1
|
Rana AK, Thakur VK. Advances and new horizons in metabolic engineering of heterotrophic bacteria and cyanobacteria for enhanced lactic acid production. BIORESOURCE TECHNOLOGY 2024; 419:131951. [PMID: 39647717 DOI: 10.1016/j.biortech.2024.131951] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/02/2024] [Revised: 10/21/2024] [Accepted: 12/03/2024] [Indexed: 12/10/2024]
Abstract
Bacteria species such as E.Coli, Lactobacilli, and pediococci play an important role as starter strains in fermentation food or polysaccharides into lactic acid. These bacteria were metabolically engineered using multiple proven genome editing methods to enhance relevant phenotypes. The efficacy of these procedures varies depending on the editing tool used and researchers' ability to pick suitable recombinants, which significantly increased genome engineering throughput. Cyanobacteria produce oxygenic photosynthesis and play an important role in carbon dioxide fixing. The fixed carbon dioxide is then retained as polysaccharides in cells and metabolised into various low carbon molecules such as lactate, succinate, and ethanol. Lactate is used as a building ingredient in various bioplastics, food additives, and medicines. This review covers the recent advances in lactic acid production through metabolic and genetic engineering in bacteria and cyanobacteria.
Collapse
Affiliation(s)
- A K Rana
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK; Department of Chemistry, Sri Sai University, Palampur 176061, India
| | - V K Thakur
- Biorefining and Advanced Materials Research Center, Scotland's Rural College (SRUC), Kings Buildings, West Mains Road, Edinburgh, Edinburgh, UK.
| |
Collapse
|
2
|
Jiao M, Wang K, Liu X, Tao Y, Du J, Lv Y, Lu J, Wang H. Bioconversion of spray corn husks into L-lactic acid with liquid hot water pretreatment. Int J Biol Macromol 2024; 258:129154. [PMID: 38171443 DOI: 10.1016/j.ijbiomac.2023.129154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2023] [Revised: 12/11/2023] [Accepted: 12/28/2023] [Indexed: 01/05/2024]
Abstract
Agricultural by-products like rice husk, bran, and spray corn husks, often utilized as feed, are considered less desirable. This study aims to enhance the utilization rate of these materials by subjecting then to liquid hot water (LHW) pretreatment, followed by enzymatic hydrolysis to produce fermentable sugars. We investigated the production of L-lactic acid using two methods: simultaneous saccharification fermentation (SSF) and separate hydrolysis fermentation (SHF), following varying intensities of LHW pretreatment. The results showed that the optimal enzymatic hydrolysis efficiency was achieved from spray corn husks under the pretreatment conditions of 155 °C and 15 min. SHF was generally more effective than SSF. The glucose L-lactic acid conversion rate in SHF using spray corn husks can reach more than 90 %. Overall, this work proposed a novel, environmental-friendly strategy for efficient and for L- lactic acid production from spray corn husks.
Collapse
Affiliation(s)
- Meizhen Jiao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Kaihua Wang
- Liaoning Vocational College of Light Industry, Dalian 116100, China.
| | - Xiaoyuan Liu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Yehan Tao
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jian Du
- Liaoning Vocational College of Light Industry, Dalian 116100, China
| | - Yanna Lv
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China
| | - Jie Lu
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| | - Haisong Wang
- Liaoning Key Lab of Lignocellulose Chemistry and BioMaterials, Liaoning Collaborative Innovation Center for Lignocellulosic Biorefinery, College of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, China.
