1
|
Wang Z, Huang J, Zhang H, Luo T, He C. Combined effect of zinc and cadmium ions on nitrification performance during the biological nitrogen removal of simulated livestock breeding wastewater. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:41155-41166. [PMID: 38849618 DOI: 10.1007/s11356-024-33902-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 05/31/2024] [Indexed: 06/09/2024]
Abstract
Zinc and cadmium ions are usually found in livestock breeding wastewater, and the mixed ions will have an impact on the biological nitrogen removal. Nitrification performance plays an important role in biological nitrogen removal. In order to investigate the combined effect of zinc and cadmium ions on nitrification performance and to reveal the interactions between zinc and cadmium ions, three concentration ratios of zinc and cadmium ions, as well as 18 different concentration gradients were designed with the direct equipartition ray and the dilution factor method. The effect of pollutants on the nitrification performance of biological nitrogen removal was analyzed by the nonlinear regression equation, and the concentration-addition model was conducted to probe into the relationship between the mixed pollutants and the nitrification performance. The results showed that the effect on nitrification performance increased significantly with the increase of reaction duration and pollutant concentration, which indicated that the effects are concentration-dependent and time-dependent. The concentration-addition model suggested that the interactions between zinc and cadmium ions with different concentration ratios were mainly antagonistic, and as the percentage of cadmium ions in the mixtures increased, the antagonism between the mixtures became stronger. This study will provide a relevant theoretical basis for the regulation of the ratios and concentrations of heavy metal ions during the biological treatment of livestock breeding wastewater.
Collapse
Affiliation(s)
- Zhanpeng Wang
- Department of Municipal Engineering, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230009, China
| | - Jian Huang
- Department of Municipal Engineering, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China.
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230009, China.
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China.
- Joint Laboratory of Anhui Province for Pollution Control and Resource Utilization in Industrial Parks, Hefei, 230041, China.
| | - Hua Zhang
- Department of Municipal Engineering, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230009, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
- Joint Laboratory of Anhui Province for Pollution Control and Resource Utilization in Industrial Parks, Hefei, 230041, China
| | - Tao Luo
- Department of Municipal Engineering, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Provincial Key Laboratory of Environmental Pollution Control and Resource Reuse, Anhui Jianzhu University, Hefei, 230009, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environmental and Energy Engineering, Anhui Jianzhu University, Hefei, 230601, China
- Anhui Research Academy of Ecological Civilization, Hefei, 230601, China
| |
Collapse
|
2
|
Zhao H, Guo Y, Zhang Z, Sun H, Wang X, Li S, Liao J, Li YY, Wang Q. The stable operation of nitritation process with the continuous granular sludge-type reactor and microbial community analysis. CHEMOSPHERE 2023; 345:140527. [PMID: 37884092 DOI: 10.1016/j.chemosphere.2023.140527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/22/2023] [Revised: 09/22/2023] [Accepted: 10/22/2023] [Indexed: 10/28/2023]
Abstract
The nitritation step is the fundament for the biological nitrogen removal regardless of the traditional nitrification and denitrification process, the nitrite shunt process or the anammox process. Thus, exploring the effective nitritation performance is an important aspect of biological nitrogen removal. This study explored the upper limit of nitritation rate by increasing hydraulic residence time with the well-mixed and continuous granular sludge-type reactor characterized with low complexity and easy operation. The results showed that with the nitrogen loading rate of 1.0 kg/m3/d, the nitrite production rate could reach up to 0.65 kg/m3/d with the nitrite production efficiency of 63.49%, which is remarkable compared to that in the previously similar research. The microbial analysis indicated that ammonia-oxidizing bacteria was successfully enriched (13.27%) and genus Nitrosomonas was the dominant bacteria type. Besides, the activity of ammonium oxidizing bacteria in the continuous flow reactor was higher than that of other reactor types. The growth of vorticella on the sludge was also found in the reactor. The test of specific sludge activity and the microbe analysis both indicated that the nitrite-oxidizing bacteria was well inhibited during the whole experiment, which indicated the strategy of simply adjusting the dissolved oxygen is effective for running of nitritation process. The phosphorus removal performance was also achieved with a removal efficiency of 23.53%. The functional composition of the microbial community in the samples was predicted and finally transformation mechanism of nitrogen in sludge was drawn. In sum, this study indicated the superior performance of the granule sludge-type nitritation process and give a reference for the application of biological nitrogen removal technology.
