1
|
Nayak A, Harshitha M, Dubey S, Munang'andu HM, Chakraborty A, Karunasagar I, Maiti B. Evaluation of Probiotic Efficacy of Bacillus subtilis RODK28110C3 Against Pathogenic Aeromonas hydrophila and Edwardsiella tarda Using In Vitro Studies and In Vivo Gnotobiotic Zebrafish Gut Model System. Probiotics Antimicrob Proteins 2024; 16:1623-1637. [PMID: 37486455 DOI: 10.1007/s12602-023-10127-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 07/13/2023] [Indexed: 07/25/2023]
Abstract
The indiscriminate use of antibiotics in aquaculture has led to the emergence of resistance; hence, eco-friendly, host-specific alternatives to mitigate bacterial infections have become imminent. In this study, bacteria that could possibly serve as probiotics were isolated and evaluated for their efficacy with in vitro experiments and in vivo zebrafish gut model. One isolate from each of the 23 rohu fish (Labeo rohita) was shortlisted after preliminary screening of several isolates and tested for their ability to inhibit two important warm water bacterial fish pathogens, Aeromonas hydrophila, and Edwardsiella tarda. An isolate (RODK28110C3) that showed broad-spectrum inhibitory activity against a battery of different isolates of the two fish pathogens included in this study and maintained in our repository was selected for further characterization. The culture was identified phenotypically as Bacillus subtilis and confirmed by 16S rDNA sequencing. The isolate was able to hydrolyze fish feed constituents that include starch, protein, and cellulose. Further in vitro tests ensured that the potential isolate with probiotic attributes could tolerate different gut conditions, which included a range of pH, salinity, and varying concentrations of bile salt. Exposure of 4 days post fertilization zebrafish embryos to the RFP-tagged isolate confirmed the colonization of B. subtilis in the gut of the zebrafish embryo, which is an important attribute of a probiotic. The isolate was able to inhibit both A. hydrophila and E. tarda in gnotobiotic zebrafish embryo in triplicate. The study demonstrates the probiotic characteristics of the B. subtilis isolated from L. rohita and its ability to inhibit A. hydrophila and E. tarda using in vitro conditions and in the zebrafish gut and could serve as an effective alternative to antibiotics in aquaculture.
Collapse
Affiliation(s)
- Ashwath Nayak
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Mave Harshitha
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Saurabh Dubey
- Faculty of Veterinary Medicine, Department of Production Animal Clinical Sciences, Section of Experimental Biomedicine, Norwegian University of Life Sciences, Ås, Norway
| | | | - Anirban Chakraborty
- Division of Molecular Genetics and Cancer, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Indrani Karunasagar
- Nitte (Deemed to be University), DST Technology Enabling Centre, Paneer Campus, Deralakatte, Mangaluru, 575018, India
| | - Biswajit Maiti
- Division of Infectious Diseases, Nitte (Deemed to be University), Nitte University Centre for Science Education and Research, Paneer Campus, Deralakatte, Mangaluru, 575018, India.
| |
Collapse
|
2
|
Abate R, Oon YL, Oon YS, Bi Y, Mi W, Song G, Gao Y. Diverse interactions between bacteria and microalgae: A review for enhancing harmful algal bloom mitigation and biomass processing efficiency. Heliyon 2024; 10:e36503. [PMID: 39286093 PMCID: PMC11402748 DOI: 10.1016/j.heliyon.2024.e36503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 09/19/2024] Open
Abstract
The interactions between bacteria and microalgae play pivotal roles in resource allocation, biomass accumulation, nutrient recycling, and species succession in aquatic systems, offering ample opportunities to solve several social problems. The escalating threat of harmful algal blooms (HABs) in the aquatic environment and the lack of cheap and eco-friendly algal-biomass processing methods have been among the main problems, demanding efficient and sustainable solutions. In light of this, the application of algicidal bacteria to control HABs and enhance algal biomass processing has been promoted in the past few decades as potentially suitable mechanisms to solve those problems. Hence, this comprehensive review aims to explore the diverse interaction modes between bacteria and microalgae, ranging from synergistic to antagonistic, and presents up-to-date information and in-depth analysis of their potential biotechnological applications, particularly in controlling HABs and enhancing microalgal biomass processing. For instance, several studies revealed that algicidal bacteria can effectively inhibit the growth of Microcystis aeruginosa, a notorious freshwater HAB species, with an antialgal efficiency of 24.87 %-98.8 %. The review begins with an overview of the mechanisms behind algae-bacteria interactions, including the environmental factors influencing these dynamics and their broader implications for aquatic ecosystems. It then provides a detailed analysis of the role of algicidal bacteria in controlling harmful algal blooms, as well as their role in bioflocculation and the pretreatment of microalgal biomass. Additionally, the review identifies and discusses the constraints and challenges in the biotechnological application of these interactions. By exploring the strategic use of algicidal bacteria, this review not only underscores their importance in maintaining aquatic environmental health but also in enhancing biomass processing efficiency. It offers valuable insights into future research avenues and the potential scalability of these applications, both in situ and at an industrial level.