| |
Collapse
|
3
|
He N, Chen M, Qiu Z, Fang C, Lidén G, Liu X, Zhang B, Bao J. Simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid production facilitates D-lactide synthesis. BIORESOURCE TECHNOLOGY 2023; 377:128950. [PMID: 36963700 DOI: 10.1016/j.biortech.2023.128950] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Revised: 03/18/2023] [Accepted: 03/20/2023] [Indexed: 06/18/2023]
Abstract
D-lactide is the precursor of poly(D-lactide) (PDLA) or stereo-complex with poly(L-lactide) (PLLA). Lignocellulosic biomass provides the essential feedstock option to synthesize D-lactic acid and D-lactide. The residual sugars in D-lactic acid fermentation broth significantly blocks the D-lactide synthesis. This study showed a simultaneous and rate-coordinated conversion of lignocellulose derived glucose, xylose, arabinose, mannose, and galactose into D-lactic acid by adaptively evolved Pediococcus acidilactici ZY271 by simultaneous saccharification and co-fermentation (SSCF) of wheat straw. The produced D-lactic acid achieved minimum residual sugars (∼1.7 g/L), high chirality (∼99.1%) and high titer (∼128 g/L). A dry acid pretreatment eliminated the wastewater stream generation and the biodetoxification by fungus Amorphotheca resinae ZN1 removed the inhibitors from the pretreatment. The removal of the sugar residues and inhibitor impurities in D-lactic acid production from lignocellulose strongly facilitated the D-lactide synthesis. This study filled the gap in cellulosic D-lactide production from lignocellulose-derived D-lactic acid.
Collapse
Affiliation(s)
- Niling He
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Mingxing Chen
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Zhongyang Qiu
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China; Jiangsu Key Laboratory for Biomass-based Energy and Enzyme Technology, Huaiyin Normal University, 111 West Changjiang Road, Huaian, Jiangsu 223300, China
| | - Chun Fang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Gunnar Lidén
- Department of Chemical Engineering, Lund University, 221 00 Lund, Sweden
| | - Xiucai Liu
- Cathay Biotech Inc, 1690 Cailun Road, Zhangjiang Hi-Tech Park, Shanghai 201203, China
| | - Bin Zhang
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China
| | - Jie Bao
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, 130 Meilong Road, Shanghai 200237, China.
| |
Collapse
|
4
|
Yan J, Sun Y, Kang Y, Meng X, Zhang H, Cai Y, Zhu W, Yuan X, Cui Z. An innovative strategy to enhance the ensiling quality and methane production of excessively wilted wheat straw: Using acetic acid or hetero-fermentative lactic acid bacterial community as additives. WASTE MANAGEMENT (NEW YORK, N.Y.) 2022; 149:11-20. [PMID: 35691057 DOI: 10.1016/j.wasman.2022.06.001] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2021] [Revised: 04/24/2022] [Accepted: 06/03/2022] [Indexed: 06/15/2023]
Abstract
Ensiling is an effective storage strategy for agricultural biomass, especially for energy crops (mainly energy grasses and maize). However, the ensiling of excessively wilted crop straw is limited due to material characteristics, such as a high lignocellulosic content and low water-soluble carbohydrate and moisture contents. In this study, acetic acid or hetero-fermentative lactic acid bacterial community (hetero-fermentative LAB) were employed as silage additives to improve the ensiling process of excessively wilted wheat straw (EWS). The results showed that the additives inhibited the growth of Enterobacteriaceae and Clostridium_sensu_stricto_12, whose abundances decreased from 55.8% to 0.03-0.2%, respectively. The growth of Lactobacillus was accelerated, and the abundances increased from 1.3% to 80.1-98.4% during the ensiling process. Lactic acid fermentation was the dominant metabolic pathway in the no additive treatment. The additives increased acetic acid fermentation and preserved the hemicellulose and cellulose contents, increasing the methane yield by 17.7-23.9%. This study shows that ensiling with acetic acid or hetero-fermentative LAB is an effective preservation and storage strategy for efficient methane production from EWS.