Collapse
Affiliation(s)
- Hongjun Zhao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yan Guo
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China.
| | - Ze Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Haishu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Xiaona Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| | - Shuang Li
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Jianbo Liao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aramaki Aza Aoba, Aoba-ku, Sendai, Miyagi, 980-8579, Japan
| | - Qunhui Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, People's Republic of China; Beijing Key Laboratory of Resource-Oriented Treatment of Industrial Pollutants, Beijing, 100083, People's Republic of China
| |
Collapse
|
3
|
Zhang H, Xu C, Jiang W, Xi S, Huang J, Zheng M, Wang W, He C. Effects of zinc ion concentrations on the performance of SBR treating livestock wastewater and analysis of microbial community. ENVIRONMENTAL RESEARCH 2023; 236:116787. [PMID: 37517494 DOI: 10.1016/j.envres.2023.116787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/25/2023] [Revised: 07/25/2023] [Accepted: 07/27/2023] [Indexed: 08/01/2023]
Abstract
Zinc ion (Zn2+) is a frequently occurring heavy metal in livestock wastewater. The effects of Zn2+ on the physicochemical properties and the microbial distribution of activated sludge are essential to controlling nitrogen removal performance. Nevertheless, there are raw studies on the effects of Zn2+ on nitrogen removal. This study investigated the effect of Zn2+ on the treatment performance of livestock wastewater in a sequencing batch reactor (SBR). The results indicated the low Zn2+ concentrations could improve nitrogen removal performance. However, as the Zn2+ concentration increased, the total nitrogen (TN) removal performance of the reactor gradually deteriorated. When the Zn2+ concentration was 90.00 mg/L, the TN removal efficiency was the lowest, only 2.40%. The contents of the Extracellular polymeric substance (EPS) presented a trend of first increasing and then decreasing with the increase of Zn2+ concentration, and the main reason was the decrease of protein-like and tryptophan-like. The 16SrRNA analysis indicated that Zn2+ within a specific concentration could increase the operational taxonomic units (OTUs) number, microbial richness, and diversity of microorganisms in the SBR. However, with Zn2+ concentration exceeding 10.00 mg/L, the relative abundance of denitrification functional bacteria (Dechloromonas, Nitrospira, and Thauera) decreased.
Collapse
Affiliation(s)
- Hua Zhang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Chong Xu
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Wei Jiang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Shanshan Xi
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Jian Huang
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China
| | - Mengqi Zheng
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Wei Wang
- Department of Municipal Engineering, School of Civil Engineering, Hefei University of Technology, Hefei, 230009, China
| | - Chunhua He
- Department of Municipal Engineering, School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China; Anhui Provincial Key Laboratory of Environmental Pollution Control and Waste Resource Utilization School of Environment and Energy Engineering, Anhui Jianzhu University, Hefei, 230009, China.
| |
Collapse
|
4
|
Zhang Y, Qi W, Chu G, Wang Q, Gao C, Chen W, Liu J, Gao M. Performance evaluation, enzymatic activity change and metagenomic analysis of sequencing batch reactor under divalent zinc stress. BIORESOURCE TECHNOLOGY 2023; 388:129774. [PMID: 37722545 DOI: 10.1016/j.biortech.2023.129774] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 08/31/2023] [Accepted: 09/11/2023] [Indexed: 09/20/2023]
Abstract
Divalent zinc (Zn2+) are widely detected in domestic and industrial wastewater, and it is essential to evaluate the effect of Zn2+ on wastewater biological treatment process due to its bio-toxicity. In this study, the nitrogen removal rates and their corresponding enzymatic activities of sequencing batch reactor decreased with the increase of Zn2+ concentration. The Zn2+ accumulation in activated sludge caused significant antioxidant response, and the reactive oxygen species (ROS) production and antioxidant enzymatic activities were positively correlated with Zn2+ concentration. The presence of Zn2+ inhibited the metabolic pathways related to energy production and electron transport. The abundance decreases of nitrification and denitrification functional genes led to the deterioration of nitrogen removal performance under Zn2+ stress. The correlation analysis between functional gene modules and microbial genera revealed that Zoogloea had obvious Zn2+ resistance. This study can provide the insights into the influencing mechanism of Zn2+ on the biological nitrogen removal process.
Collapse
Affiliation(s)
- Yuqiao Zhang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China
| | - Weiyi Qi
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Guangyu Chu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Qianzhi Wang
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; College of Environmental Science and Engineering, Ocean University of China, Qingdao 266100, China
| | - Chang Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Wenzheng Chen
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Jiateng Liu
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China
| | - Mengchun Gao
- Key Lab of Marine Environment and Ecology, Ministry of Education, Ocean University of China, Qingdao 266100, China; Shandong Provincial Key Laboratory of Marine Environment and Geological Engineering, Qingdao 266100, China.
