1
|
Pradhan D, Jaiswal S, Tiwari BK, Jaiswal AK. Choline chloride - oxalic acid dihydrate deep eutectic solvent pretreatment of Barley straw for production of cellulose nanofibers. Int J Biol Macromol 2024; 281:136213. [PMID: 39368590 DOI: 10.1016/j.ijbiomac.2024.136213] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2024] [Revised: 09/10/2024] [Accepted: 09/28/2024] [Indexed: 10/07/2024]
Abstract
This study investigates the production of cellulose nanofibers (CNF) from Barley straw using ultrasound-assisted deep eutectic solvent (US-DES) treatment for biomass fractionation and subsequent high-intensity ultrasonication (HIUS) for nano-fibrillation. Two deep eutectic solvents (DES), synthesized from choline chloride (ChCl) and oxalic acid dihydrate (OAD) at 1:1 and 2:1 M ratio, achieved solubilisation of over 80 % of lignin and hemicellulose under optimal conditions. The purification of these DES-treated materials resulted in cellulose with a purity >88 %. CNFs, characterized by a size of <100 nm, a polydispersity index under 0.5, and a zeta potential lower than -30 mV, were successfully isolated through a combination of wet grinding and HIUS treatment. SEM and XRD results showed the formation of a network of interconnected fibres with a Type I cellulose structure. This research highlights Barley straw's potential as a sustainable source of high-value CNF from agricultural waste.
Collapse
Affiliation(s)
- Dileswar Pradhan
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | - Swarna Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| | | | - Amit K Jaiswal
- Centre for Sustainable Packaging and Bioproducts (CSPB), School of Food Science and Environmental Health, Technological University Dublin - City Campus, Central Quad, Grangegorman, Dublin, Ireland; Sustainability and Health Research Hub, Technological University Dublin - City Campus, Grangegorman, Dublin, Ireland.
| |
Collapse
|
2
|
Yang H, Zhou P, Li X, Shen L. A green and efficient approach for the simultaneous extraction and mechanisms of essential oil and lignin from Cinnamomum camphora: Process optimization based on deep learning. Int J Biol Macromol 2024; 277:134215. [PMID: 39074705 DOI: 10.1016/j.ijbiomac.2024.134215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 07/02/2024] [Accepted: 07/25/2024] [Indexed: 07/31/2024]
Abstract
The utilization and economic benefits of biomass resources can be maximized through rational design and process optimization. In this study, an innovative approach for the simultaneous extraction of essential oil and lignin from Cinnamomum camphora leaves by deep eutectic solvent (DES) and optimization of the process parameters was achieved using deep learning tools. With the water content of 40 %, liquid-solid ratio of 9.00 mL/g, and distillation time of 51.81 min, the yields of the essential oil and lignin reached 3.15 ± 0.02 % and 9.75 ± 0.15 %, respectively. Notably, the efficiency of simultaneous extraction of essential oil improved by 23 % compared to that of traditional steam distillation. Moreover, the extraction mechanism of the process was clarified. The connection between lignin with cellulose and hemicellulose was disintegrated by the DES, resulting in lignin shedding and hence accelerating the dissolution of essential oil. Moreover, the compositions of lignin and essential oil were also identified.
Collapse
Affiliation(s)
- Hongxiang Yang
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Peng Zhou
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China
| | - Xiangzhou Li
- College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha 410004, Hunan, China; Institute of Natural Products Research and Development, Central South University of Forestry and Technology, Changsha 410004, Hunan, China.
| | - Liqun Shen
- Key Laboratory of Chemistry and Engineering of Forest Products, State Ethnic Affairs Commission, Guangxi Key Laboratory of Chemistry and Engineering of Forest Products, Guangxi Collaborative Innovation Center for Chemistry and Engineering of Forest Products, Guangxi Minzu University, Nanning 530006, Guangxi, China
| |
Collapse
|
3
|
Liu W, Jiang C, Li X, Li H, Zhang Y, Huang Y, Chen S, Hou Q. Microwave-assisted DES fabrication of lignin-containing cellulose nanofibrils and its derived composite conductive hydrogel. Carbohydr Polym 2024; 328:121741. [PMID: 38220351 DOI: 10.1016/j.carbpol.2023.121741] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 12/11/2023] [Accepted: 12/25/2023] [Indexed: 01/16/2024]
Abstract
Deep eutectic solvents (DES) have been regarded as green solvents in the biorefinery of lignocellulosic biomass, but long duration time has severely limited efficiency. The microwave-assisted DES pretreatment along with enzymatic hydrolysis and high-pressure homogenization process was proposed to produce lignin-containing cellulose nanofibrils (LCNF) from corncob. Benefiting from microwave-assisted DES pretreatment, the duration time was greatly shortened; meanwhile the effects of different kinds of DES on the resultant LCNF were investigated. The results showed that, the microwave-assisted DES fabricated LCNF (M-LCNF) was successfully obtained, exhibiting good nano size, thermal stability, colloidal stability, and fluorescence. M-LCNF was further introduced into phytic acid (PA) enhanced poly(acrylamide-co-acrylic acid) (P(AM-co-AA)) network and constructed composite conductive hydrogels (PLP). The obtained hydrogels exhibited good mechanical strength, UV blocking ability, fluorescence, and conductivity. A simple battery assembled with the resultant PLP as electrolyte had an out voltage of 2.41 V. The composite conductive hydrogel showed good sensing performance towards different stimuli (e.g., stretching and compression) and human motions in real time. It is expected that this research would provide an alternative way for green fabrication of LCNF and potential application of LCNF in flexible sensors.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Xiaoyu Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Haoyu Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yu Zhang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yi Huang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Shangqing Chen
- School of Chemical Engineering and Pharmacy, Wuhan Institute of Technology, Wuhan 430202, China.