Collapse
Affiliation(s)
- Rediat Abate
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
- College of Natural and Computatinal Science, Arba Minch University, Ethiopia
| | - Yoong-Ling Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yoong-Sin Oon
- State Key Laboratory of Freshwater Ecology and Biotechnology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, Hubei, 430072, China
| | - Yonghong Bi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Wujuan Mi
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Gaofei Song
- Key Laboratory of Algal Biology, Institute of Hydrobiology, Chinese Academy of Sciences, Wuhan, 430072, China
| | - Yahui Gao
- School of Life Sciences, Xiamen University, Xiamen, 361102, China
| |
Collapse
|
3
|
Kannah Ravi Y, Kavitha S, Al-Qaradawi SY, Rajesh Banu J. Dual disintegration of microalgae biomass for cost-effective biomethane production: Energy and cost assessment. BIORESOURCE TECHNOLOGY 2024; 399:130630. [PMID: 38522678 DOI: 10.1016/j.biortech.2024.130630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - S Kavitha
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
4
|
S K, Ravi YK, Kumar G, Kadapakkam Nandabalan Y, J RB. Microalgal biorefineries: Advancement in machine learning tools for sustainable biofuel production and value-added products recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120135. [PMID: 38286068 DOI: 10.1016/j.jenvman.2024.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/16/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The microalgae can be converted into biofuels, biochemicals, and bioactive compounds in a biorefinery. Recently, designing and executing more viable and sustainable biofuel production from microalgal biomass is one of the vital challenges in the development of biorefinery. Scalable cultivation of microalgae is mandatory for commercializing and industrializing the biorefinery. The intrinsic complication in cultivation of microalgae is the physiological and operational factors that renders challenging impact to enable a smooth and profitable operation. However, this aim can only be successful via a simulation prospect. Machine learning tools provides advanced approaches for evaluating, predicting, and controlling uncertainties in microalgal biorefinery for sustainable biofuel production. The present review provides a critical evaluation of the most progressing machine learning tools that validate a potential to be employed in microalgal biorefinery. These tools are highly potential for their extensive evaluation on microalgal screening and classification. However, the application of these tools for optimization of microalgal biomass cultivation in industries in order to increase the biomass production, is still in its initial stages. Integrated hybrid machine learning tools can aid the industries to function efficiently with least resources. Some of the challenges, and perspectives of machine learning tools are discussed. Besides, future prospects are also emphasized. Though, most of the research reports on machine learning tools are not appropriate to gather generalized information, standard protocols and strategies must be developed to design generalized machine learning tools. On a whole, this review offers a perspective information about digitalized microalgal exploitation in a microalgal biorefinery.
Collapse
Affiliation(s)
- Kavitha S
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yogalakshmi Kadapakkam Nandabalan
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, Punjab, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
5
|
Tamilselvan R, Immanuel Selwynraj A. Enhancing biogas generation from lignocellulosic biomass through biological pretreatment: Exploring the role of ruminant microbes and anaerobic fungi. Anaerobe 2024; 85:102815. [PMID: 38145708 DOI: 10.1016/j.anaerobe.2023.102815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 12/13/2023] [Accepted: 12/18/2023] [Indexed: 12/27/2023]
Abstract
Biogas production from Lignocellulosic Biomass (LB) via anaerobic digestion (AD) has gained attention for its potential in self-sustainability. However, the recalcitrance of LB cell walls pose a challenge to its degradability and biogas generation. Therefore, pretreatment of LB is necessary to enhance lignin removal and increase degradability. Among the different approaches, environmentally friendly biological pretreatment ispromising as it avoids the production of inhibitors. The ruminal microbial community, including anaerobic fungi, bacteria, and protozoa, has shown an ability to effectively degrade LB through biomechanical and microbial penetration of refractory cell structures. In this review, we provide an overview of ruminant microbes dominating LB's AD, their degradation mechanism, and the bioaugmentation of the rumen. We also explore the potential cultivation of anaerobic fungi from the rumen, their enzyme potential, and their role in AD. The rumen ecosystem, comprising both bacteria and fungi, plays a crucial role in enhancing AD. This comprehensive review delves into the intricacies of ruminant microorganisms' adhesion to plant cells, elucidates degradation mechanisms, and explores integrated pretreatment approaches for the effective utilization of LB, minimizing the impact of inhibitors. The discussion underscores the considerable potential of ruminant microbes in pretreating LB, paving the way for sustainable biogas production. Optimizing fungal colonization and ligninolytic enzyme production, such as manganese peroxidase and laccase, significantly enhances the efficiency of fungal pretreatment. Integrating anaerobic fungi through bioaugmentation during mainstream processing demonstrably increases methane production. This study opens promising avenues for further research and development of these microorganisms for bioenergy production.
Collapse
Affiliation(s)
- R Tamilselvan
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India
| | - A Immanuel Selwynraj
- School of Mechanical Engineering, Vellore Institute of Technology, Vellore, 632 014, India.
| |
Collapse
|
6
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
7
|
Kavitha S, Gondi R, Kannah RY, Kumar G, Rajesh Banu J. A review on current advances in the energy and cost effective pretreatments of algal biomass: Enhancement in liquefaction and biofuel recovery. BIORESOURCE TECHNOLOGY 2023; 369:128383. [PMID: 36427767 DOI: 10.1016/j.biortech.2022.128383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The main downside of utilizing algal biomass for biofuel production is the rigid cell wall which confines the availability of soluble organics to hydrolytic microbes during biofuel conversion. This constraint reduces the biofuel production efficiency of algal biomass. On the other hand, presenting various pretreatment methods before biofuel production affords cell wall disintegration and enhancement in biofuel generation. The potential of pretreatment methods chiefly relies on the extent of biomass liquefaction, energy, and cost demand. In this review, different pretreatments employed to disintegrate algal biomass were conferred in depth with detailed information on their efficiency in enhancing liquefaction and biofuel yield for pilot-scale implementation. Based on this review, it has been concluded that combinative and phase-separated pretreatments provide virtual input in enhancing the biofuel generation based on liquefaction potential, energy, and cost. Future studies should focus on decrement in cost and energy requirement of pretreatment in depth.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Rashmi Gondi
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu - 610005, India
| | - R Yukesh Kannah
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States of America
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu - 610005, India.
| |
Collapse
|
8
|
Cultivation and Biorefinery of Microalgae (Chlorella sp.) for Producing Biofuels and Other Byproducts: A Review. SUSTAINABILITY 2021. [DOI: 10.3390/su132313480] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
Microalgae-based carbon dioxide (CO2) biofixation and biorefinery are the most efficient methods of biological CO2 reduction and reutilization. The diversification and high-value byproducts of microalgal biomass, known as microalgae-based biorefinery, are considered the most promising platforms for the sustainable development of energy and the environment, in addition to the improvement and integration of microalgal cultivation, scale-up, harvest, and extraction technologies. In this review, the factors influencing CO2 biofixation by microalgae, including microalgal strains, flue gas, wastewater, light, pH, temperature, and microalgae cultivation systems are summarized. Moreover, the biorefinery of Chlorella biomass for producing biofuels and its byproducts, such as fine chemicals, feed additives, and high-value products, are also discussed. The technical and economic assessments (TEAs) and life cycle assessments (LCAs) are introduced to evaluate the sustainability of microalgae CO2 fixation technology. This review provides detailed insights on the adjusted factors of microalgal cultivation to establish sustainable biological CO2 fixation technology, and the diversified applications of microalgal biomass in biorefinery. The economic and environmental sustainability, and the limitations and needs of microalgal CO2 fixation, are discussed. Finally, future research directions are provided for CO2 reduction by microalgae.