| |
Collapse
|
5
|
Chen H, Liu K, Yang E, Chen J, Gu Y, Wu S, Yang M, Wang H, Wang D, Li H. A critical review on microbial ecology in the novel biological nitrogen removal process: Dynamic balance of complex functional microbes for nitrogen removal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159462. [PMID: 36257429 DOI: 10.1016/j.scitotenv.2022.159462] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/05/2022] [Revised: 10/04/2022] [Accepted: 10/12/2022] [Indexed: 06/16/2023]
Abstract
The novel biological nitrogen removal process has been extensively studied for its high nitrogen removal efficiency, energy efficiency, and greenness. A successful novel biological nitrogen removal process has a stable microecological equilibrium and benign interactions between the various functional bacteria. However, changes in the external environment can easily disrupt the dynamic balance of the microecology and affect the activity of functional bacteria in the novel biological nitrogen removal process. Therefore, this review focuses on the microecology in existing the novel biological nitrogen removal process, including the growth characteristics of functional microorganisms and their interactions, together with the effects of different influencing factors on the evolution of microbial communities. This provides ideas for achieving a stable dynamic balance of the microecology in a novel biological nitrogen removal process. Furthermore, to investigate deeply the mechanisms of microbial interactions in novel biological nitrogen removal process, this review also focuses on the influence of quorum sensing (QS) systems on nitrogen removal microbes, regulated by which bacteria secrete acyl homoserine lactones (AHLs) as signaling molecules to regulate microbial ecology in the novel biological nitrogen removal process. However, the mechanisms of action of AHLs on the regulation of functional bacteria have not been fully determined and the composition of QS system circuits requires further investigation. Meanwhile, it is necessary to further apply molecular analysis techniques and the theory of systems ecology in the future to enhance the exploration of microbial species and ecological niches, providing a deeper scientific basis for the development of a novel biological nitrogen removal process.
Collapse
Affiliation(s)
- Hong Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China; Laboratory of Environmental Protection Engineering, Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba Ward, Sendai, Miyagi 980-8579, Japan
| | - Ke Liu
- China Machinery International Engineering Design & Research Institute Co., Ltd, Changsha 410007, China
| | - Enzhe Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Jing Chen
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Yanling Gu
- School of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Sha Wu
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China.
| | - Min Yang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Hong Wang
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha 410004, China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha 410083, China.
| |
Collapse
|
6
|
Short-term responses of the anammox process to Ni(II): nitrogen removal, mechanisms and inhibition recovery. Sci Rep 2022; 12:12588. [PMID: 35869181 PMCID: PMC9307604 DOI: 10.1038/s41598-022-16566-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2022] [Accepted: 07/12/2022] [Indexed: 11/09/2022] Open
Abstract
Anaerobic ammonia oxidizing (anammox) has already been recognized as an innovative and economical nitrogen removal technology. However, the effect of heavy metals on anammox bacteria in aquatic ecosystem remains largely unknown. Ni(II) is a common kind of heavy metals detected in industrial wastewater and municipal sewage treatment plants. Hence, the responses of the anammox process to Ni(II) were studied here. The results showed that anammox was the dominant reaction with Ni(II) concentrations no more than 25 mg/L. 1 mg/L of Ni(II) addition promoted nitrogen removal by anammox. The higher the Ni(II) concentrations and longer exposure time, the more inhibition for anammox bacteria was gotten. The IC50 of Ni(II) to anammox was determined as 83.86 mg/L by an exponential regression equation. The inhibition of Ni(II) on anammox activity was mainly attributed to intracellular accumulation Ni(II) inhibition to HDH activity. Two times increase of IC50 after 4 times circles of domestication suggests multiple intermittent domestication can increase the tolerance of anammox bacteria to Ni(II). EDTA washing can eliminate the inhibition of anammox activity by Ni(II) with Ni(II) addition no more than 25 mg/L.
Collapse
|
7
|
Negi R, Kumar R, Jawed M. Recovery potential of aerobic sludge biomass from Co (II) stress in sequencing batch reactors. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:61954-61966. [PMID: 35378654 DOI: 10.1007/s11356-022-19965-7] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/09/2021] [Accepted: 03/25/2022] [Indexed: 06/14/2023]
Abstract
Heavy metals in higher concentrations are often encountered in domestic sewage of developing and under-developed countries. High metallic concentrations can stress reactor sludge biomass morphology impeding its performance in organics reduction. However, the extent of damage and ability of sludge biomass to recover from the metallic stress is not fully understood. Also, there is no protocol to identify and prevent the sludge biomass from metallic stress in fully functional sewage treatment plants (STPs). This study investigates performance, metabolic activity, morphology, and settling characteristics of the sludge biomass under different Co(II) stress conditions. The extent of recovery in biomass, when the supply of Co(II) metal ion was discontinued in the inlet stream, was explored. The study also proposed a protocol based on simple settling characteristics of sludge biomass to get an early indication of metal infiltration to prevent potential damage to the biomass morphology. Four sequencing batch reactors (SBRs) with Co(II) ion concentrations of 0 (designated as RCo0), 5 (RCo5), 25 (RCo25), and 75 mg/L (RCo75) in the feed were operated with a cycle time of 12 h. Reactors were operated for 35 days with Co(II) in the feed (termed as stressed phase operation) followed by 24 days of operation without Co(II) in the feed (termed as recovery phase operation). Results show that COD removal in reactor RCo75 reduced to 48% on the 10th day of stressed phase operation, showing a lag in COD removal due to metallic stress. The activity of biomass in reactors RCo5, RCo25, and RCo75 was reduced by 39%, 45%, and 49%, respectively, in the stressed phase compared to the biomass in control reactor. Recovery in COD removal efficiency and specific biomass activity were observed in all the reactors after the removal of metallic stress. The settleability of sludge biomass in reactors RCo25 and RCo75 was significantly affected. Transformation in the shape of flocs in reactor RCo25 and RCo75 biomasses revealed the prolonged effect of metallic stress, which was observed to be irreversible even during the recovery phase operation.