Collapse
Affiliation(s)
- Jing Yan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Yibo Sun
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Yuehua Kang
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xingyao Meng
- Department of Environmental Science and Engineering, Beijing Technology and Business University, Beijing 100048, China
| | - Huan Zhang
- College of Engineering, Nanjing Agriculture University, Nanjing 210014, China
| | - Yafan Cai
- School of Chemical Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Wanbin Zhu
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China
| | - Xufeng Yuan
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| | - Zongjun Cui
- College of Agronomy and Biotechnology, China Agriculture University, Beijing 100193, China.
| |
Collapse
|
5
|
Ma K, Cui Y, Zhao K, Yang Y, Wang Y, Hu G, He M. D-Lactic acid production from agricultural residues by membrane integrated continuous fermentation coupled with B vitamin supplementation. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:24. [PMID: 35246204 PMCID: PMC8897852 DOI: 10.1186/s13068-022-02124-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 02/22/2022] [Indexed: 11/10/2022]
Abstract
Background d-Lactic acid played an important role in the establishment of PLA as a substitute for petrochemical plastics. But, so far, the d-lactic acid production was limited in only pilot scale, which was definitely unable to meet the fast growing market demand. To achieve industrial scale d-lactic acid production, the cost-associated problems such as high-cost feedstock, expensive nutrient sources and fermentation technology need to be resolved to establish an economical fermentation process. Results In the present study, the combined effect of B vitamin supplementation and membrane integrated continuous fermentation on d-lactic acid production from agricultural lignocellulosic biomass by Lactobacillus delbrueckii was investigated. The results indicated the specific addition of vitamins B1, B2, B3 and B5 (VB1, VB2, VB3 and VB5) could reduce the yeast extract (YE) addition from 10 to 3 g/l without obvious influence on fermentation efficiency. By employing cell recycling system in 350 h continuous fermentation with B vitamin supplementation, YE addition was further reduced to 0.5 g/l, which resulted in nutrient source cost reduction of 86%. A maximum d-lactate productivity of 18.56 g/l/h and optical purity of 99.5% were achieved and higher than most recent reports. Conclusion These findings suggested the novel fermentation strategy proposed could effectively reduce the production cost and improve fermentation efficiency, thus exhibiting great potential in promoting industrial scale d-lactic acid production from lignocellulosic biomass. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s13068-022-02124-y. High d-lactic acid productivity is achieved by L. delbrueckii from rice straw. B vitamins are satisfied substitute of yeast extract for d-lactic acid fermentation. A process of membrane-integrated continuous fermentation with B vitamin is developed. High fermentation efficiency is achieved by the novel fermentation process.
Collapse
Affiliation(s)
- Kedong Ma
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.,Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Yubo Cui
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China. .,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China.
| | - Ke Zhao
- Key Laboratory of Songliao Aquatic Environment, Ministry of Education, Jilin Jianzhu University, Changchun, 130118, People's Republic of China
| | - Yuxuan Yang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Yidan Wang
- Key Laboratory of Biotechnology and Bioresources Utilization, Ministry of Education, Dalian Minzu University, Dalian, 116600, People's Republic of China.,College of Environment and Resources, Dalian Minzu University, Dalian, 116600, People's Republic of China
| | - Guoquan Hu
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China
| | - Mingxiong He
- Key Laboratory of Development and Application of Rural Renewable Energy, Ministry of Agriculture, Biomass Energy Technology Research Centre, Biogas Institute of Ministry of Agriculture, Chengdu, 610041, People's Republic of China.