Collapse
|
9
|
Chong JWR, Yew GY, Khoo KS, Ho SH, Show PL. Recent advances on food waste pretreatment technology via microalgae for source of polyhydroxyalkanoates. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112782. [PMID: 34052610 DOI: 10.1016/j.jenvman.2021.112782] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2021] [Revised: 05/07/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are biodegradable and biocompatible polyester which are biosynthesized from the intracellular cells of microalgae through the cultivation of organic food waste medium. Before cultivation process, food waste must undergo several pre-treatment techniques such as chemical, biological, physical or mechanical in order to solubilize complex food waste matter into simpler micro- and macronutrients in which allow bio-valorisation of microalgae and food waste compound during the cultivation process. This work reviews four microalgae genera namely Chlamydomonas, Chlorella, Spirulina, and Botryococcus, are selected as suitable species due to rapid growth rate, minimal nutrient requirement, greater adaptability and flexibility prior to lower the overall production cost and maximized the production of PHAs. This study also focuses on the different mode of cultivation for the accumulation of PHAs followed by cell wall destabilization, extraction, and purification. Nonetheless, this review provides future insights into enhancing the productivity of bioplastic derived from microalgae towards low-cost, large-scale, and higher productivity of PHAs.
Collapse
Affiliation(s)
- Jun Wei Roy Chong
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Guo Yong Yew
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Kuan Shiong Khoo
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia
| | - Shih-Hsin Ho
- State Key Laboratory of Urban Water Resources and Environment, School of Environment, Harbin Institute of Technology, Harbin 150090, P.R. China
| | - Pau Loke Show
- Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500, Semenyih, Selangor Darul Ehsan, Malaysia.
| |
Collapse
|
10
|
Elalami D, Oukarroum A, Barakat A. Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Adv 2021; 11:26444-26462. [PMID: 35480019 PMCID: PMC9037636 DOI: 10.1039/d1ra04845g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Microalgae are considered potential candidates in biorefinery processes, and due to their biochemical properties, they can be used in the production of biofuels such as biogas, as well as for bioremediation of liquid effluents. The objective of this review is to study the current status of microalgae anaerobic digestion and agricultural uses (as bio-stimulants and biofertilizers), starting from microalgae cultivation. Indeed, the efficiency of these processes necessarily depends on the evaluation of different biotic and abiotic factors that affect the growth of microalgae. However, the adaptation and the optimization of process parameters on a large scale is also limited by energy and economic constraints. Moreover, the integration of biogas production processes with microalgae cultivation allows a nutrients and CO2 virtuous loop, thus promoting the sustainability of the process. Finally, this paper provides a general overview of biogas and biofertilizers production combination, as well as the related challenges and recommended future research perspectives to complement the gap in the literature.
Collapse
Affiliation(s)
- Doha Elalami
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdallah Oukarroum
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdellatif Barakat
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
- IATE, University of Montpellier, INRAE, Agro Institut Montpellier 34060 France
| |
Collapse
|
11
|
Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh Banu J. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. BIORESOURCE TECHNOLOGY 2021; 332:125055. [PMID: 33813179 DOI: 10.1016/j.biortech.2021.125055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is considered as a renewable and sustainable biomass to produce bioenergy and other high-value products. Besides, the cultivation of microalgae does not need any fertile land and it provides opportunities for climate change mitigation by sequestering atmospheric carbon-dioxide (CO2), facilitating nutrient recovery from wastewater and regulating industrial pollutions/emissions. Algal biomass harvested from different technologies are unique in their physio-chemical properties that require critical understanding prior to value-addition or bioenergy recovery. In this review, we elaborate the importance of cell wall weakening followed by pretreatment as a key process step and strategy to reduce the energy cost of converting algal biomass into bioenergy. From the energy-calculations, it was measured that the cell wall weakening significantly improves the net-energy ratio from 0.68 to 1.02. This approach could be integrated with any pre-treatment options, while it reduces the time of pre-treatment and costs of energy/chemicals required for hydrolysis of algal biomass.
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, The Netherlands
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
12
|
Hou J, Liu W, Hu W, Chen J, Wang J, Li P, Li Y. Isolation, production and optimization of endogenous alkaline protease from in-situ sludge and its evaluation as sludge hydrolysis enhancer. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 83:2700-2713. [PMID: 34115624 DOI: 10.2166/wst.2021.167] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Bioconversion (e.g. anaerobic fermentation and compost) is the common recycling method of waste activated sludge (WAS) and its hydrolysis, as the rate-limiting step of fermentation, could be accelerated by protease. However, the commercial protease was unstable in a sludge environment, which increased the cost. An endogenous alkaline protease stable in sludge environment was screened in this study and its suitability for treating the sludge was analyzed. The optimal production medium was determined by Response Surface Methodology as starch 20 g/L, KH2PO4 4 g/L, MgSO4·7H2O 1 g/L, sodium carboxy-methyl-cellulose 4 g/L, casein 4 g/L and initial pH 11.3, which elevated the yield of protease by up to 15 times (713.46 U/mL) compared with the basal medium. The obtained protease was active and stable at 35 °C-50 °C and pH 7.0-11.0. Furthermore, it was highly tolerant to sludge environment and maintained high efficiency of sludge hydrolysis for a long time. Thus, the obtained protease significantly hydrolyzed WAS and improved its bioavailability. Overall, this work provided a new insight for enzymatic treatment of WAS by isolating the endogenous and stable protease in a sludge environment, which would promote the resource utilization of WAS by further bioconversion.