Collapse
Affiliation(s)
- Rajhans Negi
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India.
- Environmental Science and Engineering Department, Environmental Research Laboratory, Indian Institute of Technology Bombay, Mumbai, Maharashtra, 400076, India.
| | - Rajneesh Kumar
- Centre for the Environment, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| | - Mohammad Jawed
- Department of Civil Engineering, Indian Institute of Technology Guwahati, Guwahati, 781039, Assam, India
| |
Collapse
|
8
|
Jiang SJ, Sun J, Tong G, Ding H, Ouyang J, Zhou Q, Fu Y, Zhong ME. Emerging disposal technologies of harmful phytoextraction biomass (HPB) containing heavy metals: A review. CHEMOSPHERE 2022; 290:133266. [PMID: 34914959 DOI: 10.1016/j.chemosphere.2021.133266] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2021] [Revised: 11/23/2021] [Accepted: 12/10/2021] [Indexed: 06/14/2023]
Abstract
Phytoextraction is an effective approach for remediation of heavy metal (HM) contaminated soil. After the enhancement of phytoextraction efficiency has been systematically investigated and illustrated, the harmless disposal and value-added use of harmful phytoextraction biomass (HPB) become the major issue to be addressed. Therefore, in recent years, a large number of studies have focused on the disposal technologies for HPB, such as composting, enzyme hydrolysis, hydrothermal conversion, phyto-mining, and pyrolysis. The present review introduces their operation process, reaction parameters, economic/ecological advantages, and especially the migration and transformation behavior of HMs/biomass. Since plenty of plants possess comparable extraction abilities for HMs but with discrepancy constitution of biomass, the phytoextraction process should be combined with the disposal of HPB after harvested in the future, and thus a grading handling strategy for HPB is also presented. Hence, this review is significative for disposing of HPB and popularizing phytoextraction technologies.
Collapse
Affiliation(s)
- Si-Jie Jiang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jingchun Sun
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Gongsong Tong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Hao Ding
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Jiewei Ouyang
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Qiang Zhou
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Yunxiang Fu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China
| | - Mei-E Zhong
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha, 410128, China.
| |
Collapse
|
9
|
González-Cortés JJ, Almenglo F, Ramírez M, Cantero D. Effect of two different intermediate landfill leachates on the ammonium oxidation rate of non-adapted and adapted nitrifying biomass. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111902. [PMID: 33421933 DOI: 10.1016/j.jenvman.2020.111902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Revised: 11/19/2020] [Accepted: 12/23/2020] [Indexed: 06/12/2023]
Abstract
A widely employed approach to minimize the detrimental effect of landfill leachates (LL) on nitrifying biomass is to adapt it to these contaminated effluents prior to use. In the study reported here the impact of different intermediate landfill leachates (intermediate 1 (ILL1) and intermediate 2 (ILL2)) and synthetic medium (SM) on the nitritation rates of non-adapted and adapted nitrifying biomass were evaluated and modeled. The models, based on previously reported models (Haldane, Edwards and Aiba), considered the effect of three different heavy metals (Cu, Ni and Zn) present in both landfill leachates. The proposed models fitted well with the different biomasses. The highest specific substrate oxidation rate (qS) of the present study (41.85 ± 1.09 mg N-NH4+ g TSS-1 h-1) was obtained by the non-adapted biomass using SM. The non-adapted biomass was characterized by ~5- and ~28-fold higher nitritation rates on using the different ammonium sources tested (SM, ILL1 and ILL2) when compared to the other biomasses adapted to ILL1 (~9 mg N-NH4+ g TSS-1 h-1) and ILL2 (~1.3 mg N-NH4+ g TSS-1 h-1), respectively. The calculated inhibition constants indicate that the inhibitory effect of the heavy metals followed the order Ni>Zn>Cu. The results reported here bring into question the commonly accepted idea that an adaptation period of the biomass is required to treat landfill leachate.
