1
|
Cui JQ, Li YQ, Ntakirutimana S, Liu ZH, Li BZ, Yuan YJ. Surfactant-assisted ethylenediamine for the deconstruction and conversion of corn stover biomass. BIORESOURCE TECHNOLOGY 2023; 382:129174. [PMID: 37187332 DOI: 10.1016/j.biortech.2023.129174] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
Lignocellulosic biomass is a promising feedstock to produce sustainable fuels and energy toward a green bioeconomy. A surfactant-assisted ethylenediamine (EDA) was developed for the deconstruction and conversion of corn stover in this study. The effects of surfactants on the whole conversion process of corn stover was also evaluated. The results showed that xylan recovery and lignin removal in solid fraction were significantly enhanced by surfactant-assisted EDA. The glucan and xylan recoveries in solid fraction reached 92.1% and 65.7%, respectively, while the lignin removal was 74.5% by sodium dodecyl sulfate (SDS)-assisted EDA. SDS-assisted EDA also improved the sugar conversion in 12 h enzymatic hydrolysis at low enzyme loadings. The ethanol production and glucose consumption of washed EDA pretreated corn stover in simultaneous saccharification and co-fermentation were improved with the addition of 0.001 g/mL SDS. Therefore, surfactant-assisted EDA showed the potential to improve the bioconversion performance of biomass.
Collapse
Affiliation(s)
- Jia-Qi Cui
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Ya-Qi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Samuel Ntakirutimana
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Zhi-Hua Liu
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| | - Bing-Zhi Li
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China.
| | - Ying-Jin Yuan
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems, Bioengineering (Ministry of education), Tianjin, China; School of Chemical Engineering and Technology, Tianjin University, Tianjin, China
| |
Collapse
|
2
|
Ziaei-Rad Z, Pazouki M, Fooladi J, Azin M, Gummadi SN, Allahverdi A. Investigation of a robust pretreatment technique based on ultrasound-assisted, cost-effective ionic liquid for enhancing saccharification and bioethanol production from wheat straw. Sci Rep 2023; 13:446. [PMID: 36624114 PMCID: PMC9829663 DOI: 10.1038/s41598-022-27258-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2022] [Accepted: 12/28/2022] [Indexed: 01/11/2023] Open
Abstract
Application of cost-effective pretreatment of wheat straw is an important stage for massive bioethanol production. A new approach is aimed to enhance the pretreatment of wheat straw by using low-cost ionic liquid [TEA][HSO4] coupled with ultrasound irradiation. The pretreatment was conducted both at room temperature and at 130 °C with a high biomass loading rate of 20% and 20% wt water assisted by ultrasound at 100 W-24 kHz for 15 and 30 min. Wheat straw pretreated at 130 °C for 15 and 30 min had high delignification rates of 67.8% and 74.9%, respectively, and hemicellulose removal rates of 47.0% and 52.2%. Moreover, this pretreatment resulted in producing total reducing sugars of 24.5 and 32.1 mg/mL in enzymatic saccharification, respectively, which corresponds to saccharification yields of 67.7% and 79.8% with commercial cellulase enzyme CelluMax for 72 h. The ethanol generation rates of 38.9 and 42.0 g/L were attained for pretreated samples for 15 and 30 min, equivalent to the yields of 76.1% and 82.2% of the maximum theoretical yield following 48 h of fermentation. This demonstration provided a cheap and promising pretreatment technology in terms of efficiency and shortening the pretreatment time based on applying low-cost ionic liquid and efficient ultrasound pretreatment techniques, which facilitated the feasibility of this approach and could further develop the future of biorefinery.
Collapse
Affiliation(s)
- Zhila Ziaei-Rad
- Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran. .,Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| | - Mohammad Pazouki
- Department of Energy, Materials and Energy Research Center, Karaj, Iran.
| | - Jamshid Fooladi
- grid.411354.60000 0001 0097 6984Department of Biotechnology, Faculty of Biological Science, Alzahra University, Tehran, Iran
| | - Mehrdad Azin
- grid.459609.70000 0000 8540 6376Department of Biotechnology, Iranian Research Organization for Science & Technology, Tehran, Iran
| | - Sathyanarayana N. Gummadi
- grid.417969.40000 0001 2315 1926Department of Biotechnology, BJM School of Biosciences, Indian Institute of Technology Madras, Chennai, 600 036 India
| | - Abdollah Allahverdi
- grid.412266.50000 0001 1781 3962Department of Biophysics, Faculty of Biological Science, Tarbiat Modares University, Tehran, 14115-154 Iran
| |
Collapse
|
3
|
Kabir MM, Alam F, Akter MM, Gilroyed BH, Didar-Ul-Alam M, Tijing L, Shon HK. Highly effective water hyacinth (Eichhornia crassipes) waste-based functionalized sustainable green adsorbents for antibiotic remediation from wastewater. CHEMOSPHERE 2022; 304:135293. [PMID: 35718030 DOI: 10.1016/j.chemosphere.2022.135293] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2022] [Revised: 05/28/2022] [Accepted: 06/07/2022] [Indexed: 06/15/2023]
Abstract
Azithromycin (AZIM) is considered as one of the most frequently prescribed antibiotics (ABs) in the world by medical professionals. This study explored, two novel, cheap and environmentally beneficial adsorbents i.e., alkali treated water hyacinth powder (AT-WHP) and graphene oxide-water hyacinth-polyvinyl alcohol (GO-WH-PVA) composite, fabricated from water hyacinth (Eichhornia crassipes) waste to remediate AZIM from wastewater. Biosorption experiments were performed by batch and packed-bed column studies and the adsorbents were characterized using various instrumental methods. The morpho-chemical profile of the adsorbents suggested noteworthy AZIM adsorption. AZIM adsorption data can be reasonably explained by pseudo second order (PSO) kinetic model with maximum regression coefficient (R2 > 0.99) and lowest Marquardt's present standard deviation (MPSD) and root mean squared error (RMSE) values. The isotherm models recommended Langmuir and Temkin to be the best-fitted, providing highest regression coefficient and lowest error values. Conferring to Langmuir model, the theoretical highest adsorption potentials (qmax) were accounted to be 244.498 and 338.115 mg/g for AT-WHP and GO-WH-PVA, correspondingly, very close to experimental values (qe, exp). AZIM adsorption processes were governed by the chemisorption mechanisms. The adsorbents had excellent regeneration potential and could be reused several times. In order to scale-up application of the adsorbents, performance of a 100 L packed-bed reactor was assessed and a breakthrough time of adsorption for GO-WH-PVA was 15 min in 5000 mg/L AZIM concentration. Thus, the absorbents synthesized in this study can be considered highly effective at removal of AZIM from wastewater.