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Biobased Fiber Manufacturing Technology, Tianjin University of Science and Technology, Tianjin 300457, China
| |
Collapse
|
4
|
Chen X, Liu Q, Li B, Wang N, Liu C, Shi J, Liu L. Unveiling the potential of novel recyclable deep eutectic solvent pretreatment: Effective separation of lignin from poplar hydrolyzed residue. Int J Biol Macromol 2024; 259:129354. [PMID: 38218303 DOI: 10.1016/j.ijbiomac.2024.129354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Revised: 01/01/2024] [Accepted: 01/07/2024] [Indexed: 01/15/2024]
Abstract
To effectively convert the fermentable sugars present in lignocellulosic biomass into biofuels and additional value-added products, it is crucial to remove lignin from the biomass. With the intention of expeditiously remove lignin from poplar wood and improve cellulose saccharification, an innovative ternary deep eutectic solvent (DES) benzyl triethyl ammonium chloride-ethylene glycol-FeCl3 (T-EG-F) was studied for the pretreatment of poplar hydrolyzed residue (PHR). The results revealed that following T-EG-F DES pretreatment at 130 °C for 4 h, the lignin removal rate reached 91.88 %. The effect of DES on PHR and regenerated lignin was comprehensively investigated using X-ray diffractometer (XRD), Fourier transform infrared spectroscopy (FTIR), scanning electron microscope (SEM), Thermogravimetric (TG) and other characterization methods, providing valuable insights into the mechanism of this innovative biomass pretreatment. Moreover, there was a significant improvement in the enzyme digestibility of the DES pretreatment residue. At 48 h, the enzyme load of 30 FPU/g cellulose achieved a remarkable enzyme digestibility of 97.31 %, and this value exhibited a notable increase of 6.56 times compared to the untreated poplar sample. In addition, the T-EG-F could be recycled and reused. This study demonstrates that the potential of T-EG-F DES pretreatment as a green and efficient method for lignin dissociation from lignocellulosic biomass, offering a promising approach for biomass component separation.
Collapse
Affiliation(s)
- Xiaomiao Chen
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Qianjing Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Baoguo Li
- School of Health Science and Engineering, University of Shanghai for Science and Technology, Shanghai 200093, China
| | - Na Wang
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Caoyunrong Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China
| | - Jiping Shi
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Science and Technology, ShanghaiTech University, Shanghai 201210, China.
| | - Li Liu
- Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Shanghai Engineering Research Center of Biotransformation of Organic Solid Waste, Shanghai 200241, China.
| |
Collapse
|
5
|
Liu Y, Gao L, Chen L, Zhou W, Wang C, Ma L. Exploring carbohydrate extraction from biomass using deep eutectic solvents: Factors and mechanisms. iScience 2023; 26:107671. [PMID: 37680471 PMCID: PMC10480316 DOI: 10.1016/j.isci.2023.107671] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/09/2023] Open
Abstract
Deep eutectic solvents (DESs) are increasingly being recognized as sustainable and promising solvents because of their unique properties: low melting point, low cost, and biocompatibility. Some DESs possess high viscosity, remarkable stability, and minimal toxicity, enhancing their appeal for diverse applications. Notably, they hold promise in biomass pretreatment, a crucial step in biomass conversion, although their potential in algal biomass carbohydrates extraction remains largely unexplored. Understanding the correlation between DESs' properties and their behavior in carbohydrate extraction, alongside cellulose degradation mechanisms, remains a gap. This review provides an overview of the use of DESs in extracting carbohydrates from lignocellulosic and algal biomass, explores the factors that influence the behavior of DESs in carbohydrate extraction, and sheds light on the mechanism of cellulose degradation by DESs. Additionally, the review discusses potential future developments and applications of DESs, particularly extracting carbohydrates from algal biomass.
Collapse
Affiliation(s)
- Yong Liu
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lingling Gao
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Lungang Chen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| | - Wenguang Zhou
- School of Resources & Environment and Key Laboratory of Poyang Lake Environment and Resource Utilization, Ministry of Education, Nanchang University, Nanchang 330031 P.R. China
| | - Chenguang Wang
- Key Laboratory of Renewable Energy, Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, Guangzhou 510640, P.R. China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, P.R. China
| |
Collapse
|
6
|
Usmani Z, Sharma M, Tripathi M, Lukk T, Karpichev Y, Gathergood N, Singh BN, Thakur VK, Tabatabaei M, Gupta VK. Biobased natural deep eutectic system as versatile solvents: Structure, interaction and advanced applications. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 881:163002. [PMID: 37003333 DOI: 10.1016/j.scitotenv.2023.163002] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 03/13/2023] [Accepted: 03/18/2023] [Indexed: 06/01/2023]
Abstract
The increasing emphasis on the development of green replacements to traditional organic solvents and ionic liquids (ILs) can be attributed to the rising concerns over human health and detrimental impacts of conventional solvents towards the environment. A new generation of solvents inspired by nature and extracted from plant bioresources has evolved over the last few years, and are referred to as natural deep eutectic solvents (NADES). NADES are mixtures of natural constituents like sugars, polyalcohols, sugar-based alcohols, amino acids and organic acids. Interest in NADES has exponentially grown over the last eight years, which is evident from an upsurge in the number of research projects undertaken. NADES are highly biocompatible as they can be biosynthesized and metabolized by nearly all living organisms. These solvents pose several noteworthy advantages, such as easy synthesis, tuneable physico-chemical properties, low toxicity, high biodegradability, solute sustainability and stabilization and low melting point. Research on the applicability of NADES in diverse areas is gaining momentum, which includes as - media for chemical and enzymatic reactions; extraction media for essential oils; anti-inflammatory and antimicrobial agent; extraction of bioactive composites; as chromatographic media; preservatives for labile compounds and in drug synthesis. This review gives a complete overview of the properties, biodegradability and toxicity of NADES which we propose can assist in further knowledge generation on their significance in biological systems and usage in green and sustainable chemistry. Information on applications of NADES in biomedical, therapeutic and pharma-biotechnology fields is also highlighted in the current article along with the recent progress and future perspectives in novel applications of NADES.
