency could be enhanced by WMF of 10mT. Illumina MiSeq sequencing showed that NH4+-N load changed the bacterial richness and diversity when the magnetic strength was 10mT. And Candidatus_Competibacter was identified as the main functional genes for effective operation in this system.
Collapse
Affiliation(s)
- Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China.
| | - Wanlin Lyu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Qun Song
- Central and Southern China Municipal Engineering Design & Research Institute Co., Ltd., Wuhan 430010, China
| | - Dao Zhou
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Xiaoling Hu
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Bin Wang
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| | - Rongfan Chen
- School of Civil Engineering, Wuhan University, Wuhan 430072, China
| |
Collapse
|
9
|
Abdelfattah A, Hossain MI, Cheng L. High-strength wastewater treatment using microbial biofilm reactor: a critical review. World J Microbiol Biotechnol 2020; 36:75. [PMID: 32390104 DOI: 10.1007/s11274-020-02853-y] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/05/2020] [Indexed: 02/06/2023]
Abstract
Biofilm reactors retain microbial cells in the form of biofilm which is attached to free moving or fixed carrying materials, thus providing a high active biomass concentration and automatic liquid and solid separation. Nowadays, microbial biofilm reactors have been widely used in high-strength wastewater treatment where very high pollutant removal efficiency is required, which usually requires excessive space and aeration energy for conventional activated sludge-based treatment. This paper provides an overview of microbial biofilm reactors developed over the last half-century, including moving bed biofilm reactor (MBBR), trickling filter (TF) reactor, rotating biological contactor (RBC), membrane biofilm reactor (MBfR), passive aeration simultaneous nitrification and denitrification (PASND) biofilm reactor, for their applications in high-strength wastewater treatment of not only removing carbon, nitrogen, sulphur but also a variety of oxidized contaminants including perchlorate and bromate. Despite the advance of biofilm reactor that exhibits high resistance to excessive pollutants loading, its drawbacks both from engineering and microbiological point of view are reviewed. The future prospects of biofilm reactor are also discussed in this review paper.
Collapse
Affiliation(s)
- Abdallah Abdelfattah
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.,Department of Public Works Engineering, Faculty of Engineering, Tanta University, Tanta, 31511, Egypt
| | - Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, Murdoch, Australia.,Department of Microbiology, Jashore University of Science and Technology, Jashore, 7408, Bangladesh
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
10
|
Hossain MI, Cheng L, Cord-Ruwisch R. Energy efficient COD and N-removal from high-strength wastewater by a passively aerated GAO dominated biofilm. BIORESOURCE TECHNOLOGY 2019; 283:148-158. [PMID: 30903821 DOI: 10.1016/j.biortech.2019.03.056] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2019] [Revised: 03/08/2019] [Accepted: 03/10/2019] [Indexed: 06/09/2023]
Abstract
Conventional aerobic treatment of high-strength wastewater is not economical due to excessively high energy requirement for compressed air supply. The use of passive aeration avoids the use of compressed air and enables energy efficient oxygen supply directly from the air. This study evaluates a passively aerated simultaneous nitrification and denitrification performing biofilm to treat concentrated wastewater. The biofilm reactor was operated > 5-months under alternating anaerobic/aerobic conditions. For 4-times concentrated wastewater, > 80% COD (2307 mg L-1 h-1) and > 60% N (60 mg L-1 h-1) was removed at a hydraulic retention time (HRT) of 7 h. A double application in the same reactor enabled > 95% COD and 85% N-removal, at an overall HRT of 14 h which is substantially shorter than what traditional activated sludge-based systems would require for the treatment of such concentrated feeds. Microbial community analysis showed Candidatus competibacter (27%) and nitrifying bacteria (Nitrosomonas, and Nitrospira) as key microbes involved in COD and N-removal, respectively.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia.
| | - Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|
11
|
Huang W, She Z, Gao M, Wang Q, Jin C, Zhao Y, Guo L. Effect of anaerobic/aerobic duration on nitrogen removal and microbial community in a simultaneous partial nitrification and denitrification system under low salinity. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 651:859-870. [PMID: 30253368 DOI: 10.1016/j.scitotenv.2018.09.218] [Citation(s) in RCA: 47] [Impact Index Per Article: 9.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/17/2018] [Revised: 09/13/2018] [Accepted: 09/14/2018] [Indexed: 05/25/2023]
Abstract
In this study, the simultaneous partial nitrification and denitrification (SPND) process was investigated in a hybrid sequencing batch biofilm reactor (HSBBR) fed with synthetic wastewater with 1.2% salinity. Different anaerobic/aerobic (An/Ae) durations were selected for evaluating the removal performance of contaminants and the succession of the microbial community in the reactor. The highest organic matter removal efficiency was obtained at An/Ae hour ratio of 0/6.5, with an average chemical oxygen demand (COD) removal of 89.6% at the steady state. Similarly high nitrogen removal efficiencies were achieved at An/Ae hour ratios of 1/5.5, 1.5/5 and 2/4.5,with over 92% of average total nitrogen removed. This represents an increase of more than 10% compared to the mode with An/Ae hour ratio of 0/6.5. High-throughput sequencing analysis revealed that the increase of the An/Ae hour ratio changed the characteristics of the community structures in the HSBBR. Azoarcus was the most dominant genus when the An/Ae hour ratio was 0/6.5 in both suspended sludge (S-sludge) and biofilm, while Candidatus_Competibacter was the most abundant genus at An/Ae hour ratios of 2/4.5 and 3/3.5. Nitrosomonas was the only ammonia oxidizing bacteria (AOB) detected in this study. Nitrospira, a kind of nitrite oxidizing bacteria (NOB), was sensitive to salinity and altering the An/Ae mode; this was detected only in S-sludge samples in a fully aerobic mode with a low percentage of 0.1%. S-sludge and biofilm samples shared a similar bacterial composition. This research demonstrated that efficient nitrogen and carbon removal could be achieved via the SPND process by the symbiotic functional groups in a hybrid S-sludge and biofilm reactor.