Collapse
Affiliation(s)
- Jie Hou
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Wenbin Liu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Wanrong Hu
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jing Chen
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Jinqiong Wang
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Panyu Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| | - Yonghong Li
- Department of Pharmaceutical & Biological Engineering, School of Chemical Engineering, Sichuan University, Chengdu 610065, China E-mail:
| |
Collapse
|
13
|
Salakkam A, Sittijunda S, Mamimin C, Phanduang O, Reungsang A. Valorization of microalgal biomass for biohydrogen generation: A review. BIORESOURCE TECHNOLOGY 2021; 322:124533. [PMID: 33348113 DOI: 10.1016/j.biortech.2020.124533] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2020] [Revised: 12/05/2020] [Accepted: 12/08/2020] [Indexed: 05/16/2023]
Abstract
Third generation biomass, i.e. microalgae, has emerged as a promising alternative to first and second generation biomass for biohydrogen production. However, its utilization is still low at present, due to several reasons including the strong and rigidity of the microalgal cell wall that limit the hydrolysis efficiency during dark fermentation (DF) and photofermentation (PF) processes. To improve the utilization efficiency of microalgal biomass, it is crucial that important aspects related to the production of the biomass and the following processes are elaborated. Thus, this article provides detailed overview of algal strains, cultivation, and harvesting. It also presents recent research and detailed information on microalgal biomass pretreatment, and biohydrogen production through DF, PF, and co-digestion of microalgal biomass with organic materials. Furthermore, factors affecting fermentation processes performance and the use of molecular techniques in biohydrogen production are presented. This review also discusses challenges and future prospects towards biohydrogen production from microalgal biomass.
Collapse
Affiliation(s)
- Apilak Salakkam
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Sureewan Sittijunda
- Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom 73170, Thailand
| | - Chonticha Mamimin
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Orawan Phanduang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen 40002, Thailand; Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen 40002, Thailand; Academy of Science, Royal Society of Thailand, Bangkok 10300, Thailand.
| |
Collapse
|
14
|
Rajesh Banu J, Ginni G, Kavitha S, Yukesh Kannah R, Adish Kumar S, Bhatia SK, Kumar G. Integrated biorefinery routes of biohydrogen: Possible utilization of acidogenic fermentative effluent. BIORESOURCE TECHNOLOGY 2021; 319:124241. [PMID: 33254464 DOI: 10.1016/j.biortech.2020.124241] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2020] [Revised: 10/03/2020] [Accepted: 10/05/2020] [Indexed: 06/12/2023]
Abstract
Biohydrogen production and integration possibilities are vital towards hydrogen economy and sustainability of the environment. Acidogenic fermentation is acquiring great interest and it is one of the prime pathways to produce biohydrogen and short chain carboxylic acids. In addition to hydrogen recovery, simultaneously nearly 60 percent of the organics may get converted to ethanol, 1,3propanediol and organic acids. Besides, these organics (fermentative effluents) can be used indirectly as a raw material for the generation of value- added products such as biolipid, polyhydroxyalkanoates, excess hydrogen, methane and electrical energy recovery. In this regard, this review has been assessed as a valuable biorefinery for biofuel and value- added products recovery. The biorefinery can be used to minimize entire cost of the approach by obtaining extra profits.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India
| | - G Ginni
- Department of Civil Engineering, Amrita College of Engineering and Technology, Amritagiri, Nagercoil, Tamil Nadu, 629901, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India
| | - S Adish Kumar
- Department of Civil Engineering, University V.O.C College of Engineering, Anna University, Thoothukudi Campus, Tamil Nadu, 628008, India
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
15
|
Dhiman S, Mukherjee G. Present scenario and future scope of food waste to biofuel production. J FOOD PROCESS ENG 2020. [DOI: 10.1111/jfpe.13594] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Affiliation(s)
- Sunny Dhiman
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| | - Gunjan Mukherjee
- University Institute of Biotechnology, Chandigarh University Mohali Punjab India
| |
Collapse
|
16
|
Microorganisms and Enzymes Used in the Biological Pretreatment of the Substrate to Enhance Biogas Production: A Review. SUSTAINABILITY 2020. [DOI: 10.3390/su12177205] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
The pretreatment of lignocellulosic biomass (LC biomass) prior to the anaerobic digestion (AD) process is a mandatory step to improve feedstock biodegradability and biogas production. An important potential is provided by lignocellulosic materials since lignocellulose represents a major source for biogas production, thus contributing to the environmental sustainability. The main limitation of LC biomass for use is its resistant structure. Lately, biological pretreatment (BP) gained popularity because they are eco-friendly methods that do not require chemical or energy input. A large number of bacteria and fungi possess great ability to convert high molecular weight compounds from the substrate into lower mass compounds due to the synthesis of microbial extracellular enzymes. Microbial strains isolated from various sources are used singly or in combination to break down the recalcitrant polymeric structures and thus increase biogasgeneration. Enzymatic treatment of LC biomass depends mainly on enzymes like hemicellulases and cellulases generated by microorganisms. The articles main purpose is to provide an overview regarding the enzymatic/biological pretreatment as one of the most potent techniques for enhancing biogas production.
Collapse
|
17
|