| |
Collapse
|
6
|
Exploring the optimized strategy for 5-hydroxymethyl-2-furancarboxylic acid production from agriculture wastes using Pseudomonas aeruginosa PC-1. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.01.027] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
7
|
Abedi E, Hashemi SMB. Lactic acid production - producing microorganisms and substrates sources-state of art. Heliyon 2020; 6:e04974. [PMID: 33088933 PMCID: PMC7566098 DOI: 10.1016/j.heliyon.2020.e04974] [Citation(s) in RCA: 124] [Impact Index Per Article: 24.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Revised: 06/08/2020] [Accepted: 09/16/2020] [Indexed: 01/18/2023] Open
Abstract
Lactic acid is an organic compound produced via fermentation by different microorganisms that are able to use different carbohydrate sources. Lactic acid bacteria are the main bacteria used to produce lactic acid and among these, Lactobacillus spp. have been showing interesting fermentation capacities. The use of Bacillus spp. revealed good possibilities to reduce the fermentative costs. Interestingly, lactic acid high productivity was achieved by Corynebacterium glutamicum and E. coli, mainly after engineering genetic modification. Fungi, like Rhizopus spp. can metabolize different renewable carbon resources, with advantageously amylolytic properties to produce lactic acid. Additionally, yeasts can tolerate environmental restrictions (for example acidic conditions), being the wild-type low lactic acid producers that have been improved by genetic manipulation. Microalgae and cyanobacteria, as photosynthetic microorganisms can be an alternative lactic acid producer without carbohydrate feed costs. For lactic acid production, it is necessary to have substrates in the fermentation medium. Different carbohydrate sources can be used, from plant waste as molasses, starchy, lignocellulosic materials as agricultural and forestry residues. Dairy waste also can be used by the addition of supplementary components with a nitrogen source.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, College of Agriculture, Fasa University, Fasa, Iran
| | | |
Collapse
|
8
|
Liang S, Jiang W, Song Y, Zhou SF. Improvement and Metabolomics-Based Analysis of d-Lactic Acid Production from Agro-Industrial Wastes by Lactobacillus delbrueckii Submitted to Adaptive Laboratory Evolution. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2020; 68:7660-7669. [PMID: 32603099 DOI: 10.1021/acs.jafc.0c00259] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
To decrease d-lactic acid production cost, sugarcane molasses and soybean meal, low-cost agro-industrial wastes, were selected as feedstock. First, sugarcane molasses was used directly by Lactobacillus delbrueckii S-NL31, and the nutrients were released from soybean meal by protease hydrolysis. Subsequently, to ensure intensive substrate utilization and enhanced d-lactic acid production from sugarcane molasses and soybean meal, adaptation of L. delbrueckii S-NL31 to substrates was performed through adaptive laboratory evolution. After two-phase adaptive laboratory evolution, the evolved strain L. delbrueckii S-NL31-CM3-SBM with improved cell growth and d-lactic acid production on sugarcane molasses and soybean meal was obtained. To decipher the potential reasons for improved fermentation performance, a metabolomics-based approach was developed to profile the differences of intracellular metabolism between initial and evolved strain. The in-depth analysis elucidated how the key factors exerted influence on d-lactic acid biosynthesis. The results revealed that the enhancement of glycolysis pathway and cofactor supply was directly associated with increased lactic acid production, and the reinforcement of pentose phosphate pathway, amino acid metabolism, and oleic acid uptake improved cell survival and growth. These might be the main reasons for significantly improved d-lactic acid production by adaptive laboratory evolution. Finally, fed-batch simultaneous enzymatic hydrolysis of soybean meal and fermentation process by evolved strain resulted in d-lactic acid levels of 112.3 g/L, with an average production efficiency of 2.4 g/(L × h), a yield of 0.98 g/g sugar, and optical purity of 99.6%. The results show the applicability of d-lactic acid production in L. delbrueckii fed on agro-industrial wastes through adaptive laboratory evolution.