Collapse
Affiliation(s)
- Mohammad Mahbub Kabir
- Department of Environmental Science & Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh; Research Cell, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh.
| | - Faisal Alam
- Department of Environmental Science & Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Mst Mahmoda Akter
- Department of Environmental Science & Disaster Management, Noakhali Science and Technology University, Noakhali, 3814, Bangladesh
| | - Brandon H Gilroyed
- School of Environmental Sciences, University of Guelph Ridgetown Campus, Ridgetown, N0P 2C0, Canada
| | - Md Didar-Ul-Alam
- Research Cell, Noakhali Science & Technology University, Noakhali, 3814, Bangladesh
| | - Leonard Tijing
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, 2007, New South Wales, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia
| | - Ho Kyong Shon
- Centre for Technology in Water and Wastewater (CTWW), School of Civil and Environmental Engineering, University of Technology Sydney (UTS), 15 Broadway, Ultimo, 2007, New South Wales, Australia; ARC Research Hub for Nutrients in a Circular Economy, University of Technology Sydney, PO Box 123, 15 Broadway, Ultimo, New South Wales, 2007, Australia.
| |
Collapse
|
4
|
Cellulosic Ethanol Production Using Waste Wheat Stillage after Microwave-Assisted Hydrotropic Pretreatment. MOLECULES (BASEL, SWITZERLAND) 2022; 27:molecules27186097. [PMID: 36144825 PMCID: PMC9506164 DOI: 10.3390/molecules27186097] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/02/2022] [Revised: 09/13/2022] [Accepted: 09/14/2022] [Indexed: 11/16/2022]
Abstract
One of the key elements influencing the efficiency of cellulosic ethanol production is the effective pretreatment of lignocellulosic biomass. The aim of the study was to evaluate the effect of microwave-assisted pretreatment of wheat stillage in the presence of sodium cumene sulphonate (NaCS) hydrotrope used for the production of second-generation bioethanol. As a result of microwave pretreatment, the composition of the wheat stillage biomass changed significantly when compared with the raw material used, before treatment. Microwave-assisted pretreatment with NaCS effectively reduced the lignin content and hemicellulose, making cellulose the dominant component of biomass, which accounted for 42.91 ± 0.10%. In post pretreatment, changes in biomass composition were also visible on FTIR spectra. The peaks of functional groups and bonds characteristic of lignins (C-O vibration in the syringyl ring, asymmetric bending in CH3, and aromatic skeleton C-C stretching) decreased. The pretreatment of the analyzed lignocellulosic raw material with NaCS resulted in the complete conversion of glucose to ethanol after 48 h of the process, with yield (in relation to the theoretical one) of above 91%. The highest observed concentration of ethanol, 23.57 ± 0.10 g/L, indicated the high effectiveness of the method used for the pretreatment of wheat stillage that did not require additional nutrient supplementation.
Collapse
|
5
|
Lin X, Jiang K, Liu X, Han D, Zhang Q. Review on development of ionic liquids in lignocellulosic biomass refining. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/03/2023]
|
6
|
Chen SJ, Chen X, Zhu MJ. Xylose recovery and bioethanol production from sugarcane bagasse pretreated by mild two-stage ultrasonic assisted dilute acid. BIORESOURCE TECHNOLOGY 2022; 345:126463. [PMID: 34896260 DOI: 10.1016/j.biortech.2021.126463] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 11/13/2021] [Accepted: 11/27/2021] [Indexed: 06/14/2023]
Abstract
Pretreatment can improve biomass biodegradability. Here, a novel sugarcane bagasse (SCB) pretreatment process based on two-stage ultrasonic assisted dilute H2SO4 (TUDA) under mild conditions was reported. After optimization, the pretreatment was shown to significantly degrade hemicellulose (92.40%) and remove lignin (57.41%) of SCB, leading to reduction of inhibitors and an ethanol fermentation efficiency of 93.37% by SSCF under cellulase 10 FPU/g SCB and 30% pretreated SCB loading. Physical characterization revealed that two-stage ultrasonic could better disrupt SCB than traditional ultrasonic by amplifying the collapse effect and synergistically promoting lignin removal through dilute H2SO4. Furthermore, xylose was also effectively recovered from pretreatment supernatant by biochar derived from bagasse. This study established a simple and efficient pretreatment process for high value-added recycling of SCB from solid residue to pretreatment liquid.