Collapse
Affiliation(s)
- Zeba Usmani
- Department of Applied Biology, University of Science and Technology, Meghalaya 793101, India; Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Minaxi Sharma
- Haute Ecole Provinciale de Hainaut-Condorcet, 7800 ATH, Belgium
| | - Manikant Tripathi
- Biotechnology Program, Dr. Rammanohar Lohia Avadh University, Ayodhya, Uttar Pradesh 224001, India
| | - Tiit Lukk
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Yevgen Karpichev
- Department of Chemistry and Biotechnology, Tallinn University of Technology, 12618 Tallinn, Estonia
| | - Nicholas Gathergood
- School of Chemistry, University of Lincoln, Joseph Banks Laboratories, Green Lane, Lincoln, Lincolnshire LN6 7DL, UK
| | - Brahma N Singh
- Herbal Nanobiotechnology Lab, Pharmacology Division, CSIR-National Botanical Research Institute, Lucknow-226001, Uttar Pradesh, India
| | - Vijay Kumar Thakur
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK
| | - Meisam Tabatabaei
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia; Department of Biomaterials, Saveetha Dental College, Saveetha Institute of Medical and Technical Sciences, Chennai 600 077, India
| | - Vijai K Gupta
- Biorefining and Advanced Materials Research Center, SRUC, Kings Buildings, West Mains Road, Edinburgh EH9 3JG, UK.
| |
Collapse
|
7
|
Enhanced Enzymatic Hydrolysis of Wheat Straw to Improve Reducing Sugar Yield by Novel Method under Mild Conditions. Processes (Basel) 2023. [DOI: 10.3390/pr11030898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2023] Open
Abstract
Wheat straw is a suitable source material for bioethanol production. Removing lignin and hemicellulose in wheat straw to improve enzymatic hydrolysis efficiency is essential because of its complex structure. Deep eutectic solvents (DESs) have become substitutes for ionic liquids (ILs), with the characteristics of good biocompatibility, simple synthesis procedure and low cost. However, the process of removing lignin and hemicellulose using present DESs requires a high operation temperature or long operation time. Therefore, we studied a novel method under mild conditions for screening a series of novel DESs based on an inorganic base to remove lignin and hemicellulose in wheat straw. In this work, the effect of DES type, the pH of the DESs, the operation temperature and operation time for enhancing enzymatic hydrolysis, and the crystal structure and the chemical structure and surface morphology of wheat straw were investigated. In particular, Na:EG exhibited the most excellent solubility for wheat straw under mild conditions, removing 80.6% lignin and 78.5% hemicellulose, while reserving 87.4% cellulose at 90 °C for 5 h, resulting in 81.6% reducing sugar produced during hydrolysis for 72 h. Furthermore, XRD, FT-IR and SEM analysis verified the lignin and hemicellulose removal. Hence, DESs based on an inorganic base used for removing lignin and hemicellulose will enhance enzymatic hydrolysis, and thus promote the industrial application of wheat straw to produce bioethanol.
Collapse
|
8
|
Hemicellulose: Structure, Chemical Modification, and Application. Prog Polym Sci 2023. [DOI: 10.1016/j.progpolymsci.2023.101675] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
|
9
|
Cui P, Ye Z, Chai M, Yuan J, Xiong Y, Yang H, Yao L. Effective fractionation of lignocellulose components and lignin valorization by combination of deep eutectic solvent with ethanol. Front Bioeng Biotechnol 2023; 10:1115469. [PMID: 36698646 PMCID: PMC9869112 DOI: 10.3389/fbioe.2022.1115469] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2022] [Accepted: 12/19/2022] [Indexed: 01/11/2023] Open
Abstract
Introduction: A combination of deep eutectic solvent with ethanol was developed for pretreatment of Broussonetia papyrifera to effectively extract lignin and promote the subsequent enzymatic hydrolysis. Methods: In order to further explore the optimal conditions for enzymatic hydrolysis, a central composite design method was applied. Results and Discussion: The correlation between each factor and glucose yield was obtained, and the optimal conditions was 160°C, 60 min, the ratio of DES to E was 1/1 (mol/mol). The results showed that compared with control, the glucose yield increased by 130.67% under the optimal pretreatment conditions. Furthermore, the specific surface area of biomass was increased by 66.95%, and the content of xylan and lignin was decreased by 86.71% and 85.83%. The correlation between xylan/lignin removal and enzymatic hydrolysis showed that the removal of lignin facilitated the glucose yield more significantly than that of xylan. To further explore the lignin valorization, the structural and antioxidant analysis of recovered lignin revealed that high temperature was favorable for lignin with good antioxidant performance. This pretreatment is a promising method for separating lignin with high antioxidant activity and improving cellulose digestibility.
Collapse
Affiliation(s)
- Pingping Cui
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Zhishang Ye
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Mengzhen Chai
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Jie Yuan
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Yan Xiong
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China
| | - Haitao Yang
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China,State Key Laboratory of Biobased Material and Green Papermaking, Shandong Academy of Sciences, Qilu University of Technology, Jinan, Shandong, China,*Correspondence: Haitao Yang, ; Lan Yao,
| | - Lan Yao
- Hubei Provincial Key Laboratory of Green Materials for Light Industry, Hubei University of Technology, Wuhan, China,Key Laboratory of Fermentation Engineering (Ministry of Education), Cooperative Innovation Center of Industrial Fermentation (Ministry of Education and Hubei Province), College of Bioengineering, Hubei University of Technology, Wuhan, China,*Correspondence: Haitao Yang, ; Lan Yao,
| |
Collapse
|
10
|
Biomass valorization by integrating ultrasonication and deep eutectic solvents: Delignification, cellulose digestibility and solvent reuse. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108587] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2023]
|
11
|
Verma N, Taggar MS, Kalia A, Kaur J, Javed M. Comparison of various delignification/desilication pre-treatments and indigenous fungal cellulase for improved hydrolysis of paddy straw. 3 Biotech 2022; 12:150. [PMID: 35747505 DOI: 10.1007/s13205-022-03211-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 05/22/2022] [Indexed: 11/28/2022] Open
Abstract
The efficient removal of lignin and silica from paddy straw is essential for its volarization into biofuels and other value-added products. In this work, different chemical pre-treatments viz. acid/alkali, organosolv and deep eutectic solvents were carried out to assess the extent of delignification and desilication of paddy straw. Maximum lignin and silica removal of 96.08 and 95.51% was observed with two step acid (0.5% sulphuric acid) followed by alkali (4% sodium hydroxide) pre-treatment with significantly low total lignin (2.30%) and silica content (0.80%) of the treated straw residue. The treated straw residue contained significantly high holocellulose (91.65%), cellulose (75.01%) and hemicellulose content (16.64%). Among the four indigenous fungal isolates, Penicillium mallochii (JS17) cellulase showed better accessibility for the treated straw residue with maximum release of 504.18 mg g-1 of reducing sugars and saccharification efficiency of 56.90%. The two-step acid/alkali pre-treatment of paddy straw was highly effective for removing lignin and silica from paddy straw, thereby, resulting in enhanced enzymatic accessibility of the substrate and more efficient hydrolysis of cellulose into fermentable sugars.