Collapse
Affiliation(s)
- Shaoxiong Liang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Wei Jiang
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Yibo Song
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| | - Shu-Feng Zhou
- College of Chemical Engineering, Huaqiao University, 668 Jimei Boulevard, Xiamen, Fujian 361021, P. R. China
| |
Collapse
|
9
|
Dhanya BS, Mishra A, Chandel AK, Verma ML. Development of sustainable approaches for converting the organic waste to bioenergy. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 723:138109. [PMID: 32229385 DOI: 10.1016/j.scitotenv.2020.138109] [Citation(s) in RCA: 42] [Impact Index Per Article: 8.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2019] [Revised: 03/09/2020] [Accepted: 03/20/2020] [Indexed: 05/22/2023]
Abstract
Dependence on fossil fuels such as oil, coal and natural gas are on alarming increase, thereby causing such resources to be in a depletion mode and a novel sustainable approach for bioenergy production are in demand. Successful implementation of zero waste discharge policy is one such way to attain a sustainable development of bioenergy. Zero waste discharge can be induced only through the conversion of organic wastes into bioenergy. Waste management is pivotal and considering its importance of minimizing the issue and menace of wastes, conversion strategy of organic waste is effectively recommended. Present review is concentrated on providing a keen view on the potential organic waste sources and the way in which the bioenergy is produced through efficient conversion processes. Biogas, bioethanol, biocoal, biohydrogen and biodiesel are the principal renewable energy sources. Different types of organic wastes used for bioenergy generation and its sources, anaerobic digestion-biogas production and its related process affecting parameters including fermentation, photosynthetic process and novel nano-inspired techniques are discussed. Bioenergy production from organic waste is associated with mitigation of lump waste generation and its dumping into land, specifically reducing all hazards and negativities in all sectors during waste disposal. A sustainable bioenergy sector with upgraded security for fuels, tackles the challenging climatic change problem also. Thus, intensification of organic waste conversion strategies to bioenergy, specially, biogas and biohydrogen production is elaborated and analyzed in the present article. Predominantly, persistent drawbacks of the existing organic waste conversion methods have been noted, providing consideration to economic, environmental and social development.
Collapse
Affiliation(s)
- B S Dhanya
- Department of Biotechnology, Udaya School of Engineering, Udaya Nagar, Kanyakumari, Tamil Nadu 629 204, India
| | - Archana Mishra
- Sustainable Agriculture Division, The Energy and Resources Institute, New Delhi, India
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Brazil
| | - Madan L Verma
- Department of Biotechnology, School of Basic Sciences, Indian Institute of Information Technology, Una, Himachal Pradesh, India.
| |
Collapse
|
10
|
Han X, Huang K, Tang H, Ni J, Liu J, Xu P, Tao F. Steps Toward High-Performance PLA: Economical Production of d-Lactate Enabled by a Newly Isolated Sporolactobacillus terrae Strain. Biotechnol J 2019; 14:e1800656. [PMID: 30810274 DOI: 10.1002/biot.201800656] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2018] [Revised: 12/21/2018] [Indexed: 11/10/2022]
Abstract
Optically pure d-lactate production has received much attention for its critical role in high-performance polylactic acid production. However, the current technology can hardly meet the comprehensive demand of industrialization on final titer, productivity, optical purity, and raw material costs. Here, an efficient d-lactate producer strain, Sporolactobacillus terrae (S. terrae) HKM-1, is isolated for d-lactate production. The strain HKM-1 shows extremely high d-lactate fermentative capability by using peanut meal, soybean meal, or corn steep liquor powder as a sole nitrogen source; the final titers (205.7 g L-1 , 218.9 g L-1 , and 193.9 g L-1 , respectively) and productivities (5.56 g L-1 h-1 , 5.34 g L-1 h-1 , and 3.73 g L-1 h-1 , respectively) of d-lactate reached the highest level ever reported. A comparative genomic analysis between S. terrae HKM-1 and previously reported d-lactate high-producing Sporolactobacillus inulinus (S. inulinus) CASD is conducted. The results show that many unrelated genetic features may contribute to the superior performance in d-lactate production of S. terrae HKM-1. This d-lactate producer HKM-1, along with its fermentation process, is promising for sustainable d-lactate production by using agro-industrial wastes.