Collapse
Affiliation(s)
- Sheng-Jie Chen
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China
| | - Xiong Chen
- Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China
| | - Ming-Jun Zhu
- School of Biology and Biological Engineering, Guangdong Key Laboratory of Fermentation and Enzyme Engineering, South China University of Technology, Guangzhou Higher Education Mega Center, Panyu, Guangzhou 510006, People's Republic of China; Key Laboratory of Fermentation Engineering (Ministry of Education), Hubei University of Technology, Wuhan 430068, Hubei, People's Republic of China; The Key Laboratory of Biological Resources and Ecology of Pamirs Plateau in Xinjiang Uygur Autonomous Region, The Key Laboratory of Ecology and Biological Resources in Yark and Oasis at Colleges & Universities under the Department of Education of Xinjiang Uygur Autonomous Region, College of Life and Geographic Sciences, Kashi University, Kashi 844006, People's Republic of China.
| |
Collapse
|
7
|
Ezzariai A, Hafidi M, Ben Bakrim W, Kibret M, Karouach F, Sobeh M, Kouisni L. Identifying Advanced Biotechnologies to Generate Biofertilizers and Biofuels From the World's Worst Aquatic Weed. Front Bioeng Biotechnol 2022; 9:769366. [PMID: 35004639 PMCID: PMC8727915 DOI: 10.3389/fbioe.2021.769366] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2021] [Accepted: 11/25/2021] [Indexed: 11/13/2022] Open
Abstract
Water hyacinth (Eichhornia crassipes L.) was introduced as an invasive plant in freshwater bodies more particularly in Asia and Africa. This invasive plant grows rapidly and then occupies a huge layer of freshwater bodies. Hence, challenges are facing many countries for implementing suitable approaches for the valorization of the world's worst aquatic weed, and water hyacinth (WH). A critical and up-to-date review article has been conducted for more than 1 year, based on more than 100 scientific journal articles, case studies, and other scientific reports. Worldwide distribution of WH and the associated social, economic, and environmental impacts were described. In addition, an extensive evaluation of the most widely used and innovative valorization biotechnologies, leading to the production of biofertilizer and bioenergy from WH, and was dressed. Furthermore, an integrated search was used in order to examine the related advantages and drawbacks of each bioprocess, and future perspectives stated. Aerobic and anaerobic processes have their specific basic parameters, ensuring their standard performances. Composting was mostly used even at a large scale, for producing biofertilizers from WH. Nevertheless, this review explored some critical points to better optimize the conditions (presence of pollutants, inoculation, and duration) of composting. WH has a high potential for biofuel production, especially by implementing several pretreatment approaches. This review highlighted the combined pretreatment (physical-chemical-biological) as a promising approach to increase biofuel production. WH valorization must be in large quantities to tackle its fast proliferation and to ensure the generation of bio-based products with significant revenue. So, a road map for future researches and applications based on an advanced statistical study was conducted. Several recommendations were explored in terms of the choice of co-substrates, initial basic parameters, and pretreatment conditions and all crucial conditions for the production of biofuels from WH. These recommendations will be of a great interest to generate biofertilizers and bioenergy from WH, especially within the framework of a circular economy.
Collapse
Affiliation(s)
- Amine Ezzariai
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Mohamed Hafidi
- Laboratoire Biotechnologies Microbiennes, Agrosciences et Environnement (BioMagE), Unité de Recherche Labellisée, Faculty of Science Semlalia, Cadi Ayyad University, Marrakech, Morocco.,Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Widad Ben Bakrim
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco.,Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Mulugeta Kibret
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco.,Department of Biology, Bahir Dar University, Bahir Dar, Ethiopia
| | - Fadoua Karouach
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| | - Mansour Sobeh
- Agrobiosciences Department, Mohammed VI Polytechnic University, Benguérir, Morocco
| | - Lamfeddal Kouisni
- African Sustainable Agriculture Research Institute, Mohammed VI Polytechnic University, Laayoune, Morocco
| |
Collapse
|
8
|
Cao DQ, Tian F, Wang X, Zhang WY, Hao XD, Wang QH. Recovery of polymeric substances from excess sludge: Surfactant-enhanced ultrasonic extraction and properties analysis. CHEMOSPHERE 2021; 283:131181. [PMID: 34146882 DOI: 10.1016/j.chemosphere.2021.131181] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2020] [Revised: 04/12/2021] [Accepted: 06/05/2021] [Indexed: 06/12/2023]
Abstract
The recovery of polymeric substances from excess sludge is gaining significant research interest in future wastewater treatment technologies. We present a surfactant-enhanced ultrasonic method to extract mixed polymeric substances with typical functional groups from excess sludge. Four potential reasons were revealed for the higher efficiency upon ultrasonication with surfactant: low surface tension, damage of non-covalent bonds between extracellular polymeric substances and cells, enhanced dissolution of polymeric substances, and release of intracellular polymeric substances caused by cell lysis. The increase in extraction efficiency after the addition of cetyltrimethylammonium bromide and sodium dodecyl sulfate reached the maximum of 76.5% and 53.1%, respectively. The contents of polysaccharides, proteins, and DNA were approximately 50% of the total polymeric substances, and the content of protein was higher than that of polysaccharide; the concentration change of the surfactant had a minimal effect on these contents. For the polymeric substances extracted via ultrasonication with surfactant, the size was smaller than that for the non-surfactant extraction; moreover, the contents of metals decreased significantly (Al: 0.18% → 0%; Na: 0.15% → 0%; Ca: 0.24% → 0.11%), which was probably caused by the interaction between the surfactant and metal ions in the excess sludge. The surfactant had a negligible effect on the properties of polymeric substances, adsorption capacity of polymeric substances for heavy metal ions, and dewatering performance of sludge. The recycled polymeric substances may be used as a substitute for commercial adsorbents of heavy metal ions. Thus, the obtained results provide further insight into the recovery of polymeric substances from excess sludge via the surfactant-enhanced ultrasonic method.