Collapse
Affiliation(s)
- Nisha Verma
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Monica Sachdeva Taggar
- Department of Renewable Energy Engineering, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Anu Kalia
- Department of Soil Science, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Jaspreet Kaur
- Department of Biochemistry, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| | - Mohammed Javed
- Department of Mathematics, Statistics and Physics, Punjab Agricultural University, Ludhiana, Punjab 141 004 India
| |
Collapse
|
12
|
Development of Sustainable Biorefinery Processes Applying Deep Eutectic Solvents to Agrofood Wastes. ENERGIES 2022. [DOI: 10.3390/en15114101] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2023]
Abstract
The growing demand for renewable energies and the application of sustainable and economically viable biorefinery processes have increased the study and application of lignocellulosic biomass. However, due to lignocellulosic biomass recalcitrance hindering its efficient utilization, the pretreatment in the biorefinery is an essential stage for success in the process. Therefore, Deep Eutectic Solvent (DES) has emerged as a promising green pretreatment. During this study, the effect of choline chloride [ChCl]:glycerol and [ChCl]:urea on sugarcane bagasse and brewery bagasse is evaluated. Results have demonstrated that using [ChCl]:glycerol in SCB reduced about 80% and 15% for acid-soluble lignin and Klason lignin, respectively, and improved efficiency on saccharification yields, achieving conversions of 60, 80, and 100% for glucan, xylan, and arabinan, correspondingly. In the case of BSG saccharification yields, about 65% and 98% are attained for glucan and xylan, respectively, when [ChCl]:glycerol was employed. These results confirm the effectiveness and facility of DES pretreatment as a suitable method that can improve the biorefinery processes.
Collapse
|
13
|
Wang Y, Zhang WJ, Yang JY, Li MF, Peng F, Bian J. Efficient fractionation of woody biomass hemicelluloses using cholinium amino acids-based deep eutectic solvents and their aqueous mixtures. BIORESOURCE TECHNOLOGY 2022; 354:127139. [PMID: 35405215 DOI: 10.1016/j.biortech.2022.127139] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/24/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
Novel and green cholinium amino acids-based deep eutectic solvents (DESs) and their aqueous mixtures were synthesized and employed in deconstructing poplar for hemicellulose fractionation. The effects of water content in DESs on hemicellulose dissociation and structural features were comprehensively investigated, along with the reusability of DESs for treatment. The integration of water into DESs could facilitate hemicellulose fractionation, and the cholinium lysine: urea with 5 wt% water (CL: U-5) demonstrated the best performance with a hemicellulose yield of 59.2%. Further structure analysis revealed that hemicelluloses with various branching degrees and molecular weights were obtained with varying water content of DESs. Furthermore, the CL: U-5 had recyclability and reusability with a 40.5% hemicellulose yield obtained after reused three times. The novel and eco-friendly cholinium amino acids-based DESs treatment provides an effective and sustainable strategy for hemicellulose fractionation from woody biomass.
Collapse
Affiliation(s)
- Yang Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Wan-Jing Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ji-You Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Ming-Fei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
14
|
Maibam PD, Goyal A. Approach to an efficient pretreatment method for rice straw by deep eutectic solvent for high saccharification efficiency. BIORESOURCE TECHNOLOGY 2022; 351:127057. [PMID: 35337995 DOI: 10.1016/j.biortech.2022.127057] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Revised: 03/20/2022] [Accepted: 03/21/2022] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvent comprising choline chloride (ChCl) and acetic acid (AA) was used for rice straw (RS) pretreatment. Effect of ChCl: AA molar ratio, time and temperature on lignin removal and retainment of total carbohydrate content (TCC) in pretreatment process were evaluated by central composite design (CCD) approach. The pretreatment temperature and molar ratio of AA to ChCl played a significant role in delignification. The optimized conditions for RS pretreatment were 1:3.59 (ChCl:AA molar ratio), 126 °C and 150 min. ChCl:AA pretreated RS (CApRS) gave 83.1% delignification, 679 mg/gCApRS TCC and 83.7% pretreatment efficiency. CApRS contained enriched cellulose content, 0.73 g/gCApRS as compared with 0.43 g/graw RS in raw RS. CApRS showed 31% higher crystallinity index, 17-fold higher surface area than raw RS. The morphological study of CApRS displayed porous surface. Saccharification of CApRS by commercial cellulase gave total reducing sugar of 18.8 g/L in hydrolysate with saccharification efficiency, 92.2%.