Collapse
Affiliation(s)
- J Joaquín González-Cortés
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Fernando Almenglo
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Martín Ramírez
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| | - Domingo Cantero
- Department of Chemical Engineering and Food Technologies, Wine and Agrifood Research Institute (IVAGRO), Faculty of Sciences, University of Cadiz, Av. República Saharaui s/n, 11510, Puerto Real, Cádiz, Spain.
| |
Collapse
|
10
|
Jokai K, Nakamura T, Okabe S, Ishii S. Simultaneous removal of nitrate and heavy metals in a continuous flow nitrate-dependent ferrous iron oxidation (NDFO) bioreactor. CHEMOSPHERE 2021; 262:127838. [PMID: 32768756 DOI: 10.1016/j.chemosphere.2020.127838] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/21/2020] [Revised: 07/07/2020] [Accepted: 07/26/2020] [Indexed: 06/11/2023]
Abstract
Nitrogen and heavy metals can co-occur in various industrial wastewaters such as coke-oven wastewater. Removal of these contaminants is important, but cost-efficient removal technology is limited. In this study, we examined the usefulness of nitrate-dependent ferrous iron oxidation (NDFO) for the simultaneous removal of nitrate and heavy metals (iron and zinc), by using an NDFO strain Pseudogulbenkiania sp. NH8B. Based on the batch culture assays, nitrate, Fe, and Zn were successfully removed from a basal medium as well as coke-oven wastewater containing 5 mM nitrate, 10 mM Fe(II), and 10 mg/L Zn. Zinc in the water was most likely co-precipitated with Fe(III) oxides produced during the NDFO reaction. Simultaneous removal of nitrate, Fe, and Zn was also achieved in a continuous-flow reactor fed with a basal medium containing 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L Zn. However, when the reactor is fed with coke-oven wastewater supplemented with 10 mM nitrate, 5 mM Fe(II), 4 mM acetate, and 10 mg/L ZnCl2, the reactor performance significantly decreased, most likely due to the inhibition of bacterial growth by thiocyanate or organic contaminants present in the coke-oven wastewater. Use of mixed culture of NDFO bacteria and thiocyanate/organic-degrading denitrifiers should help improve the reactor performance.
Collapse
Affiliation(s)
- Kazuki Jokai
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan
| | - Tomomi Nakamura
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan
| | - Satoshi Okabe
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan
| | - Satoshi Ishii
- Division of Environmental Engineering, Graduate School of Engineering, Hokkaido University, North-13, West-8, Sapporo, 060-8628, Japan; Department of Soil, Water and Climate, University of Minnesota, 439 Borlaug Hall, 1991 Upper Buford Circle, St. Paul, Minnesota, 55108, USA; BioTechnology Institute, University of Minnesota, 140 Gortner Laboratory, 1479 Gortner Avenue, St. Paul, Minnesota, 55108, USA.
| |
Collapse
|
11
|
Wang Z, Yuan S, Deng Z, Wang Y, Deng S, Song Y, Sun C, Bu N, Wang X. Evaluating responses of nitrification and denitrification to the co-selective pressure of divalent zinc and tetracycline based on resistance genes changes. BIORESOURCE TECHNOLOGY 2020; 314:123769. [PMID: 32623283 DOI: 10.1016/j.biortech.2020.123769] [Citation(s) in RCA: 37] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/04/2020] [Revised: 06/21/2020] [Accepted: 06/26/2020] [Indexed: 06/11/2023]
Abstract
The responses of nitrification and denitrification to the divalent zinc (Zn(II)) and tetracycline (TC) co-selective pressure were evaluated in a sequencing batch reactor (SBR). The removal rates of organics and nitrogen, nitrifying and denitrifying enzymatic activity, and microbial diversity and richness at the Zn(II) and TC co-selective pressure were higher than those at the alone Zn(II) selective pressure, while were lower than those at the individual TC selective pressure. The Zn(II) and TC co-selective pressure induced the TC resistance genes abundance increase and the Zn(II) resistance genes levels decrease, and enhanced bacterial enzymatic modification resistance to TC and bacterial outer membrane resistance to Zn(II). The network analysis showed that the genera Nitrospira and Nitrosomonas of nitrifiers and the genera Ferruginibacter, Dechloromonas, Acidovorax, Rhodobacter, Thauera, Cloacibacterium, Zoogloea and Flavobacterium of denitrifiers were the potential hosts of antibiotics resistance genes (ARGs) and/or heavy metals resistance genes (HMRGs).