Almomani F. Algal cells harvesting using cost-effective magnetic nano-particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137621. [PMID: 32146403 DOI: 10.1016/j.scitotenv.2020.137621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Innovative iron-based nanoparticles were synthesized, characterized and tested for the first time for harvesting single and mixed algal culture from real wastewater. The tailor-made magnetic nanoparticles (MNPs; Fe-MNP-I and Fe-MNP-II) achieved a percentage algae harvesting efficiency (%AHE) higher than 95% using a concentration of MNPs (CMNP) of 25 ± 0.3 (std. dev = 0.08) mg.L-1, mixing speed (Mspeed) of 120 ± 2 (std. dev = 0.10) rpm, short contact time (Ct) of 7 ± 0.1 (std. dev = 0.05) min and separation time (SPt) of 3 ± 0.1 (std. dev = 0.09) min. The optimum operational conditions for harvesting of Chlorella vulgaris (C.v) were determined at (CMNP = 40 ± 0.4 (std. dev = 0.5) gMNPs.L-1, SPt = 2.5 ± 0.4 (std. dev = 0.1) min, Mspeed = 145 ± 3 (std. dev = 1.50) rpm and Ct = 5 ± 0.3 (std. dev = 0.10) min using surface response methodology. Langmuir model describes better the adsorption behavior of algae-Fe-MNP-I system, while both Langmuir and Freundlich fit well the adsorption behavior of algae-Fe-MNP-II. The maximum adsorption capacity of Spirulina platensis (SP.PL) (18.27 ± 0.07 (std. dev = 0.19) mgDWC.mgparticles-1) was higher than that for Chlorella vulgaris (C.v) (11.52 ± 0.01 (std. dev = 0.34) mgDWC.mgparticles-1) and mixed algal culture (M.X) (17.20 ± 0.07 (std. dev = 0.54) mgDWC.mgparticles-1) over Fe-MNP-I. Zeta potential measurements revealed that the adsorption mechanism between MNPs and algal strains is controlled by electrostatic interaction. The synthesized MNPs were recycled 10 times using alkaline-ultrasonic regeneration procedure.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
18
|
Almomani F. Kinetic modeling of microalgae growth and CO 2 bio-fixation using central composite design statistical approach. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137594. [PMID: 32143050 DOI: 10.1016/j.scitotenv.2020.137594] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/14/2019] [Revised: 01/15/2020] [Accepted: 02/25/2020] [Indexed: 06/10/2023]
Abstract
The optimum growth (μ), CO2 bio-fixation (RCO2) rates and the energy ratio (ER) of microalgae Chlorella vulgaris (C.v) were identified using central composite design statistical approach (CCD-SA). μ and RCO2 parameters including temperature of photobioreactor (TPBR), concentration of CO2 (CCO2 ), nutrients (carbon, nitrogen and phosphorus), gas flow rate (Qgas), initial inoculum concentration (INden) and the solar light intensity (Itot) were considered. Results revealed mild operational conditions in the range 20-25 °C, CCO2 of 2.5-20% (v/v), Qgas of 0.5-0.8 vvm and Itot of 50-200 μE/m2·s would generate considerable μ and RCO2. The highest μ and RCO2 with a significant ER of 19.5 were generated under CCD-SA optimized parameters of T = 25 °C, CCO2 = 20%, Qgas = 0.5 ± 0.05 (Std. Dev. = 0.04) vvm, total inorganic nitrogen (TN) = 19 ± 2 (Std. Dev. = 0.1) mg-N/L, Total phosphorous = 7 ± 1 (Std. Dev. = 0.7) mg-P/L, COD = 20 ± 2 (Std. Dev. = 0.5) mg-COD/L, INden = 0.52 ± 0.01 (Std. Dev. = 0.05) mg/L and Itot = 150 ± 2(Std. Dev. = 0.6) μE/m2s). Microalgae technology can be considered as a promising technology for CO2 bio-fixation in a large scale with a sustainable value of the produced biomass for biofuel production.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
19
|
Rajesh Banu J, Yukesh Kannah R, Kavitha S, Ashikvivek A, Bhosale RR, Kumar G. Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. BIORESOURCE TECHNOLOGY 2020; 304:123021. [PMID: 32086031 DOI: 10.1016/j.biortech.2020.123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
The present study aimed to enhance the biomethanation potential of mixed microalgae via cost effective surfactant coupled ultrasonic homogenization (SCUH). Mixed microalgae biomass was harvested using a coagulant (Alum) from a raceway pond. The harvested algal biomass was subjected to ultrasonic homogenization (UH) by varying the power from 100 to 180 W. A maximal soluble organic release of 2131 mg/L was achieved at an ultrasonic input energy (UIE) of 25200 kJ/kg TS. In order to enhance soluble organic release and to reduce energy spent, the optimized condition of ultrasonic pretreatment was coupled with varying sodium dodecyl sulphate (SDS) dosage. A higher solubilization of 30.5% was achieved at a UIE of 4200 kJ/kg SS with surfactant dosage of 0.02 g SDS/g SS for SCUH. SCUH showed higher methane production of 358 mL/g COD when compared to UH (185.9 mL/g COD), SCUH was economically feasible than UH.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - A Ashikvivek
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box - 2713, Doha, Qatar
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Dinesh Kumar M, Atabani AE, Kumar G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122821. [PMID: 32008862 DOI: 10.1016/j.biortech.2020.122821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The circular bioeconomy plan is an innovative research based scheme intended for augmenting the complete utilization and management of bio-based resources in a sustainable biorefinery route. Spent coffee grounds based biorefinery is the emerging aspect promoting circular bioeconomy. The sustainable circular bioeconomy by utilizing SCG is achieved by cascade approaches and the inclusion of many biorefinery approaches to obtain many bio-products. The maximum energy recovery can be obtained by process integration. The economic analysis of the biofuel production from SCG is dependent on the cost of raw material, transportation, the need of labor and energy, oil extraction operations and biofuel production. The inclusion of new products from already established product can minimize the investment cost when related to the production cost. A positive net present value can be achieved via SCG biorefinery which indicates the profitability of the process.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Rendón-Castrillón L, Ramírez-Carmona M, Ocampo-López C, Giraldo-Aristizabal R. Evaluation of the operational conditions in the production and morphology of Chlorella sp. BRAZ J BIOL 2020; 81:202-209. [PMID: 32130288 DOI: 10.1590/1519-6984.228874] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Accepted: 10/01/2019] [Indexed: 11/22/2022] Open
Abstract
It was evaluated the effect of operational conditions in the production of Chlorella sp. after its selection from genus Chlorella sp., Scenedesmus sp., Nannochloris sp., Tetraselmis sp. and Dunaliella salina. Microalgae were inoculated in drinking water with addition of NPK fertilizer (N 24%, P 24%, K 18%), at a concentration of 0.5 g/L, agitation of 150 rpm, temperature 25 °C, light intensity of 1680 lumens at a color temperature of 6400K, without pH control for 8 days. The cellular concentrations obtained were 3.72x107 (Chlorella sp.), 1.36x107 (Scenedesmus sp.), 3.55x107 (Tetraselmis sp.), 5.74x107 (Nannochloris sp.) and 3.45x106 (Dunaliella salina), where the microalgae Chlorella sp., shows invasive capacity in drinking water cultivations. Applying the 2n-p fractional factorial design concept for the elemental composition of the microalgae and the cellular morphology, it was obtained 44.33% of C, 7.09% of H, 8.53% of N and 0.84% of S for the Chlorella sp.