Collapse
Affiliation(s)
- Xiao Han
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Kaiming Huang
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Hongzhi Tang
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Jun Ni
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Jiongqin Liu
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Ping Xu
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| | - Fei Tao
- State Key Laboratory of Microbial Metabolism Joint International Research Laboratory of Metabolic and Developmental Sciences and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai,, P. R. China
| |
Collapse
|
11
|
Wu B, Yu Q, Zheng S, Pedroso MM, Guddat LW, He B, Schenk G. Relative catalytic efficiencies and transcript levels of three d- and two l-lactate dehydrogenases for optically pure d-lactate production in Sporolactobacillus inulinus. Microbiologyopen 2018; 8:e00704. [PMID: 30066438 PMCID: PMC6528580 DOI: 10.1002/mbo3.704] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2018] [Revised: 07/02/2018] [Accepted: 07/03/2018] [Indexed: 11/23/2022] Open
Abstract
As the optical purity of the lactate monomer is pivotal for polymerization, the production of optically pure d‐lactate is of significant importance. Sporolactobacillus inulinus YBS1‐5 is a superior optically pure d‐lactate‐producing bacterium. However, little is known about the relationship between lactate dehydrogenases in S. inulinus YBS1‐5 and the optical purity of d‐lactate. Three potential d‐lactate dehydrogenase (D‐LDH1‐3)‐ and two putative l‐lactate dehydrogenase (L‐LDH1‐2)‐encoding genes were cloned from the YBS1‐5 strain and expressed in Escherichia coli D‐LDH1 exhibited the highest catalytic efficiency toward pyruvate, whereas two L‐LDHs showed low catalytic efficiency. Different neutralizers significantly affected the optical purity of d‐lactate produced by strain YBS1‐5 as well as the transcription levels of ldhDs and ldhLs. The high catalytic efficiency of D‐LDH1 and elevated ldhD1 mRNA levels suggest that this enzyme is essential for d‐lactate synthesis in S. inulinus YBS1‐5. The correlation between the optical purity of d‐lactate and transcription levels of ldhL1 in the case of different neutralizers indicate that ldhL1 is a key factor affecting the optical purity of d‐lactate in S. inulinus YBS1‐5.
Collapse
Affiliation(s)
- Bin Wu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Qi Yu
- College of Biotechnology and Pharmaceutical Engineering, Nanjing Tech University, Nanjing, China
| | - Shan Zheng
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Marcelo Monteiro Pedroso
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Luke W Guddat
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| | - Bingfang He
- School of Pharmaceutical Sciences, Nanjing Tech University, Nanjing, China
| | - Gerhard Schenk
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Australia
| |
Collapse
|
12
|
Liang S, Gao D, Liu H, Wang C, Wen J. Metabolomic and proteomic analysis of D-lactate-producing Lactobacillus delbrueckii under various fermentation conditions. J Ind Microbiol Biotechnol 2018; 45:681-696. [PMID: 29808292 DOI: 10.1007/s10295-018-2048-y] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2018] [Accepted: 05/19/2018] [Indexed: 11/29/2022]
Abstract
As an important feedstock monomer for the production of biodegradable stereo-complex poly-lactic acid polymer, D-lactate has attracted much attention. To improve D-lactate production by microorganisms such as Lactobacillus delbrueckii, various fermentation conditions were performed, such as the employment of anaerobic fermentation, the utilization of more suitable neutralizing agents, and exploitation of alternative nitrogen sources. The highest D-lactate titer could reach 133 g/L under the optimally combined fermentation condition, increased by 70.5% compared with the control. To decipher the potential mechanisms of D-lactate overproduction, the time-series response of intracellular metabolism to different fermentation conditions was investigated by GC-MS and LC-MS/MS-based metabolomic analysis. Then the metabolomic datasets were subjected to weighted correlation network analysis (WGCNA), and nine distinct metabolic modules and eight hub metabolites were identified to be specifically associated with D-lactate production. Moreover, a quantitative iTRAQ-LC-MS/MS proteomic approach was employed to further analyze the change of intracellular metabolism under the combined fermentation condition, identifying 97 up-regulated and 42 down-regulated proteins compared with the control. The in-depth analysis elucidated how the key factors exerted influence on D-lactate biosynthesis. The results revealed that glycolysis and pentose phosphate pathways, transport of glucose, amino acids and peptides, amino acid metabolism, peptide hydrolysis, synthesis of nucleotides and proteins, and cell division were all strengthened, while ATP consumption for exporting proton, cell damage, metabolic burden caused by stress response, and bypass of pyruvate were decreased under the combined condition. These might be the main reasons for significantly improved D-lactate production. These findings provide the first omics view of cell growth and D-lactate overproduction in L. delbrueckii, which can be a theoretical basis for further improving the production of D-lactate.