Collapse
Affiliation(s)
- Zichao Wang
- College of Environment Science, Liaoning University, Shenyang, China.
| | - Shengyu Yuan
- College of Environment Science, Liaoning University, Shenyang, China
| | - Zhiwei Deng
- College of Environment and Chemical Engineering, Dalian University, Dalian, China
| | - Yuejing Wang
- Shandong Provincial Yantai Eco-Environment Monitoring Center, Yantai, China
| | - Shilong Deng
- College of Forestry, Northeast Forestry University, Harbin, China
| | - Youtao Song
- College of Environment Science, Liaoning University, Shenyang, China
| | - Congting Sun
- College of Environment Science, Liaoning University, Shenyang, China
| | - Naishun Bu
- College of Environment Science, Liaoning University, Shenyang, China
| | - Xinruo Wang
- Liaoning Provincial Ecology and Environment Protection Science and Technology Center, Shenyang, China
| |
Collapse
|
12
|
Oubre C, Boopathy R. Effect of silver oxide nanoparticles on a bacterial consortium isolated from the sediment of the Gulf of Mexico in removing carbon and nitrogen. ACTA ACUST UNITED AC 2020. [DOI: 10.1002/tqem.21688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Affiliation(s)
- Christopher Oubre
- Department of Biological Sciences Nicholls State University Thibodaux Louisiana
| | - Raj Boopathy
- Department of Biological Sciences Nicholls State University Thibodaux Louisiana
| |
Collapse
|
13
|
Xu LZJ, Shi ZJ, Guo Q, Bai YH, Shen YY, Jin LY, Zhao YH, Zhang JT, Jin RC. Performance and microbial community responses of the partial nitration process to tetracycline and Zn(II). Sep Purif Technol 2019. [DOI: 10.1016/j.seppur.2019.115810] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
14
|
Yang HL, Liao YY, Zhang J, Wang XL. Comparative transcriptome analysis of salt tolerance mechanism of Meyerozyma guilliermondii W2 under NaCl stress. 3 Biotech 2019; 9:286. [PMID: 31245250 PMCID: PMC6592989 DOI: 10.1007/s13205-019-1817-2] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2019] [Accepted: 06/18/2019] [Indexed: 02/06/2023] Open
Abstract
A high-salt-tolerant strain, Meyerozyma guilliermondii, has been isolated from activated sludge which has a great effect in the treatment of high-salt wastewater. To identify the salt tolerance mechanism of the strain, transcriptome sequencing and fluorescence quantitative PCR were used to analyse and compare the thallus, which were growing in the salt-free, low-salt (4%), and high-salt (16%) YPD media for 48 h, respectively, and then the change of intracellular and extracellular glycerol was determined. The results showed that 8220 unigenes were obtained from the sequencing data after de novo splicing, among which 6334 genes had annotation information in the SwissProt library. With salt-free as reference, there were 1135 unigenes that differentially expressed under low-salt stress and 1948 unigenes were differentially expressed under high-salt stress. With low salt as reference, 3056 unigenes were differentially expressed under high-salt stress. The fluorescence quantification results of the six candidate genes selected in this study were consistent with the transcriptome data. Under high-salt stress, the intracellular glycerol of M. guilliermondii reached a maximum value at about 10 min, then decreased quickly and tended to be stable. This study provided valuable data for the next study of salt tolerance of M. guilliermondii, and also contributed to the functional study of yeast salt tolerance genes.
Collapse
Affiliation(s)
- Hui-lin Yang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022 Jiangxi China
| | - Yan-yan Liao
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022 Jiangxi China
| | - Ju Zhang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022 Jiangxi China
| | - Xiao-lan Wang
- Key Laboratory of Protection and Utilization of Subtropic Plant Resources of Jiangxi Province, College of Life Science, Jiangxi Normal University, 99 Ziyang Road, Nanchang, 330022 Jiangxi China
| |
Collapse
|
15
|
He T, Xie D, Ni J, Li Z. Ca(II) and Mg(II) significantly enhanced the nitrogen removal capacity of Arthrobacter arilaitensis relative to Zn(II) and Ni(II). JOURNAL OF HAZARDOUS MATERIALS 2019; 368:594-601. [PMID: 30716569 DOI: 10.1016/j.jhazmat.2019.01.094] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2018] [Revised: 01/26/2019] [Accepted: 01/28/2019] [Indexed: 06/09/2023]
Abstract
This study investigated the impacts of alkaline-earth metals [Ca(II), Mg(II)] and heavy metals [Zn(II), Ni(II)] on the nitrogen removal capacity of Arthrobacter arilaitensis Y-10. StrainY-10 was able to tolerate 20 mg/L Ca(II) and its ammonium removal efficiency was 100%. 0.5 mg/L Ca(II) effectively promoted total nitrogen removal from wastewater containing nitrite. Mg(II) supplementation substantially enhanced the bacterial growth and nitrogen reduction. As Mg(II) concentrations increased from 0 to 2 mg/L, the ammonium, nitrate and nitrite removal efficiencies increased by 40.62%, 69.91% and 64.68%, respectively. Although the nitrogen removal ability of strain Y-10 was sharply hindered by Zn(II) and Ni(II), it occurred continuously even when the Zn(II) concentration reached 30 mg/L. However, the ammonium and total nitrogen removal almost stopped at 8 mg/L Ni(II), and the denitrification capacity was lost when the Ni(II) concentration exceeded 1 mg/L. The results demonstrate that Ca(II) and especially Mg(II) could significantly enhance the nitrogen removal capacity of Arthrobacter arilaitensis relative to Zn(II) and Ni(II).