Collapse
Affiliation(s)
- L Rendón-Castrillón
- Centro de Estudios y de Investigación en Biotecnología - CIBIOT, Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Cir. 1ª #70-01, of. Bloque 11-116, Medellín, Colombia
| | - M Ramírez-Carmona
- Centro de Estudios y de Investigación en Biotecnología - CIBIOT, Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Cir. 1ª #70-01, of. Bloque 11-116, Medellín, Colombia
| | - C Ocampo-López
- Centro de Estudios y de Investigación en Biotecnología - CIBIOT, Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Cir. 1ª #70-01, of. Bloque 11-116, Medellín, Colombia
| | - R Giraldo-Aristizabal
- Centro de Estudios y de Investigación en Biotecnología - CIBIOT, Facultad de Ingeniería Química, Universidad Pontificia Bolivariana, Cir. 1ª #70-01, of. Bloque 11-116, Medellín, Colombia
| |
Collapse
|
22
|
Magnetophoretic Harvesting of Nannochloropsis oculata Using Iron Oxide Immobilized Beads. WATER 2020. [DOI: 10.3390/w12010236] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
In this work, the harvesting of Nannochloropsis oculata microalgae through the use of nanosized Fe3O4 immobilized in polyvinyl alcohol (PVA)/sodium alginate (SA) as a flocculant (Fe3O4/PS) is investigated. Using the Fe3O4/PS immobilized beads could reduce the amount of soluble ferrous ions (Fe2+) released from naked Fe3O4 in acid treatment, leading to easy recovery. The characterization was performed under different dosages and pH values of Fe3O4/PS. The results show that the Fe3O4/PS, when applied to the algae culture (500 mg dry cell weight/L), achieves a 96% harvesting efficiency under conditions of a pH of 4 with 200 mT magnetic field intensity. Fe3O4/PS can be directly reused without adjusting the pH value. The recycled Fe3O4/PS shows stability in terms of its surface properties, maintaining more than 80% harvesting efficiency after five recycles. Magnetophoretic harvesting, using immobilized magnetic iron oxide as a particle-based flocculant, is a potential method to reduce challenges related to the cost-effective microalgae-harvesting method.
Collapse
|
23
|
A Review on Anaerobic Digestion of Lignocellulosic Wastes: Pretreatments and Operational Conditions. APPLIED SCIENCES-BASEL 2019. [DOI: 10.3390/app9214655] [Citation(s) in RCA: 32] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
Anaerobic digestion (AD) has become extremely popular in the last years to treat and valorize organic wastes both at laboratory and industrial scales, for a wide range of highly produced organic wastes: municipal wastes, wastewater sludge, manure, agrowastes, food industry residuals, etc. Although the principles of AD are well known, it is very important to highlight that knowing the biochemical composition of waste is crucial in order to know its anaerobic biodegradability, which makes an AD process economically feasible. In this paper, we review the main principles of AD, moving to the specific features of lignocellulosic wastes, especially regarding the pretreatments that can enhance the biogas production of such wastes. The main point to consider is that lignocellulosic wastes are present in any organic wastes, and sometimes are the major fraction. Therefore, improving their AD could cause a boost in the development in this technology. The conclusions are that there is no unique strategy to improve the anaerobic biodegradability of lignocellulosic wastes, but pretreatments and codigestion both have an important role on this issue.
Collapse
|
24
|
Kavitha S, Schikaran M, Yukesh Kannah R, Gunasekaran M, Kumar G, Rajesh Banu J. Nanoparticle induced biological disintegration: A new phase separated pretreatment strategy on microalgal biomass for profitable biomethane recovery. BIORESOURCE TECHNOLOGY 2019; 289:121624. [PMID: 31203180 DOI: 10.1016/j.biortech.2019.121624] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2019] [Revised: 06/06/2019] [Accepted: 06/07/2019] [Indexed: 06/09/2023]
Abstract
This study involves the application of new phase separated biological pretreatment (PSBP) strategy on microalgal biomass using the nickel nanoparticle induced cellulase secreting bacterial disintegration. Particularly, interest was focussed on cell wall weakening (CWW) of microalgae biomass besides the cell disintegration (CD) and release of organics. During CWW, protein, carbohydrate, cellulose, hemicellulose and DNA were used as evaluation indexes. Similarly, during CD, soluble chemical oxygen demand was used as evaluation index to assess the disintegration effect. A higher CWW was achieved at nickel nanoparticle (Np) dosage of 0.004 g/g SS. During CD, a clear demarcation in biomass solubilisation was achieved by PSBP (36%) than the sole biological pretreatment -BP (24%). The biomethanogenesis test results showed that enhanced methane production of 411 mL/g COD was achieved by PSBP than BP. Energy analysis showed that a higher net energy production of 6.467 GJ/d was achieved by PSBP.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Schikaran
- Department of Biotechnology, Karunya Institute of Technology and Sciences, Coimbatore, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India.
| |
Collapse
|
25
|
Shurair M, Almomani F, Bhosale R, Khraisheh M, Qiblawey H. Harvesting of intact microalgae in single and sequential conditioning steps by chemical and biological based - flocculants: Effect on harvesting efficiency, water recovery and algal cell morphology. BIORESOURCE TECHNOLOGY 2019; 281:250-259. [PMID: 30825828 DOI: 10.1016/j.biortech.2019.02.103] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/29/2018] [Revised: 02/21/2019] [Accepted: 02/22/2019] [Indexed: 06/09/2023]
Abstract
Quick algae harvesting methodologies relating optimum flocculent dose (DOpt.), percentage harvesting efficiency (%HE) and percentage water recovery (%WRecovery) to the in-situ hydrodynamic properties of water-algae systems are presented. Flocculation of three microalgae in single and sequential steps, using chemical (polymer and ferric chloride) and biological (egg shells) flocculants, was studied. Zeta potential and pH analysis were completed to further understand the flocculation mechanism. Polymer at DOpt. of 7.0 g/kgDS resulted in WRecovery of 90% and %HE of 96.7%. Lower %HE (92.1), %WRecovery (79) and noticeable algal cells deformation was observed for ferric chloride at DOpt. of 7.0 g/kg DS. Bio-flocculant conserved algal structure and resulted in %HE of 96.2 and %WRecovery of 90 at DOpt. of 5.4 g/kgDS. Significant % HE of 99.8, %WRecovery of 99.8%, and up to 95% reduction in DOpt. were achieved in sequential flocculation. The results established the effectiveness and suitability of sequential/ bio-flocculation for algae harvesting.