Collapse
Affiliation(s)
- Shaoxiong Liang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Dacheng Gao
- Dalian Research Institute of Petroleum and Petrochemicals, SINOPEC, Dalian, 116000, People's Republic of China
| | - Huanhuan Liu
- State Key Laboratory of Food Nutrition and Safety, Tianjin University of Science and Technology, Tianjin, 300457, China.,Key Laboratory of Food Nutrition and Safety, Ministry of Education, Tianjin University of Science and Technology, Tianjin, 300457, China
| | - Cheng Wang
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China.,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China
| | - Jianping Wen
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin, 300072, People's Republic of China. .,SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin, 300072, People's Republic of China.
| |
Collapse
|
13
|
Hu Z, Chang J, Yu J, Li S, Niu H. Diversity of bacterial community during ensiling and subsequent exposure to air in whole-plant maize silage. ASIAN-AUSTRALASIAN JOURNAL OF ANIMAL SCIENCES 2018; 31:1464-1473. [PMID: 29747496 PMCID: PMC6127572 DOI: 10.5713/ajas.17.0860] [Citation(s) in RCA: 35] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/23/2017] [Accepted: 04/18/2018] [Indexed: 11/27/2022]
Abstract
Objective To describe in-depth sequencing, the bacterial community diversity and its succession during ensiling of whole-plant maize and subsequent exposure to air. Methods The microbial community dynamics of fermented whole-plant maize for 60 days (sampled on day 5, 10, 20, 40, 60) and subsequent aerobic exposure (sampled on day 63 after exposure to air for 3 days) were explored using Illumina Miseq sequence platform. Results A total of 227,220 effective reads were obtained. At the genus level, there were 12 genera with relative abundance >1%, Lactobacillus, Klebsiella, Sporolactobacillus, Norank-c-cyanobacteria, Pantoea, Pediococcus, Rahnella, Sphingomonas, Serratia, Chryseobacterium, Sphingobacterium, and Lactococcus. Lactobacillus consistently dominated the bacterial communities with relative abundance from 49.56% to 64.17% during the ensiling process. Klebsiella was also an important succession bacterium with a decrease tendency from 15.20% to 6.41% during the ensiling process. The genus Sporolactobacillus appeared in late-ensiling stages with 7.70% abundance on day 40 and 5.32% on day 60. After aerobic exposure, the Lactobacillus decreased its abundance from 63.2% on day 60 to 45.03% on d 63, and Klebsiella from 5.51% to 5.64%, while Sporolactobacillus greatly increased its abundance to 28.15%. These bacterial genera belong to 5 phyla: Firmicutes (relative abundance: 56.38% to 78.43%) was dominant, others were Proteobacteria, Bacteroidetes, Cyanobacteria, and Actinobacteria. The bacterial communities clearly clustered into early-ensiling (d 5), medium-ensiling (d 10, d 20), late-ensiling (d 40, d 60), and aerobic exposure (d 63) clusters, with early- and late-ensiling communities more like each other than to the aerobic exposure communities. Conclusion High-throughput sequencing based on 16S rRNA genes proved to be a useful method to explore bacterial communities of silage. The results indicated that the bacterial communities varied during fermentation and more dramatically during aerobic exposure. The study is valuable for understanding the mechanism of population change and the relationship between bacteria and ensilage characteristics.