Collapse
Affiliation(s)
- Tengxia He
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Deti Xie
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Jiupai Ni
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China
| | - Zhenlun Li
- Chongqing Key Laboratory of Soil Multiscale Interfacial Process, College of Resources and Environment, Southwest University, Chongqing, 400716, China.
| |
Collapse
|
16
|
Zhang X, Chen Z, Zhou Y, Ma Y, Ma C, Li Y, Liang Y, Jia J. Impacts of the heavy metals Cu (II), Zn (II) and Fe (II) on an Anammox system treating synthetic wastewater in low ammonia nitrogen and low temperature: Fe (II) makes a difference. THE SCIENCE OF THE TOTAL ENVIRONMENT 2019; 648:798-804. [PMID: 30138879 DOI: 10.1016/j.scitotenv.2018.08.206] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2018] [Revised: 08/14/2018] [Accepted: 08/15/2018] [Indexed: 05/16/2023]
Abstract
In this study, the impacts of heavy metals (1 mg L-1) on the nitrogen removal, bioactivity of anaerobic ammonia-oxidizing bacteria (AAOB) and the microbial community of anaerobic ammonium oxidation (Anammox) process were investigated. It was observed that short-term exposure in Cu (II) and Zn (II) both improved AAOB bioactivity, while long-term exposure significantly lowered the nitrogen removal to 0.218 and 0.302 kg m-3 d-1, when treated the wastewater with 100 mg L-1 nitrogen under 14-16 °C. Fe(II) had slight impact on Anammox in short-term experiment but deeply enhanced nitrogen removal during the long-term contact, and finally increased the that to 0.58 kg m-3 d-1. The impact on Anammox was Cu(II) > Zn(II) > Fe(II). Cu(II) and Zn(II) lowered the share of Candidatus Kuenenia to 3.32% and 3.80%, while Fe(II) improved that to 11.30% from 7.99%. Extracellular polymeric substance in biofilm had prominent iron adsorption capacity, which was the key factor that help AAOB resist Fe(II).
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yue Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China; School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| | - Chuang Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yu Li
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yuhai Liang
- Guangdong Province Key Laboratory of Microbial Signals and Disease Control, South China Agricultural University, Guangzhou 510000, China.
| | - Jinping Jia
- School of Environmental Science and Engineering, Shanghai Jiaotong University, Shanghai 200240, China
| |
Collapse
|
17
|
Zhao J, Sun X, Awasthi MK, Wang Q, Ren X, Li R, Chen H, Wang M, Liu T, Zhang Z. Performance evaluation of gaseous emissions and Zn speciation during Zn-rich antibiotic manufacturing wastes and pig manure composting. BIORESOURCE TECHNOLOGY 2018; 267:688-695. [PMID: 30071460 DOI: 10.1016/j.biortech.2018.07.088] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Revised: 07/16/2018] [Accepted: 07/18/2018] [Indexed: 06/08/2023]
Abstract
In this study, the co-composting performance of Zn-rich antibiotic manufacturing wastes (AMW) and pig manure (PM) was evaluated. Four treatments, representing 2.5%, 5%, 10% and 20% of AMW (of PM dry weight) and control without AMW, were established during composting. Results suggested that the temperature, pH, electrical conductivity, NH4+-N and germination index in end product met the maturity and sanitation requirement. More than 99% of residual antibiotic was removed. Compared with PM composting alone, the cumulative CH4 and N2O emissions in AMW composting increased by 13.46-79.00% and 10.78-65.12%, respectively. While the higher mixing ratios of AMW (10% and 20%) presented a negative impact on composing by inhibiting organic matter (OM) degradation and higher NH3 emissions. The AMW had highly bioavailable Zn, but the exchangeable faction of Zn significantly decreased with the composting progress.