Collapse
Affiliation(s)
- Da-Qi Cao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Feng Tian
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Xin Wang
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Wen-Yu Zhang
- Institute of Soil Environment and Pollution Remediation, Beijing Municipal Research Institute of Environmental Protection, Beijing, 100037, China
| | - Xiao-Di Hao
- Sino-Dutch R&D Centre for Future Wastewater Treatment Technologies, Key Laboratory of Urban Stormwater System and Water Environment, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Qun-Hui Wang
- Beijing Key Laboratory of Resource-oriented Treatment of Industrial Pollutants, University of Science and Technology Beijing, 30 Xueyuan Road, Haidian District, Beijing, 100083, China
| |
Collapse
|
9
|
Abstract
Fungal delignification can be a feasible process to pretreat biomass for bioethanol production if its performance is improved in terms of efficiency through a few modifications. The aim of this study was to enhance the biodelignification pretreatment of rice straw using laccase in the presence of ionic liquid (1-Allyl-3-methylimidazolium chloride, [AMIM]Cl) or surfactant (TritonX-100). Addition of 750 mg/L [AMIM]Cl and 500 mg/L TritonX-100 increases the lignin removal to 18.49% and 31.79%, which is higher than that of laccase only (11.97%). The enzymatic saccharification process was carried out based on different strategies. The highest cellulose conversion, 40.96%, 38.24%, and 37.91%, was obtained after 72 h of enzymatic saccharification when the substrate was washed with distilled water after pretreatment of rice straw with laccase + TritonX-100, laccase + [AMIM]Cl, and laccase only, respectively. In addition, the morphology and structure changes of pretreated and untreated rice straw were studied. Both surface area and cellulose crystallinity are substantially altered after laccase + [AMIM]Cl and laccase + TritonX-100 pretreatment. Enhanced saccharification efficiency of rice straw was achieved by laccase pretreatment with ionic liquid or surfactant in a single system.
Collapse
|
10
|
Jeong SY, Lee EJ, Ban SE, Lee JW. Structural characterization of the lignin-carbohydrate complex in biomass pretreated with Fenton oxidation and hydrothermal treatment and consequences on enzymatic hydrolysis efficiency. Carbohydr Polym 2021; 270:118375. [PMID: 34364619 DOI: 10.1016/j.carbpol.2021.118375] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 06/05/2021] [Accepted: 06/23/2021] [Indexed: 10/21/2022]
Abstract
In this study, lignin-carbohydrate complexes (LCCs) were isolated from biomass (raw and pretreated) to investigate the structural changes in biomass pretreated by Fenton oxidation and hydrothermal treatment, and their effect on enzymatic hydrolysis. The composition and structure of the LCCs fractions were investigated via carbohydrate analysis, XRD, FT-IR, and 2D HSQC NMR. The biomass degradation rate of yellow poplar and larch during Fenton oxidation and hydrothermal treatment was approximately 30%. Most of the hemicellulose was degraded during pretreatment, while xylan remained in the yellow poplar, and galactan, mannan, and xylan remained in the larch. The fractional yield of glucan-rich LCC (LCC1) in the yellow poplar (raw and pretreated biomass) was high, while that of glucomannan-rich LCC (LCC3) in larch was higher than the yield yellow poplar. Phenyl glycoside, γ-ester, and benzyl ether linkages were observed in the LCCs of yellow poplar, while phenyl glycoside and γ-ester were detected in those of larch. Following pretreatment, the frequencies of β-β', β-5, and γ-ester in the LCCs of larch were found to be higher than in those of yellow poplar. The efficiencies of enzymatic hydrolysis for the pretreated yellow poplar and larch were 93.53% and 26.23%, respectively. These finding indicated that the β-β', β-5, and γ-ester linkages included in the pretreated biomass affected the efficiency of enzymatic hydrolysis.
Collapse
Affiliation(s)
- So-Yeon Jeong
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Eun-Ju Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Se-Eun Ban
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea
| | - Jae-Won Lee
- Department of Wood Science and Engineering, College of Agriculture and Life Sciences, Chonnam National University, Gwangju 61186, Republic of Korea; Interdisciplinary Program in IT-Bio Convergence System, Chonnam National University, Gwangju 61186, Republic of Korea.
| |
Collapse
|
11
|
Vaid S, Sharma S, Bajaj BK. Chemo-enzymatic approaches for consolidated bioconversion of Saccharum spontaneum biomass to ethanol-biofuel. BIORESOURCE TECHNOLOGY 2021; 329:124898. [PMID: 33691204 DOI: 10.1016/j.biortech.2021.124898] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2021] [Revised: 02/19/2021] [Accepted: 02/20/2021] [Indexed: 06/12/2023]
Abstract
A novel strategy involving sodium dodecylsulfate (SDS) (SDS assisted tris (2-hydroxyethyl) methyl- ammonium methyl sulphate ([TMA][MeSO4], ionic liquid) pretreatment of Saccharum spontaneum biomass (SSB) following its enzymatic saccharification, and conversion into ethanol-biofuel in a consolidated bioprocess (CBP) was developed. Ionic liquid stable enzyme preparation developed from Bacillus subtilis G2 was used for saccharification. Optimized pretreatment and saccharification variables enhanced the sugar yield (2.35-fold), which was fermented to ethanol content of 104.42 mg/g biomass with an efficiency of 35.73%. The pretreated biomass was examined for textural/ultrastructural alterations by scanning electron microscopy (SEM), 1H/13C nuclear magnetic resonance (NMR), Fourier transform infrared spectroscopy (FT-IR), X-ray diffraction (XRD), surface area measurements, water retention value, and cellulase adsorption isotherms. The combined [TMA][MeSO4] and SDS pretreatment disrupted the lignocellulosic microfibrils, and increased the porosity and surface area. The study provides new mechanistic insights on combined IL and surfactant pretreatment of biomass for its efficient conversion to biofuel.