Collapse
Affiliation(s)
- Mohamad Shurair
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar.
| | - Rahul Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Majeda Khraisheh
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| | - Hazim Qiblawey
- Department of Chemical Engineering, College of Engineering, Qatar University, P. O. Box 2713, Doha, Qatar
| |
Collapse
|
26
|
Ganesh Saratale R, Kumar G, Banu R, Xia A, Periyasamy S, Dattatraya Saratale G. A critical review on anaerobic digestion of microalgae and macroalgae and co-digestion of biomass for enhanced methane generation. BIORESOURCE TECHNOLOGY 2018; 262:319-332. [PMID: 29576518 DOI: 10.1016/j.biortech.2018.03.030] [Citation(s) in RCA: 104] [Impact Index Per Article: 14.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2017] [Revised: 03/03/2018] [Accepted: 03/05/2018] [Indexed: 05/18/2023]
Abstract
Biogas production using algal resources has been widely studied as a green and alternative renewable technology. This review provides an extended overview of recent advances in biomethane production via direct anaerobic digestion (AD) of microalgae, macroalgae and co-digestion mechanism on biomethane production and future challenges and prospects for its scaled-up applications. The effects of pretreatment in the preparation of algal feedstock for methane generation are discussed briefly. The role of different operational and environmental parameters for instance pH, temperature, nutrients, organic loading rate (OLR) and hydraulic retention time (HRT) on sustainable methane generation are also reviewed. Finally, an outlook on the possible options towards the scale up and enhancement strategies has been provided. This review could encourage further studies in this area, to intend and operate continuous mode by designing stable and reliable bioreactor systems and to analyze the possibilities and potential of co-digestion for the promotion of algal-biomethane technology.
Collapse
Affiliation(s)
- Rijuta Ganesh Saratale
- Research Institute of Biotechnology and Medical Converged Science, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 38722, Republic of Korea
| | - Rajesh Banu
- Department of Civil Engineering, Regional Centre of Anna University, Tirunelveli, India
| | - Ao Xia
- Key Laboratory of Low-grade Energy Utilization Technologies and Systems, Chongqing University, Chongqing 400044, China
| | | | - Ganesh Dattatraya Saratale
- Department of Food Science and Biotechnology, Dongguk University-Seoul, Ilsandong-gu, Goyang-si, Gyeonggido 10326, Republic of Korea.
| |
Collapse
|
27
|
Martín Juárez J, Riol Pastor E, Fernández Sevilla JM, Muñoz Torre R, García-Encina PA, Bolado Rodríguez S. Effect of pretreatments on biogas production from microalgae biomass grown in pig manure treatment plants. BIORESOURCE TECHNOLOGY 2018; 257:30-38. [PMID: 29482163 DOI: 10.1016/j.biortech.2018.02.063] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2017] [Revised: 02/12/2018] [Accepted: 02/13/2018] [Indexed: 05/16/2023]
Abstract
Methane production from pretreated and raw mixed microalgae biomass grown in pig manure was evaluated. Acid and basic pretreatments provided the highest volatile solids solubilisation (up to 81%) followed by alkaline-peroxide and ultrasounds (23%). Bead milling and steam explosion remarkably increased the methane production rate, although the highest yield (377 mL CH4/g SV) was achieved by alkali pretreatment. Nevertheless, some pretreatments inhibited biogas production and resulted in lag phases of 7-9 days. Hence, experiments using only the pretreated solid phase were performed, which resulted in a decrease in the lag phase to 2-3 days for the alkali pretreatment and slightly increased biomass biodegradability of few samples. The limiting step during the BMP test (hydrolysis or microbial inhibition) for each pretreatment was elucidated using the goodness of fitting to a first order or a Gompertz model. Finally, the use of digestate as biofertilizer was evaluated applying a biorefinery concept.
Collapse
Affiliation(s)
- Judit Martín Juárez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Elena Riol Pastor
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - José M Fernández Sevilla
- Department of Chemical Engineering, University of Almería, Cañada San Urbano s/n, 04120 Almería, Spain
| | - Raúl Muñoz Torre
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Pedro A García-Encina
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain
| | - Silvia Bolado Rodríguez
- Department of Chemical Engineering and Environmental Technology, University of Valladolid, Calle Doctor Mergelina s/n, 47011 Valladolid, Spain.
| |
Collapse
|
28
|
Efficient Anaerobic Digestion of Microalgae Biomass: Proteins as a Key Macromolecule. Molecules 2018; 23:molecules23051098. [PMID: 29734773 PMCID: PMC6099730 DOI: 10.3390/molecules23051098] [Citation(s) in RCA: 29] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2018] [Revised: 05/03/2018] [Accepted: 05/03/2018] [Indexed: 11/17/2022] Open
Abstract
Biogas generation is the least complex technology to transform microalgae biomass into bioenergy. Since hydrolysis has been pointed out as the rate limiting stage of anaerobic digestion, the main challenge for an efficient biogas production is the optimization of cell wall disruption/hydrolysis. Among all tested pretreatments, enzymatic treatments were demonstrated not only very effective in disruption/hydrolysis but they also revealed the impact of microalgae macromolecular composition in the anaerobic process. Although carbohydrates have been traditionally recognized as the polymers responsible for the low microalgae digestibility, protease addition resulted in the highest organic matter solubilization and the highest methane production. However, protein solubilization during the pretreatment can result in anaerobic digestion inhibition due to the release of large amounts of ammonium nitrogen. The possible solutions to overcome these negative effects include the reduction of protein biomass levels by culturing the microalgae in low nitrogen media and the use of ammonia tolerant anaerobic inocula. Overall, this review is intended to evidence the relevance of microalgae proteins in different stages of anaerobic digestion, namely hydrolysis and methanogenesis.
Collapse
|
29
|
Rajesh Banu J, Sugitha S, Kannah RY, Kavitha S, Yeom IT. Marsilea spp.-A novel source of lignocellulosic biomass: Effect of solubilized lignin on anaerobic biodegradability and cost of energy products. BIORESOURCE TECHNOLOGY 2018; 255:220-228. [PMID: 29427873 DOI: 10.1016/j.biortech.2018.01.103] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2017] [Revised: 01/20/2018] [Accepted: 01/22/2018] [Indexed: 06/08/2023]
Abstract
The present study concerns the liquefying potential of an unusual source of lignocellulosic biomass (Marsilea spp., water clover, an aquatic fern) during combinative pretreatment. The focus was on how the pretreatment affects the biodegradability, methane production, and profitability of thermochemical dispersion disintegration (TCDD) based on liquefaction and soluble lignin. The TCDD process was effective at 12,000 rpm and 11 min under the optimized thermochemical conditions (80 °C and pH 11). The results from biodegradability tests imply that 30% liquefaction was sufficient to achieve enhanced biodegradability of about 0.280 g-COD/g-COD. When biodegradability was >30% inhibition was observed (0.267 and 0.264 g-COD/g-COD at 35-40% liquefaction) due to higher soluble lignin release (4.53-4.95 g/L). Scalable studies revealed that achievement of 30% liquefaction was beneficial in terms of the energy and cost benefit ratios (0.956 and 1.02), when compared to other choices.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India.