Collapse
Affiliation(s)
- Premeshworii Devi Maibam
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India
| | - Arun Goyal
- School of Energy Sciences and Engineering, Indian Institute of Technology Guwahati, Guwahati 781039, Assam, India; Carbohydrate Enzyme Biotechnology Laboratory, Department of Biosciences and Bioengineering, Indian Institute of Technology Guwahati, Guwahati, Assam, India.
| |
Collapse
|
15
|
Hou X, Li Z, Yao Z, Zhao L, Luo J, Shen R. 深度共熔溶剂预处理木质纤维素研究进展. CHINESE SCIENCE BULLETIN-CHINESE 2022. [DOI: 10.1360/tb-2022-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
16
|
Zhan Y, Cheng J, Liu X, Huang C, Wang J, Han S, Fang G, Meng X, Ragauskas AJ. Assessing the availability of two bamboo species for fermentable sugars by alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2022; 349:126854. [PMID: 35176465 DOI: 10.1016/j.biortech.2022.126854] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/18/2022] [Revised: 02/09/2022] [Accepted: 02/10/2022] [Indexed: 06/14/2023]
Abstract
This study comprehensively investigated two bamboo species (i.e. Neosinocalamus affinis and Phyllostachys edulis) in terms of their cell wall ultrastructure, chemical compositions, enzymatic saccharification, and lignin structure before and after alkaline hydrogen peroxide pretreatment (AHP). During AHP, Neosinocalamus affinis (NAB) had higher delignification than Phyllostachys edulis (PEB), and thus showed better enzymatic digestibility (93.05% vs 53.57% for glucan). The fundamental chemical behavior of the bamboo lignins was analyzed by fluorescence microscope (FM), confocal Raman microscope (CRM), molecular weight analysis, and 2D HSQC-NMR. Results indicated that the PEB has thicker cell wall and more concentrated lignin in its compound middle lamella and cell corner middle lamella than NAB. Moreover, PEB lignin contains more G units (S/G of 0.95), in evident contrast to that of NAB lignin (S/G of 1.30), which favor the formation of C-C linkages, thus impeding its degradation during the AHP.
Collapse
Affiliation(s)
- Yunni Zhan
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Jinyuan Cheng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Xuze Liu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Jia Wang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Shanming Han
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Jiangsu Province Key Laboratory of Biomass Energy and Materials, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| |
Collapse
|
17
|
Jing Y, Li F, Li Y, Jiang D, Lu C, Zhang Z, Zhang Q. Biohydrogen production by deep eutectic solvent delignification-driven enzymatic hydrolysis and photo-fermentation: Effect of liquid-solid ratio. BIORESOURCE TECHNOLOGY 2022; 349:126867. [PMID: 35183719 DOI: 10.1016/j.biortech.2022.126867] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 02/13/2022] [Accepted: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Deep eutectic solvent (DES), a new green solvent, was used to pretreat corncob to enhance biohydrogen production. As a result of the pretreatment, lignin was effectively removed, and the maximum delignification efficiency of 83.12% was achieved. Moreover, the contents of cellulose in the pretreated corncob significantly increased. DES pretreatment effect improved with increasing liquid-solid ratio. The pretreated corncob's enzymatic saccharification activity and hydrogen production were promoted due to the lower content of lignin. The best result was observed at a ratio of 25:1 (DES:corncob, g/g), in which the reducing sugar concentration (53.91 g/L) and the hydrogen yield (151 mL/g) was 6.8 and 3.1 times than that of untreated corncob, respectively. In addition, the lag time of hydrogen production was obviously shortened to 16.53 h due to the utilization of abundant available fermentable sugars, which accelerated hydrogen production.
Collapse
Affiliation(s)
- Yanyan Jing
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Fang Li
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Yameng Li
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Danping Jiang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Chaoyang Lu
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Zhiping Zhang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China
| | - Quanguo Zhang
- Key Laboratory of New Materials and Facilities for Rural Renew. Energ, MOA of China, Henan Agricultural University, Zhengzhou 450002, China.
| |
Collapse
|
18
|
Hak C, Panchai P, Nutongkaew T, Grisdanurak N, Tulaphol S. One-pot levulinic acid production from rice straw by acid hydrolysis in deep eutectic solvent. CHEM ENG COMMUN 2022. [DOI: 10.1080/00986445.2022.2056454] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
Affiliation(s)
- Chenda Hak
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology, Bangkok, Thailand
| | - Panadda Panchai
- Center of Excellence in Environmental Catalysis and Adsorption, Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathum Thani, Thailand
| | - Tanawut Nutongkaew
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology, Bangkok, Thailand
- Sustainable Polymer & Innovative Composite Materials Research Group, Faculty of Science, King Mongkut’s University of Technology, Bangkok, Thailand
| | - Nurak Grisdanurak
- Center of Excellence in Environmental Catalysis and Adsorption, Department of Chemical Engineering, Faculty of Engineering, Thammasat University, Pathum Thani, Thailand
| | - Sarttrawut Tulaphol
- Department of Chemistry, Faculty of Science, King Mongkut’s University of Technology, Bangkok, Thailand
- Sustainable Polymer & Innovative Composite Materials Research Group, Faculty of Science, King Mongkut’s University of Technology, Bangkok, Thailand
| |
Collapse
|
19
|
Brar KK, Raheja Y, Chadha BS, Magdouli S, Brar SK, Yang YH, Bhatia SK, Koubaa A. A paradigm shift towards production of sustainable bioenergy and advanced products from Cannabis/hemp biomass in Canada. BIOMASS CONVERSION AND BIOREFINERY 2022; 14:1-22. [PMID: 35342682 PMCID: PMC8934023 DOI: 10.1007/s13399-022-02570-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2022] [Revised: 03/06/2022] [Accepted: 03/08/2022] [Indexed: 05/22/2023]
Abstract
The global cannabis (Cannabis sativa) market was 17.7 billion in 2019 and is expected to reach up to 40.6 billion by 2024. Canada is the 2nd nation to legalize cannabis with a massive sale of $246.9 million in the year 2021. Waste cannabis biomass is managed using disposal strategies (i.e., incineration, aerobic/anaerobic digestion, composting, and shredding) that are not good enough for long-term environmental sustainability. On the other hand, greenhouse gas emissions and the rising demand for petroleum-based fuels pose a severe threat to the environment and the circular economy. Cannabis biomass can be used as a feedstock to produce various biofuels and biochemicals. Various research groups have reported production of ethanol 9.2-20.2 g/L, hydrogen 13.5 mmol/L, lipids 53.3%, biogas 12%, and biochar 34.6% from cannabis biomass. This review summarizes its legal and market status (production and consumption), the recent advancements in the lignocellulosic biomass (LCB) pre-treatment (deep eutectic solvents (DES), and ionic liquids (ILs) known as "green solvents") followed by enzymatic hydrolysis using glycosyl hydrolases (GHs) for the efficient conversion efficiency of pre-treated biomass. Recent advances in the bioconversion of hemp into oleochemicals, their challenges, and future perspectives are outlined. A comprehensive insight is provided on the trends and developments of metabolic engineering strategies to improve product yield. The thermochemical processing of disposed-off hemp lignin into bio-oil, bio-char, synthesis gas, and phenol is also discussed. Despite some progress, barricades still need to be met to commercialize advanced biofuels and compete with traditional fuels.