Collapse
Affiliation(s)
- Surbhi Vaid
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Surbhi Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
12
|
Jin S, Gao M, Cheng Y, Yang B, Kuang H, Wang Z, Yi S, Wang B, Fu Y. Surfactant‐assisted and ionic liquid aqueous system pretreatment for biocatalysis of resveratrol from grape seed residue using an immobilized microbial consortia. J FOOD PROCESS PRES 2021. [DOI: 10.1111/jfpp.15279] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
Affiliation(s)
- Shuang Jin
- College of pharmacy Heilongjiang University of Chinese Medicine Harbin PR China
- Key Laboratory of Chinese Materia MedicaMinistry of Education Harbin PR China
| | - Mengmeng Gao
- College of pharmacy Heilongjiang University of Chinese Medicine Harbin PR China
- Key Laboratory of Chinese Materia MedicaMinistry of Education Harbin PR China
| | - Yupeng Cheng
- College of pharmacy Heilongjiang University of Chinese Medicine Harbin PR China
- Key Laboratory of Chinese Materia MedicaMinistry of Education Harbin PR China
| | - Bingyou Yang
- College of pharmacy Heilongjiang University of Chinese Medicine Harbin PR China
- Key Laboratory of Chinese Materia MedicaMinistry of Education Harbin PR China
| | - Haixue Kuang
- College of pharmacy Heilongjiang University of Chinese Medicine Harbin PR China
- Key Laboratory of Chinese Materia MedicaMinistry of Education Harbin PR China
| | - Zaidong Wang
- Heilongjiang academy of Chinese medicine Harbin PR China
| | - Shihua Yi
- Heilongjiang academy of Chinese medicine Harbin PR China
| | - Bing Wang
- Heilongjiang academy of Chinese medicine Harbin PR China
| | - Yujie Fu
- State Engineering Laboratory of Bio‐Resource Eco‐Utilization Northeast Forestry University Harbin PR China
| |
Collapse
|
13
|
Haldar D, Purkait MK. A review on the environment-friendly emerging techniques for pretreatment of lignocellulosic biomass: Mechanistic insight and advancements. CHEMOSPHERE 2021; 264:128523. [PMID: 33039689 DOI: 10.1016/j.chemosphere.2020.128523] [Citation(s) in RCA: 72] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2020] [Revised: 09/28/2020] [Accepted: 10/01/2020] [Indexed: 06/11/2023]
Abstract
The process of pretreatment is considered as an indispensable unit operation in the field of lignocellulosic conversion. The traditional pretreatment operations of lignocellulosic biomass are observed as inefficient to meet the demand for an industrial adaptation. In view of that, numerous investigations are reported on various conventional pretreatment methods but very limited information's are available on the advanced technologies. The present review article provides an exclusive discussion on various emerging and environment-friendly pretreatment methods applied on a number of different feedstock materials. Further, an insight on the reaction mechanism involved with each of the technologies such as microwave, ultrasound, deep eutectic solvent, irradiation, and high force assisted pretreatment methods are elucidated for an effective valorization of lignocellulosic biomass. Hence, in a single article, the readers of this paper will get to know all important aspects of the emerging pretreatment techniques of lignocellulosic biomass including the advancements, and the mechanistic insight which will be highly beneficial towards the selection of an efficient pretreatment method for large scale of commercial implementation in a lignocellulosic biorefinery.
Collapse
Affiliation(s)
- Dibyajyoti Haldar
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| | - Mihir Kumar Purkait
- Centre for the Environment, Indian Institute of Technology Guwahati, Assam, 781039, India.
| |
Collapse
|
14
|
Zhang J, Zhang X, Yang M, Singh S, Cheng G. Transforming lignocellulosic biomass into biofuels enabled by ionic liquid pretreatment. BIORESOURCE TECHNOLOGY 2021; 322:124522. [PMID: 33340950 DOI: 10.1016/j.biortech.2020.124522] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/04/2020] [Revised: 12/04/2020] [Accepted: 12/05/2020] [Indexed: 05/11/2023]
Abstract
Processes that can convert lignocellulosic biomass into biofuels and chemicals are particularly attractive considering renewability and minimal environmental impact. Ionic liquids (ILs) have been used as novel solvents in the process development in that they can effectively deconstruct recalcitrant lignocellulosic biomass for high sugar yield and lignin recovery. From cellulose-dissolving ILs to choline-based and protic acidic ILs, extensive research in this field has been done, driven by the promising future of IL pretreatment. Meanwhile, shortcomings and technological hurdles are ascertained during research and developments. It is necessary to present a general overview of recent developments and challenges in this field. In this review paper, three aspects of advances in IL pretreatment are critically analyzed: biocompatible ILs, protic acidic ILs and combinatory pretreatments.
Collapse
Affiliation(s)
- Jinxu Zhang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xin Zhang
- State Key Laboratory of Tribology, Tsinghua University, Beijing 100084, China
| | - Mingkun Yang
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China
| | - Seema Singh
- Biomass Science and Conversion Technology Department, Sandia National Laboratories, Livermore, CA 94551, USA
| | - Gang Cheng
- State Key Laboratory of Organic-Inorganic Composites and College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
15
|
Tang W, Wu X, Huang C, Ling Z, Lai C, Yong Q. Comprehensive understanding of the effects of metallic cations on enzymatic hydrolysis of humic acid-pretreated waste wheat straw. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:25. [PMID: 33468203 PMCID: PMC7816382 DOI: 10.1186/s13068-021-01874-5] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2020] [Accepted: 01/04/2021] [Indexed: 05/09/2023]
Abstract
BACKGROUND Humic acids (HA) have been used in biorefinery process due to its surfactant properties as an aid to the pretreatment of lignocellulose, with results indicating a positive effect on delignification. However, the HA remaining on the surface of the pretreated lignocellulose has also been shown to provide a negative effect on ensuing enzymatic digestibility. Hence, a strategy of complexing metallic cations with HA prior to enzymatic hydrolysis was proposed and demonstrated in this work in an effort to provide a means of HA mitigation that does not involve significant water consumption via extensive washing. RESULTS Results showed that the enzymatic hydrolysis efficiency of waste wheat straw decreased from 81.9% to 66.1% when it was pretreated by 10 g/L HA, attributed to the inhibition ability of the residual HA on enzyme activity of cellulase with a debasement of 36.3%. Interestingly, enzymatic hydrolysis efficiency could be increased from 66.1% to 77.3% when 10 mM Fe3+ was introduced to the system and allowed to associate with HA during saccharification. CONCLUSIONS The addition of high-priced metallic cations (Fe3+) has successfully alleviated the effect of HA on cellulase activity. It is our hope in demonstrating the complexation affinity between metallic cations and HA, future researchers and biorefinery developers will evaluate this strategy as a unit operation that could allow economic biorefining of WWS to produce valuable biochemicals, biofuels, and biomaterials.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| | - Xinxing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Key Laboratory of Forestry Genetics and Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