Collapse
Affiliation(s)
- Zongfu Hu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China.,Inner Mongolia Key Laboratory of Toxicant Monitoring and Toxicology, Tongliao, China
| | - Jie Chang
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Jianhua Yu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Shuguo Li
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| | - Huaxin Niu
- College of Animal Science and Technology, Inner Mongolia University for Nationalities, Tongliao 028000, China
| |
Collapse
|
14
|
Grewal J, Khare SK. One-pot bioprocess for lactic acid production from lignocellulosic agro-wastes by using ionic liquid stable Lactobacillus brevis. BIORESOURCE TECHNOLOGY 2018; 251:268-273. [PMID: 29288954 DOI: 10.1016/j.biortech.2017.12.056] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/13/2017] [Revised: 12/17/2017] [Accepted: 12/18/2017] [Indexed: 06/07/2023]
Abstract
The lignocellulosic agro-wastes are an attractive renewable resource in biorefinery for production of value-added platform chemicals and biofuels. The study describes use of different agro-wastes as substrate for production of lactic acid, a C3-platform chemical and high demand industrial product by Lactobacillus brevis in a one-pot bioprocess. The simultaneous saccharification and co-fermentation (SSCF) process was achieved by L. brevis governed fermentation of sugars, derived from saccharification of ionic liquid pretreated feedstocks by nanoimmobilized cellulase, which was further recovered and used for consecutive cycle. The lactic acid yields of 0.22, 0.49, 0.52 g/g were obtained from cottonseed cake, wheat straw and sugarcane bagasse, respectively. The ionic liquid-tolerant L. brevis, cellulolytic reusable nanoimmobilized enzyme coupled with valorization of renewable feedstocks points towards a holistic approach for future biorefineries with sustainable production of bioproducts.
Collapse
Affiliation(s)
- Jasneet Grewal
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India
| | - S K Khare
- Enzyme and Microbial Biochemistry Laboratory, Department of Chemistry, Indian Institute of Technology Delhi, Hauz Khas, New Delhi 110016, India.
| |
Collapse
|
15
|
Liu J, Ma Z, Zhu H, Caiyin Q, Liang D, Wu H, Huang X, Qiao J. Improving xylose utilization of defatted rice bran for nisin production by overexpression of a xylose transcriptional regulator in Lactococcus lactis. BIORESOURCE TECHNOLOGY 2017; 238:690-697. [PMID: 28499254 DOI: 10.1016/j.biortech.2017.04.076] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2017] [Revised: 04/18/2017] [Accepted: 04/19/2017] [Indexed: 06/07/2023]
Abstract
Present investigation explores the potential of defatted rice bran (DRB) serving as sole carbon source and partial nitrogen source to support Lactococcus lactis growth and nisin production. To retain the nutrients in DRB, especially protein fractions, thermal pretreatment followed by enzymatic hydrolysis without washing step was applied for saccharification. A maximum of 45.64g reducing sugar mainly containing 30.26g glucose and 5.66g xylose from 100g DRB was attained in hydrolysates of DRB (HD). A novel strategy of xylR (xylose transcriptional regulator) overexpression followed by evolutionary engineering was proposed, which significantly increased the capacity of L. lactis to metabolize xylose. Subsequently, RT-PCR results indicated that xylR overexpression stimulated expression of xylose assimilation genes synergistically with exposure to xylose. In HD medium, the highest nisin titer of the engineered strain FEXR was 3824.53IU/mL, which was 1.37 times of that in sucrose medium by the original strain F44.
Collapse
Affiliation(s)
- Jiaheng Liu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Zelin Ma
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hongji Zhu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Qinggele Caiyin
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
| | - Dongmei Liang
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Hao Wu
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China
| | - Xu Huang
- China Oil & Foodstuffs Corporation (COFCO), Nutrition and Health Research Institute, China
| | - Jianjun Qiao
- Key Laboratory of Systems Bioengineering, Ministry of Education (Tianjin University), Tianjin 300072, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China; Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), Tianjin 300072, China.
| |
Collapse
|