Collapse
Affiliation(s)
- Kamalpreet Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Yashika Raheja
- Department of Microbiology, Guru Nanak Dev University, Amritsar, 143005 India
| | | | - Sara Magdouli
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
- Centre Technologique Des Residue Industriels (CTRI), 433 Boulevard du college, Rouyn-Noranda, J9X0E1 Canada
| | - Satinder Kaur Brar
- Department of Civil Engineering, Lassonde School of Engineering, York University, North York, Toronto, ON M3J 1P3 Canada
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul, 05029 Republic of Korea
- Institute for Ubiquitous Information Technology and Applications, Seoul, 05029 Republic of Korea
| | - Ahmed Koubaa
- Institut de Recherche Sur Les Forêts, Université du Québec en Abitibi-Témiscamingue, Université, Rouyn-Noranda, 445 Boulevard de l’ Université, Rouyn-Noranda, QC J9X5E4 Canada
| |
Collapse
|
20
|
Yang J, Zhang W, Wang Y, Li M, Peng F, Bian J. Novel, recyclable Brønsted acidic deep eutectic solvent for mild fractionation of hemicelluloses. Carbohydr Polym 2022; 278:118992. [PMID: 34973795 DOI: 10.1016/j.carbpol.2021.118992] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 11/07/2021] [Accepted: 12/05/2021] [Indexed: 12/20/2022]
Abstract
Acidic deep eutectic solvents (DESs) are promising media for lignin valorization and cellulose conversion due to their good ability in efficient deconstruction of plant cell wall. However, hemicellulose extraction from lignocellulose using acidic DESs remains a challenge. Herein, novel and green Brønsted acidic DESs (BDESs) were synthesized from natural organic acids and common polyols and successively adopted to deconstruct corncob for mild fractionation of hemicelluloses. Oxalic acid (OA)-based BDESs were preferred for corncob processing due to the high solubility of xylan. The results revealed that the suitable acidity of DESs and mild temperature effectively avoided the over-degradation of hemicelluloses. The chemical composition and structural features of the recovered hemicelluloses were investigated systematically. Moreover, after ethylene glycol (EG)-OA BDES was recycled and reused three times, the extraction still resulted in a satisfactory hemicellulose yield. The novel and eco-friendly processing offers a practical and sustainable route for hemicellulose extraction in acidic condition.
Collapse
Affiliation(s)
- Jiyou Yang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Wanjing Zhang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Yang Wang
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing, 100083, China.
| |
Collapse
|
21
|
Energy plants as biofuel source and as accumulators of heavy metals. HEMIJSKA INDUSTRIJA 2022. [DOI: 10.2298/hemind220402017n] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Fossil fuel depletion and soil and water pollution gave impetus to the
development of a novel perspective of sustainable development. In addition
to the use of plant biomass for ethanol production, plants can be used to
reduce the concentration of heavy metals in soil and water. Due to tolerance
to high levels of metals, many plant species, crops, non-crops, medicinal,
and pharmaceutical energy plants are well-known metal hyperaccumulators.
This paper focuses on studies investigating the potential of Miscanthus sp.,
Beta vulgaris L., Saccharum sp., Ricinus communis L. Prosopis sp. and Arundo
donax L. in heavy metal removal and biofuel production. Phytoremediation
employing these plants showed great potential for bioaccumulation of Co, Cr,
Cu, Al, Pb, Ni, Fe, Cd, Zn, Hg, Se, etc. This review presents the potential
of lignocellulose plants to remove pollutants being a valuable substrate for
biofuel production. Also, pretreat-ments, dealing with toxic biomass, and
biofuel production are discussed.
Collapse
|
22
|
Wu Y, Cheng J, Yang Q, Hu J, Zhou Q, Wang L, Liu Z, Hui L. Solid acid facilitated deep eutectic solvents extraction of high-purity and antioxidative lignin production from poplar wood. Int J Biol Macromol 2021; 193:64-70. [PMID: 34688675 DOI: 10.1016/j.ijbiomac.2021.10.120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 10/15/2021] [Accepted: 10/16/2021] [Indexed: 10/20/2022]
Abstract
Pure deep eutectic solvents (DESs) system of choline chloride (ChCl)/Lactic acid (Lac) were demonstrated to be an effective strategy for extraction of lignin. In this study, two kinds of different promising solid acid (SA) with DESs were designed to promote the pretreatment of lignocellulose. The SA of phosphotungstic acid (H3O40PW12) and iron bromide (FeBr3) were introduced into DESs to extract poplar wood lignin and evaluate the antioxidant activity. It was found that 82.2% and 80.9% of lignin were obtained from poplar wood under H3O40PW12-ChCl/Lac acid and FeBr3-choline ChCl/Lac system with 4 h and 8 h, respectively. The lignin fractions with a high purity (>89%), low molecular weight (Mw 1800-2000 g/mol). Besides, the antioxidant activities of lignin fractions were better than butyl hydroxyanisole (BHA). Therefore, DES lignin has prominent antioxidant activity and could developed a potential natural cosmetics and food packaging.