Collapse
Affiliation(s)
- Wuyi Huang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Zonglian She
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China.
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Qun Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China
| | - Chunji Jin
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Yangguo Zhao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| | - Liang Guo
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, 266100 Qingdao, China; College of Environmental Science and Engineering, Ocean University of China, 266100 Qingdao, China
| |
Collapse
|
12
|
Cheng L, Flavigny RMG, Hossain MI, Charles W, Cord-Ruwisch R. Proof of concept of wastewater treatment via passive aeration SND using a novel zeolite amended biofilm reactor. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2018; 78:2204-2213. [PMID: 30629548 DOI: 10.2166/wst.2018.504] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/09/2023]
Abstract
The current paper describes a novel passive aeration simultaneous nitrification and denitrification (PASND) zeolite amended biofilm reactor that removes organic carbon and nitrogen from wastewater with low-energy consumption. Next to the ammonium oxidizing bacteria (AOB), this reactor contained naturally enriched glycogen accumulating organisms (GAOs) and zeolite powder to initially adsorb BOD (acetate) and ammonium (NH4 +-N) from synthetic wastewater under anaerobic conditions. Draining of the treated wastewater exposed the biofilm directly to air enabling low-energy oxygen supply by passive aeration. This allowed the adsorbed ammonium to be oxidized by the AOB and the produced nitrite and nitrate to be reduced simultaneously by the GAOs using the adsorbed BOD (stored as PHAs) as carbon source. Overall, with an operation mode of 1 h anaerobic and 4 h aerobic phase, the nutrient removal efficiency after single treatment was about 94.3% for BOD and 72.2% for nitrogen (NH4 +-N). As high-energy aeration of the bulk solution for oxygen supply is completely avoided, the energy requirement of the proposed PASND biofilm reactor can be theoretically cut down to more than 50% compared to the traditional activated sludge process.
Collapse
Affiliation(s)
- Liang Cheng
- School of Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Perth, Australia E-mail:
| | | | - Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Perth, Australia E-mail:
| | - Wipa Charles
- School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Perth, Australia E-mail:
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, Murdoch 6150, Perth, Australia E-mail:
| |
Collapse
|
13
|
Hossain MI, Paparini A, Cord-Ruwisch R. Direct oxygen uptake from air by novel glycogen accumulating organism dominated biofilm minimizes excess sludge production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2018; 640-641:80-88. [PMID: 29857323 DOI: 10.1016/j.scitotenv.2018.05.292] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/23/2018] [Revised: 05/23/2018] [Accepted: 05/23/2018] [Indexed: 06/08/2023]
Abstract
The cost associated with treatment and disposal of excess sludge produced is one of the greatest operational expenses in wastewater treatment plants. In this study, we quantify and explain greatly reduced excess sludge production in the novel glycogen accumulating organism (GAO) dominated drained biofilm system previously shown to be capable of extremely energy efficient removal of organic carbon (biological oxygen demand or BOD) from wastewater. The average excess sludge production rate was 0.05 g VSS g-1 BOD (acetate) removed, which is about 9-times lower than that of comparative studies using the same acetate based synthetic wastewater. The substantially lower sludge yield was attributed to a number of features such as the high oxygen consumption facilitated by direct oxygen uptake from air, high biomass content (21.41 g VSS L-1 of reactor), the predominance of the GAO (Candidatus competibacter) with a low growth yield and the overwhelming presence of the predatory protozoa (Tetramitus) in the biofilm. Overall, the combination of low-energy requirement for air supply (no compressed air supply) and the low excess sludge production rate, could make this novel "GAO drained biofilm" process one of the most economical ways of biological organic carbon removal from wastewater.
Collapse
Affiliation(s)
- Md Iqbal Hossain
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia
| | - Andrea Paparini
- School of Veterinary and Life Sciences, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia
| | - Ralf Cord-Ruwisch
- School of Engineering and Information Technology, Murdoch University, 90 South Street, Murdoch 6150, Western Australia, Australia.
| |
Collapse
|