| | - S Sugitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Regional campus, Anna University, Tirunelveli, India
| | - Ick Tae Yeom
- Graduate School of Water Resource, Sungkyunkwan University, Suwon, South Korea
| |
Collapse
|
30
|
Ecem Öner B, Akyol Ç, Bozan M, Ince O, Aydin S, Ince B. Bioaugmentation with Clostridium thermocellum to enhance the anaerobic biodegradation of lignocellulosic agricultural residues. BIORESOURCE TECHNOLOGY 2018; 249:620-625. [PMID: 29091846 DOI: 10.1016/j.biortech.2017.10.040] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/25/2017] [Revised: 10/06/2017] [Accepted: 10/08/2017] [Indexed: 06/07/2023]
Abstract
This study aimed to improve biomethane production from lignocellulosic biomass by assessing the impact of bioaugmentation with Clostridium thermocellum on the performance of anaerobic digesters at different inoculation ratios. The outputs of the digestion experiments revealed that bioaugmentation strategies with C. thermocellum increased the methane yield up to 39%. The sequencing analysis indicated that the indigenous microbial community was modified by the bioaugmentation. During the process of bioaugmentation, in the digester that was inoculated at the ratio of 20% (v:v), an increase in the abundance of Ruminococcaceae family led to a decrease in the Bacteroidaceae and Synergistaceae families. Furthermore, the metabolic products of the bioaugmented strains greatly influenced the diversity of the archaeal community and an increase in the abundance of Methanomicrobiales was observed.
Collapse
Affiliation(s)
- Büşra Ecem Öner
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Çağrı Akyol
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Mahir Bozan
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| | - Orhan Ince
- Department of Environmental Engineering, Istanbul Technical University, Maslak, 34469 Istanbul, Turkey
| | - Sevcan Aydin
- Department of Genetics and Bioengineering, Nişantaşı University, Maslak, 34398 Istanbul, Turkey.
| | - Bahar Ince
- Institute of Environmental Sciences, Boğaziçi University, Bebek, 34342 Istanbul, Turkey
| |
Collapse
|
31
|
|
32
|
Kumar G, Sivagurunathan P, Zhen G, Kobayashi T, Kim SH, Xu K. Combined pretreatment of electrolysis and ultra-sonication towards enhancing solubilization and methane production from mixed microalgae biomass. BIORESOURCE TECHNOLOGY 2017; 245:196-200. [PMID: 28892691 DOI: 10.1016/j.biortech.2017.08.154] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2017] [Revised: 08/23/2017] [Accepted: 08/25/2017] [Indexed: 06/07/2023]
Abstract
This study investigated the effect of combination of pretreatment methods such as ultra-sonication and electrolysis for the minimum energy input to recover the maximal carbohydrate and solubilization (in terms of sCOD) from mixed microalgae biomass. The composition of the soluble chemical oxygen demand (COD), protein, carbohydrate revealed that the hydrolysis method had showed positive impact on the increasing quantity and thus enhanced methane yields. As a result, the combination of these 2 pretreatments showed the greatest yield of soluble protein and carbohydrate as 279 and 309mg/L, which is the recovery of nearly 85 and 90% in terms of total content of them. BMP tests showed peak methane production yield of 257mL/gVSadded, for the hydrolysate of combined pretreatment as compared to the control experiment of 138mL/gVS added.
Collapse
Affiliation(s)
- Gopalakrishnan Kumar
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan; Department of Environmental Engineering, Daegu University, Republic of Korea
| | - Periyasamy Sivagurunathan
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Guangyin Zhen
- Shanghai Key Lab for Urban Ecological Processes and Eco-Restoration, School of Ecological and Environmental Sciences, East China Normal University, Shanghai 200241, PR China
| | - Takuro Kobayashi
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan
| | - Sang-Hyoun Kim
- Department of Environmental Engineering, Daegu University, Republic of Korea
| | - Kaiqin Xu
- Center for Materials Cycles and Waste Management Research, National Institute for Environmental Studies, Tsukuba, Japan; School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
33
|
Kavitha S, Yukesh Kannah R, Rajesh Banu J, Kaliappan S, Johnson M. Biological disintegration of microalgae for biomethane recovery-prediction of biodegradability and computation of energy balance. BIORESOURCE TECHNOLOGY 2017; 244:1367-1375. [PMID: 28522200 DOI: 10.1016/j.biortech.2017.05.007] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2017] [Revised: 04/27/2017] [Accepted: 05/01/2017] [Indexed: 06/07/2023]
Abstract
The present study investigates the synergistic effect of combined bacterial disintegration on mixed microalgal biomass for energy efficient biomethane generation. The rate of microalgal biomass lysis, enhanced biodegradability, and methane generation were used as indices to assess efficiency of the disintegration. A maximal dissolvable organics release and algal biomass lysis rate of about 1100, 950 and 800mg/L and 26, 23 and 18% was achieved in PA+C (protease, amylase+cellulase secreting bacteria), C (cellulase alone) and PA (protease, amylase) microalgal disintegration. During anaerobic fermentation, a greater production of volatile fatty acids (1000mg/L) was noted in PA+C bacterial disintegration of microalgal biomass. PA+C bacterial disintegration improve the amenability of microalgal biomass to biomethanation process with higher biodegradability of about 0.27gCOD/gCOD, respectively. The energy balance analysis of this combined bacterial disintegration of microalgal biomass provides surplus positive net energy (1.14GJ/d) by compensating the input energy requirements.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India
| | - J Rajesh Banu
- Department of Civil Engineering, Regional Campus, Anna University, Tirunelveli, India.
| | - S Kaliappan
- Department of Civil Engineering, Ponjesly College of Engineering, Nagercoil, India
| | - M Johnson
- Centre for Plant Biotechnology, St Xavier's College, Palayamkottai, Tirunelveli, India
| |
Collapse
|
34
|
Changing Trends in Microalgal Energy Production- Review of Conventional and Emerging Approaches. JOURNAL OF PURE AND APPLIED MICROBIOLOGY 2017. [DOI: 10.22207/jpam.11.2.42] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
|