16
|
Souza AG, Santos DF, Ferreira RR, Pinto VZ, Rosa DS. Innovative process for obtaining modified nanocellulose from soybean straw. Int J Biol Macromol 2020; 165:1803-1812. [PMID: 33075342 DOI: 10.1016/j.ijbiomac.2020.10.036] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2020] [Revised: 09/25/2020] [Accepted: 10/05/2020] [Indexed: 11/19/2022]
Abstract
In the present research, soybean straw was used to prepare nanocellulose (NC) via a ball mill, in different milling times (6, 9, and 12 h) and in-situ modified with an anionic surfactant. NCs were characterized for their chemical structure, surface composition, dimension and stability, morphology, crystalline structure, and thermal stability. Fourier transform infrared spectroscopy and X-ray photoelectron spectroscopy results indicated a cellulosic structure for NCs and a physical interaction due to the electronic attractions between nanocellulose hydroxyls and surfactant end chain groups. The dynamic light scattering, Zeta potential, and transmission electron microscopy indicated that the in situ modified samples showed smaller sizes and good electrostatic stability. Besides, while ball mill resulted in nanofibers, the in situ modified-NC showed a nanocrystal shape, indicating that the surfactant alters the milling process and cellulose scale reduction. The modified-NC showed lower crystallinity and crystal size than unmodified nanocelluloses due to the surfactant chains' addition and influence during the milling process. The modified-NC showed slightly superior thermal stability. The NC-12S showed smaller particle sizes, high electrostatic, and thermal stability and indicated that 12 h is adequate to prepare modified nanocellulose via in situ modification. The prepared samples could be potentially used as coatings, emulsifiers, and nanocomposites reinforcing agents.
Collapse
Affiliation(s)
- A G Souza
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - D F Santos
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil
| | - R R Ferreira
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil
| | - V Z Pinto
- Universidade Federal da Fronteira Sul (UFFS) - Laranjeiras do Sul, PR, Rodovia BR 158 - Km 405, CEP: 85301-970, Brazil.
| | - D S Rosa
- Centro de Engenharia, Modelagem e Ciências Sociais Aplicadas - CECS/Universidade Federal do ABC (UFABC) - Santo André, SP, Avenida dos Estados, 5001, CEP: 09210-580, Brazil.
| |
Collapse
|
17
|
|
18
|
Xu L, Han F, Zhang X, Yu Q. Ultrasound enhanced biosynthesis of L-theanine from L-glutamine and ethylamine by recombinant γ-glutamyltranspeptidase. BIORESOURCE TECHNOLOGY 2020; 307:123251. [PMID: 32245672 DOI: 10.1016/j.biortech.2020.123251] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2020] [Revised: 03/21/2020] [Accepted: 03/24/2020] [Indexed: 06/11/2023]
Abstract
A mutant library of the key amino acid residue site E387 in γ-glutamyltranspeptidase was constructed to screen the mutant enzymes with significantly improved thermal stability (E387Q). The reaction temperature of the mutant enzyme (E387Q) was 10℃ higher than that of the parent enzyme. Ultrasound-assisted synthesis of L-theanine by γ-glutamyltranspeptidase was investigated. The effects of ultrasonic power, reaction pH and substrate concentration on the enzymatic synthesis of L-theanine were studied by the response surface method. The results showed that the optimal process conditions are ultrasonic power of 100 W, reaction pH of 9, substrate L-glutamine concentration of 120 mmol/L, reaction temperature of 45℃, and L-theanine yield of 89.1%. The yield of L-theanine is 2.61 times higher than that obtained without ultrasound. Ultrasound can significantly promote the synthesis of L-theanine by γ-glutamyltranspeptidase.
Collapse
Affiliation(s)
- Lisheng Xu
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China.
| | - Fangkai Han
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| | - Xingtao Zhang
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| | - Qiaoling Yu
- Department of Life and Food Science, Suzhou University, Suzhou 234000, China
| |
Collapse
|
19
|
Sorn V, Chang KL, Phitsuwan P, Ratanakhanokchai K, Dong CD. Effect of microwave-assisted ionic liquid/acidic ionic liquid pretreatment on the morphology, structure, and enhanced delignification of rice straw. BIORESOURCE TECHNOLOGY 2019; 293:121929. [PMID: 31476565 DOI: 10.1016/j.biortech.2019.121929] [Citation(s) in RCA: 31] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2019] [Revised: 07/26/2019] [Accepted: 07/27/2019] [Indexed: 05/14/2023]
Abstract
In the present study, was investigated an environmentally friendly method for pretreating lignocellulosic rice straw (RS) by using 1-butyl-3-methylimidazolium chloride ([Bmim]Cl) as an ionic liquid (IL) and 1-butyl-3-methylimidazolium hydrogen sulfate ([Bmim]HSO4) as an acidic-IL (Acidic-IL) under microwave irradiation (microwave-[Bmim]Cl and microwave-[Bmim]HSO4). The conversion of lignocellulosic biomass into simple sugars requires both efficient pretreatment and hydrolysis enzymes to produce biofuels and specialty chemicals. Therefore, the applied [Bmim]Cl, [Bmim]HSO4, microwave-[Bmim]Cl, and microwave-[Bmim]HSO4 to improve hydrolysis yields. Structural analyses of the pretreated solids were performed to understand the synergistic effects of [Bmim]Cl, and [Bmim]HSO4 pretreatment under microwave irradiation (microwave-[Bmim]Cl and microwave-[Bmim]HSO4) on the efficiencies of enzymatic hydrolyses. The results of a chemical composition analysis of untreated and all pretreated RS samples by using the difference pretreatment methods showed that significant lignin removal was achieved using microwave-[Bmim]Cl (57.02 ± 1.24%), followed by [Bmim]Cl only (41.01 ± 2.67%), microwave-[Bmim]HSO4 (20.77 ± 1.79%), and [Bmim]HSO4-only (16.88 ± 1.14%). The highest glucan yield and xylan conversion achieved through the enzymatic saccharification of microwave-[Bmim]Cl-regenerated cellulose was consistent with the observations obtained from a structural analysis, which indicated a more disrupted, amorphous structure, with lowered crystallinity index (CrI) and lateral order index (LOI) of cellulose polymers. Thus results demonstrated that the pretreatment of lignocellulosic biomass with [Bmim]Cl under microwave irradiation has potential as an alternative method for pretreating lignocellulosic materials.