Collapse
Affiliation(s)
- Yinglong Wu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jinru Cheng
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Qian Yang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Jianquan Hu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Quanwei Zhou
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Lingyuan Wang
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China
| | - Zhong Liu
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| | - Lanfeng Hui
- Tianjin Key Laboratory of Pulp and Paper, Tianjin University of Science and Technology, Tianjin 300457, China.
| |
Collapse
|
23
|
Wang Y, Meng X, Tian Y, Kim KH, Jia L, Pu Y, Leem G, Kumar D, Eudes A, Ragauskas AJ, Yoo CG. Engineered Sorghum Bagasse Enables a Sustainable Biorefinery with p-Hydroxybenzoic Acid-Based Deep Eutectic Solvent. CHEMSUSCHEM 2021; 14:5235-5244. [PMID: 34533890 DOI: 10.1002/cssc.202101492] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 09/09/2021] [Indexed: 06/13/2023]
Abstract
Integrating multidisciplinary research in plant genetic engineering and renewable deep eutectic solvents (DESs) can facilitate a sustainable and economic biorefinery. Herein, we leveraged a plant genetic engineering approach to specifically incorporate C6 C1 monomers into the lignin structure. By expressing the bacterial ubiC gene in sorghum, p-hydroxybenzoic acid (PB)-rich lignin was incorporated into the plant cell wall while this monomer was completely absent in the lignin of the wild-type (WT) biomass. A DES was synthesized with choline chloride (ChCl) and PB and applied to the pretreatment of the PB-rich mutant biomass for a sustainable biorefinery. The release of fermentable sugars was significantly enhanced (∼190 % increase) compared to untreated biomass by the DES pretreatment. In particular, the glucose released from the pretreated mutant biomass was up to 12 % higher than that from the pretreated WT biomass. Lignin was effectively removed from the biomass with the preservation of more than half of the β-Ο-4 linkages without condensed aromatic structures. Hydrogenolysis of the fractionated lignin was conducted to demonstrate the potential of phenolic compound production. In addition, a simple hydrothermal treatment could selectively extract PB from the same engineered lignin, showing a possible circular biorefinery. These results suggest that the combination of PB-based DES and engineered PB-rich biomass is a promising strategy to achieve a sustainable closed-loop biorefinery.
Collapse
Affiliation(s)
- Yunxuan Wang
- Department of Chemical Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
| | - Xianzhi Meng
- Department of Chemical & Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
| | - Yang Tian
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Kwang Ho Kim
- Clean Energy Research Center, Korea Institute of Science and Technology, Seoul, 02797, South Korea
- Department of Wood Science, University of British Columbia, Vancouver, BC V6T 1Z4, Canada
| | - Linjing Jia
- Department of Chemical Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
| | - Yunqiao Pu
- Center of Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
| | - Gyu Leem
- Department of Chemistry, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| | - Deepak Kumar
- Department of Chemical Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
| | - Aymerick Eudes
- Environmental Genomics and Systems Biology Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, USA
- Joint BioEnergy Institute, Emeryville, CA 94608, USA
| | - Arthur J Ragauskas
- Department of Chemical & Biomolecular Engineering, University of Tennessee-Knoxville, Knoxville, TN 37996, USA
- Center of Bioenergy Innovation, Biosciences Division, University of Tennessee-Oak Ridge National Laboratory Joint Institute for Biological Science Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA
- Center of Renewable Carbon, Department of Forestry, Wildlife, and Fisheries, University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA
| | - Chang Geun Yoo
- Department of Chemical Engineering, College of Environmental Science and Forestry, State University of New York, Syracuse, NY 13210, USA
- The Michael M. Szwarc Polymer Research Institute, Syracuse, NY 13210, USA
| |
Collapse
|
24
|
Lima F, Branco LC, Lapa N, Marrucho IM. Beneficial and detrimental effects of choline chloride-oxalic acid deep eutectic solvent on biogas production. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 131:368-375. [PMID: 34246033 DOI: 10.1016/j.wasman.2021.06.027] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2021] [Revised: 05/27/2021] [Accepted: 06/28/2021] [Indexed: 06/13/2023]
Abstract
Deep eutectic solvents (DES), a new class of alternative solvents, have recently been used in the pre-treatment of lignocellulosic biomass. Due to the ability to dissolve phenolic compounds, they have been efficiently applied as delignification agents. However, to extend DES application to bioprocesses, such as Anaerobic Digestion (AD), their toxicity to microbial consortia must be evaluated. In this work, an effective delignifying DES, composed of choline chloride (ChCl) and oxalic acid (OA) (1:1) was prepared and its effect evaluated, for the first time, in biogas production. Results show that the presence of DES had both beneficial and detrimental effects on the anaerobic consortium, depending on its concentration. In the concentration range of 0.3-12.5 g/L, the presence of DES led to a lag-phase of 1 to 8 d as the DES concentration increased. However, after the lag-phase has been surpassed, DES up to a concentration of 12.5 g/L improved the biogas production, reaching an accumulated biogas volume three times higher than the control assay for the concentration of 12.5 g/L. For the highest DES concentrations (19.8-78.1 g/L), the biogas production was inhibited. The assays performed with DES components alone have indicated that OA at 3.2 g/L was the main responsible for the inhibition of biogas production (50% less biogas produced than the control). ChCl at 4.9 g/L has not presented a lag-phase and produced an accumulated biogas volume like the control assay (1200 mL for 30 d incubation). This work points out that ChCl:OA DES may be used in the delignification of biomass further submitted to AD, provided the inhibitory concentrations of OA are not achieved.