Collapse
Affiliation(s)
- Junchao Zhao
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xining Sun
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Quan Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Xiuna Ren
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Ronghua Li
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Hongyu Chen
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Meijing Wang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Tao Liu
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Zengqiang Zhang
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China.
| |
Collapse
|
18
|
The performance of biocarrier containing zinc nanoparticles in biofilm reactor for treating textile wastewater. Process Biochem 2018. [DOI: 10.1016/j.procbio.2018.08.022] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/07/2023]
|
19
|
Zhang X, Chen Z, Ma Y, Zhao J, Chen T, Fu H, Zhai H. Acute and persistent toxicity of Cd(II) to the microbial community of Anammox process. BIORESOURCE TECHNOLOGY 2018; 261:453-457. [PMID: 29685486 DOI: 10.1016/j.biortech.2018.04.055] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2018] [Revised: 04/09/2018] [Accepted: 04/12/2018] [Indexed: 06/08/2023]
Abstract
In this study, the short- and long-term effects of Cd(II) on the bioactivity, nitrogen removal and microbial community of the anaerobic ammonia oxidation (Anammox) process were investigated by step-wise increasing Cd(II). The self-recovery ability of Anammox was also studied after long-term exposure in Cd(II). The bioactivity of anaerobic ammonia-oxidizing bacteria (AAOB) within short-term exposure of Cd(II) were detected by batch experiments. Results showed that Cd(II) had both acute and persistent toxicity to Anammox, the IC50 in short-term exposure was calculated as 5.43 mg L-1. Long-term exposure led to the microbial diversity increase, as well as the relative abundance decrease of AAOB in Anammox system. AAOB was continuously suppressed by Cd(II) in 1-20 mg L-1, while it had self-adaption to Cd(II) in 1-10 mg L-1. Anammox biofilm showed prominent adsorbing ability for cadmium, and the cadmium in biofilm was the key factor affecting Anammox.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jianguo Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Tao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Haoqiang Fu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hanfei Zhai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
20
|
Zhang X, Chen Z, Ma Y, Zhou Y, Zhao S, Wang L, Zhai H. Influence of elevated Zn (II) on Anammox system: Microbial variation and zinc tolerance. BIORESOURCE TECHNOLOGY 2018; 251:108-113. [PMID: 29272769 DOI: 10.1016/j.biortech.2017.12.035] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 12/12/2017] [Accepted: 12/13/2017] [Indexed: 06/07/2023]
Abstract
Nitrogen removal by anaerobic ammonium oxidation (Anammox) has attracted increasing attention in nowadays. An Anammox biofilter was subjected to a continuous loading of elevated Zn (II). The influence of Zn (II) on the nitrogen removal, microbial community and biofilm property was investigated in the condition of 23-26 °C and 3.5 h HRT. The nitrogen removal greatly decreased to 0.054 from the initial 0.502 kg m-3 d-1, with the Zn (II) addition. Anaerobic ammonia-oxidizing bacteria (AAOB) had self-adaption to Zn (II) in 1-10 mg L-1 and was significantly enhanced after long-term acclimatization, while the suppression threshold was 20 mg L-1. Soluble microbial products (SMP) increased correspondingly with Zn (II), while extracellular polymeric substance (EPS) climbed up initially and then decreased. Anammox biofilm performed the highest zinc adsorption as 158.27 mg g-1 SS in biofilm. High Zn (II) improved the microbial diversity and lowered the Candidatus Kuenenia abuandance to 1.38% from 20.89%.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yue Zhou
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Siyu Zhao
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Lina Wang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hanfei Zhai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
21
|
Zhang X, Zhang N, Fu H, Chen T, Liu S, Zheng S, Zhang J. Effect of zinc oxide nanoparticles on nitrogen removal, microbial activity and microbial community of CANON process in a membrane bioreactor. BIORESOURCE TECHNOLOGY 2017; 243:93-99. [PMID: 28668561 DOI: 10.1016/j.biortech.2017.06.052] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/17/2017] [Revised: 06/08/2017] [Accepted: 06/10/2017] [Indexed: 06/07/2023]
Abstract
In this study, a membrane bioreactor (MBR) was adopted for completely autotrophic nitrogen removal over nitrite (CANON) process. Zinc oxide nanoparticles (ZnO NPs) was step-wise increased to analyze the influence on nitrogen removal, microbial activity and microbial communities. Finally ZnO NPs was removed to study its recovery capability. The bioactivities of ammonia-oxidizing bacteria (AOB), anaerobic ammonia-oxidizing bacteria (AAOB) and nitrite-oxidizing bacteria (NOB) were detected by batch experiments. Results showed that the ZnO NPs with low concentration (≤5mgL-1) was profitable for nitrogen removal while the high concentration performed inhibition, and it lowered the abundance of both AOB and NOB while enhanced that of AAOB. ZnO NPs with high concentration (≥10mgL-1) suppressed both AOB and AAOB, and long-term exposure within ZnO NPs led to microbial diversity decrease. The inhibition threshold of ZnO NPs on CANON process was 10mgL-1, and the profitable concentration was 1mgL-1.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Nan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Haoqiang Fu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Tao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Sa Liu
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Shuhua Zheng
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, School of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Jie Zhang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|