Collapse
Affiliation(s)
- Virak Sorn
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan; School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Ken-Lin Chang
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 804, Taiwan.
| | - Paripok Phitsuwan
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Khanok Ratanakhanokchai
- School of Bioresources and Technology, King Mongkut's University of Technology Thonburi, Bangkok 10150, Thailand
| | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung, Taiwan
| |
Collapse
|
20
|
Sharma V, Nargotra P, Bajaj BK. Ultrasound and surfactant assisted ionic liquid pretreatment of sugarcane bagasse for enhancing saccharification using enzymes from an ionic liquid tolerant Aspergillus assiutensis VS34. BIORESOURCE TECHNOLOGY 2019; 285:121319. [PMID: 30981012 DOI: 10.1016/j.biortech.2019.121319] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2019] [Revised: 04/01/2019] [Accepted: 04/02/2019] [Indexed: 05/14/2023]
Abstract
Ionic liquid (IL) pretreatment represents an effective strategy for effective fractionation of lignocellulosic biomass (LB) to fermentable sugars in a biorefinery. Optimization of combinatorial pretreatment of sugarcane bagasse (SCB) with IL (1-butyl-3-methylimidazolium chloride [Bmim]Cl) and surfactant (PEG-8000) resulted in enhanced sugar yield (16.5%) upon enzymatic saccharification. The saccharification enzymes (cellulase and xylanase) used in the current study were in-house produced from a novel IL-tolerant fungal strain Aspergillus assiutensis VS34, isolated from chemically polluted soil, which produced adequately IL-stable enzymes. This is the first ever report of IL-stable cellulase/xylanase enzyme from Aspergillus assiutensis. To get the mechanistic insights of combinatorial pretreatment physicochemical analysis of variously pretreated biomass was executed using SEM, FT-IR, XRD, and 1H NMR studies. The combined action of IL, surfactant and ultrasound had very severe and distinct effects on the ultrastructure of biomass that subsequently resulted in enhanced accessibility of saccharification enzymes to biomass, and increased sugar yield.
Collapse
Affiliation(s)
- Vishal Sharma
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | - Parushi Nargotra
- School of Biotechnology, University of Jammu, Jammu 180006, India
| | | |
Collapse
|
21
|
Shanthi M, Rajesh Banu J, Sivashanmugam P. Effect of surfactant assisted sonic pretreatment on liquefaction of fruits and vegetable residue: Characterization, acidogenesis, biomethane yield and energy ratio. BIORESOURCE TECHNOLOGY 2018; 264:35-41. [PMID: 29783129 DOI: 10.1016/j.biortech.2018.05.054] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2018] [Revised: 05/08/2018] [Accepted: 05/09/2018] [Indexed: 06/08/2023]
Abstract
The present study explored the disintegration potential of fruits and vegetable residue through sodium dodecyl sulphate (SDS) assisted sonic pretreatment (SSP). In SSP method, initially the biomass barrier (lignin) was removed using SDS at different dosage, subsequently it was sonically disintegrated. The effect of SSP were assessed based on dissolved organic release (DOR) of fruits and vegetable waste and specific energy input. SSP method achieved higher DOR rate and suspended solids reduction (26% and 16%) at optimum SDS dosage of 0.035 g/g SS with least specific energy input of 5400 kJ/kg TS compared to ultrasonic pretreatment (UP) (16% and 10%). The impact of fermentation and biomethane potential assay revealed highest production of volatile fatty acid and methane yield in SSP (1950 mg/L, 0.6 g/g COD) than UP. The energy ratio obtained was 0.9 for SSP, indicating proposed method is energetically efficient.
Collapse
Affiliation(s)
- M Shanthi
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Centre for Anna University, Tirunelveli 627 007, India
| | - P Sivashanmugam
- Department of Chemical Engineering, National Institute of Technology, Tiruchirappalli, Tamil Nadu 620015, India.
| |
Collapse
|
22
|
Qin Z, Wang XD, Liu HM, Wang DM, Qin GY. Structural characterization of Chinese quince fruit lignin pretreated with enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 262:212-220. [PMID: 29709839 DOI: 10.1016/j.biortech.2018.04.072] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 04/17/2018] [Accepted: 04/18/2018] [Indexed: 06/08/2023]
Abstract
Lignin is an increasingly valuable raw material for industrial, pharmaceutical and the food industries; natural antioxidants are also being used more and more widely. The Chinese quince fruits have an abundance of lignins with antioxidant properties; however, the lignins cannot be isolated by the methods conventionally used on other sources (e.g., wood, straw). In this investigation, multi-enzymatic hydrolytic pretreatments were used to isolate lignins from Chinese quince fruit, and the structures of these multi-enzyme mixture lignin (EML) fractions were then analyzed and compared with conventional cellulolytic enzyme lignin (CEL). EML fractions are structurally similar to CEL fractions except for an increased S/G ratio, greater number of β-O-4 linkages, higher average molecular weight and decreased thermal stability. The EML-2 fraction in particular seemed most representative of the lignins isolated, and it exhibited the highest antioxidant activity in comparison with CEL and other EML fractions.
Collapse
Affiliation(s)
- Zhao Qin
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China; Institute of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| | - Xue-De Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Hua-Min Liu
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China.
| | - Dong-Min Wang
- College of Food Science and Technology, Henan University of Technology, Zhengzhou 450001, China
| | - Guang-Yong Qin
- Institute of Physical Science and Engineering, Zhengzhou University, Zhengzhou 450001, China
| |
Collapse
|
23
|
Chang KL, Wang XQ, Han YJ, Deng H, Liu JY, Lin YC. Enhanced Enzymatic Hydrolysis of Rice Straw Pretreated by Oxidants Assisted with Photocatalysis Technology. MATERIALS 2018; 11:ma11050802. [PMID: 29772644 PMCID: PMC5978179 DOI: 10.3390/ma11050802] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Revised: 05/03/2018] [Accepted: 05/09/2018] [Indexed: 11/30/2022]
Abstract
This work evaluated the effectiveness of rice straw pretreatment using a TiO2/UV system in the presence of oxidants. The effects of TiO2 concentrations, pH and photocatalysis time were investigated. Inorganic oxidants including H2O2, K2S2O8, and KIO4 were added to further enhance the effect on enzymatic hydrolysis of rice straw. The TiO2/UV/ H2O2 pretreatment showed a higher amount of released reducing sugar (8.88 ± 0.10 mg/mL, compared to 5.47 ± 0.03 mg/mL in untreated sample). Composition analyses of rice straw after the TiO2/UV/H2O2 pretreatment showed partial lignin and hemicellulose removal. Moreover, structural features of untreated and pretreated rice straw were analyzed through FE-SEM, FT-IR, and XRD. This work suggests that H2O2 is an efficient addition for photocatalysis pretreatment of rice straw.
Collapse
Affiliation(s)
- Ken-Lin Chang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
| | - Xiao-Qin Wang
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Ye-Ju Han
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Hao Deng
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Jing-Yong Liu
- School of Environmental Science and Engineering and Institute of Environmental Health and Pollution Control, Guangdong University of Technology, Guangzhou 51006, China.
| | - Yuan-Chung Lin
- Institute of Environmental Engineering, National Sun Yat-Sen University, Kaohsiung 80424, Taiwan.
- College of Pharmacy, Kaohsiung Medical University, Kaohsiung 000807, Taiwan.
| |
Collapse
|
24
|
Zhang Q, Wei Y, Han H, Weng C. Enhancing bioethanol production from water hyacinth by new combined pretreatment methods. BIORESOURCE TECHNOLOGY 2018; 251:358-363. [PMID: 29291533 DOI: 10.1016/j.biortech.2017.12.085] [Citation(s) in RCA: 25] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2017] [Revised: 12/23/2017] [Accepted: 12/26/2017] [Indexed: 05/06/2023]
Abstract
This study investigated the possibility of enhancing bioethanol production by combined pretreatment methods for water hyacinth. Three different kinds of pretreatment methods, including microbial pretreatment, microbial combined dilute acid pretreatment, and microbial combined dilute alkaline pretreatment, were investigated for water hyacinth degradation. The results showed that microbial combined dilute acid pretreatment is the most effective method, resulting in the highest cellulose content (39.4 ± 2.8%) and reducing sugars production (430.66 mg·g-1). Scanning Electron Microscopy and Fourier Transform Infrared Spectrometer analysis indicated that the basic tissue of water hyacinth was significantly destroyed. Compared to the other previously reported pretreatment methods for water hyacinth, which did not append additional cellulase and microbes for hydrolysis process, the microbial combined dilute acid pretreatment of our research could achieve the highest reducing sugars. Moreover, the production of bioethanol could achieve 1.40 g·L-1 after fermentation, which could provide an extremely promising way for utilization of water hyacinth.
Collapse
Affiliation(s)
- Qiuzhuo Zhang
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China.
| | - Yan Wei
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China; School of Environmental Science and Engineering, Shanghai Jiao Tong University, 200240 Shanghai, China
| | - Hui Han
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| | - Chen Weng
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, 200241 Shanghai, China
| |
Collapse
|
25
|
Bundhoo ZMA, Mohee R. Ultrasound-assisted biological conversion of biomass and waste materials to biofuels: A review. ULTRASONICS SONOCHEMISTRY 2018; 40:298-313. [PMID: 28946428 DOI: 10.1016/j.ultsonch.2017.07.025] [Citation(s) in RCA: 58] [Impact Index Per Article: 8.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2017] [Revised: 07/16/2017] [Accepted: 07/17/2017] [Indexed: 05/25/2023]
Abstract
Ultrasound irradiation has been gaining increasing interests over the years to assist biological conversion of lignocellulosic biomass and waste materials to biofuels. As such, this study reviewed the different effects of sonication on pre-treatment of lignocellulosic biomass and waste materials prior to biofuel production. The mechanisms of ultrasound irradiation as a pre-treatment technique were initially described and the impacts of sonication on disruption of lignocellulosic materials, alteration of the crystalline lattice structure of cellulose molecules, solubilisation of organic matter, reducing sugar production and enzymatic hydrolysis were then reviewed. Subsequently, the influences of ultrasound irradiation on bio-methane, bio-hydrogen and bio-ethanol production were re-evaluated, with most studies reporting enhanced biofuel production from anaerobic digestion or fermentation processes. Nonetheless, despite its positive impacts on biofuel production, sonication was found to be energetically inefficient based on the lab-scale studies reviewed. To conclude, this study reviewed some of the challenges of ultrasound irradiation for enhanced biofuel production while outlining some areas for further research.
Collapse
Affiliation(s)
- Zumar M A Bundhoo
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius.
| | - Romeela Mohee
- Department of Chemical & Environmental Engineering, Faculty of Engineering, University of Mauritius, Réduit, Mauritius
| |
Collapse
|