Collapse
Affiliation(s)
- Filipa Lima
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal; Solchemar, Lda, Rua 5 de Outubro n° 121C, 1°E, 7580-128 Alcácer do Sal, Portugal; CICECO-Aveiro Institute of Materials and Department of Chemistry, Universidade de Aveiro, 3810-193 Aveiro, Portugal
| | - Luis C Branco
- Solchemar, Lda, Rua 5 de Outubro n° 121C, 1°E, 7580-128 Alcácer do Sal, Portugal; LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal
| | - Nuno Lapa
- LAQV-REQUIMTE, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, Campus da Caparica, 2829-516 Caparica, Portugal.
| | - Isabel M Marrucho
- Centro de Química Estrutural, Instituto Superior Técnico, Universidade de Lisboa, Avenida Rovisco Pais, 1049-001 Lisboa, Portugal.
| |
Collapse
|
25
|
Rodrigues JS, Lima V, Araújo LCP, Botaro VR. Lignin Fractionation Methods: Can Lignin Fractions Be Separated in a True Industrial Process? Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c01704] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Jéssica S. Rodrigues
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vitor Lima
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Luísa C. P. Araújo
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| | - Vagner R. Botaro
- Laboratory of Lignocellulosic Materials, Federal University of São Carlos (UFSCar), Science and Technology Center for Sustainability (CCTS), Rod. João Leme dos Santos, km 110, 18052-780, Sorocaba, Brazil
| |
Collapse
|
26
|
Tan J, Li Y, Tan X, Wu H, Li H, Yang S. Advances in Pretreatment of Straw Biomass for Sugar Production. Front Chem 2021; 9:696030. [PMID: 34164381 PMCID: PMC8215366 DOI: 10.3389/fchem.2021.696030] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2021] [Accepted: 05/12/2021] [Indexed: 11/29/2022] Open
Abstract
Straw biomass is an inexpensive, sustainable, and abundant renewable feedstock for the production of valuable chemicals and biofuels, which can surmount the main drawbacks such as greenhouse gas emission and environmental pollution, aroused from the consumption of fossil fuels. It is rich in organic content but is not sufficient for extensive applications because of its natural recalcitrance. Therefore, suitable pretreatment is a prerequisite for the efficient production of fermentable sugars by enzymatic hydrolysis. Here, we provide an overview of various pretreatment methods to effectively separate the major components such as hemicellulose, cellulose, and lignin and enhance the accessibility and susceptibility of every single component. This review outlines the diverse approaches (e.g., chemical, physical, biological, and combined treatments) for the excellent conversion of straw biomass to fermentable sugars, summarizes the benefits and drawbacks of each pretreatment method, and proposes some investigation prospects for the future pretreatments.
Collapse
Affiliation(s)
- Jinyu Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China.,Institute of Crops Germplasm Resources, Guizhou Academy of Agricultural Sciences, Guiyang, China
| | - Yan Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Xiang Tan
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hongguo Wu
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Hu Li
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| | - Song Yang
- State Key Laboratory Breeding Base of Green Pesticide and Agricultural Bioengineering, Key Laboratory of Green Pesticide and Agricultural Bioengineering, Ministry of Education, State Local Joint Engineering Laboratory for Comprehensive Utilization of Biomass, Center for R&D of Fine Chemicals, Guizhou University, Guiyang, China
| |
Collapse
|
27
|
Wang R, Wang K, Zhou M, Xu J, Jiang J. Efficient fractionation of moso bamboo by synergistic hydrothermal-deep eutectic solvents pretreatment. BIORESOURCE TECHNOLOGY 2021; 328:124873. [PMID: 33639413 DOI: 10.1016/j.biortech.2021.124873] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2021] [Revised: 02/13/2021] [Accepted: 02/13/2021] [Indexed: 05/24/2023]
Abstract
As an attractive renewable carbon resource, lignocellulose could be exploited to produce high-value-added products. Notably, comprehensive utilization of lignocelluloses and lignin first exploitation is still a challenge during bio-refinery process. In this study, an environmentally benign extraction method via hydrothermal-deep eutectic solvents pretreatment was proposed to separate hemicelluloses and high purity of lignin simultaneously from moso bamboo with most of cellulose retaining in the residues. Hemicelluloses were firstly removed by hydrothermal pretreatment, following with lignin extraction by DESs which was prepared from choline chloride and lactic acid, betaine and lactic acid, respectively. Notably, 98.2 wt% of hemicelluloses were degraded and mainly converted into pentose. Meanwhile, 80.1 wt% of delignification was achieved under the optimum condition (CC/LA, 140℃, 6 h), following with up to 99.49% of lignin purity. The mass balance evaluation demonstrated that the combined hydrothermal-deep eutectic solvents pretreatment is a potential method for efficient fractionation of lignocellulose.
Collapse
Affiliation(s)
- Ruizhen Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Kui Wang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China.
| | - Minghao Zhou
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| | - Junming Xu
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, National Engineering Lab. for Biomass Chemical Utilization, Key Lab. of Biomass Energy and Material, Jiangsu Province, China
| |
Collapse
|
28
|
Kist JA, Zhao H, Mitchell-Koch KR, Baker GA. The study and application of biomolecules in deep eutectic solvents. J Mater Chem B 2021; 9:536-566. [DOI: 10.1039/d0tb01656j] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
Deep eutectic solvents offer stimulating possibilities for biomolecular stabilization and manipulation, biocatalysis, bioextraction, biomass processing, and drug delivery and therapy.
Collapse
Affiliation(s)
- Jennifer A. Kist
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| | - Hua Zhao
- Department of Chemistry and Biochemistry
- University of Northern Colorado
- Greeley
- USA
| | | | - Gary A. Baker
- Department of Chemistry
- University of Missouri-Columbia
- Columbia
- USA
| |
Collapse
|
29
|
Efficient and Selective Catalytic Conversion of Hemicellulose in Rice Straw by Metal Catalyst under Mild Conditions. SUSTAINABILITY 2020. [DOI: 10.3390/su122410601] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Rice straw is an abundant material with the potential to be converted into a sustainable energy resource. Transition-metal catalysis activated the C–O bond in the hemicellulose of raw rice straw, cleaving it to form monosaccharides. The mechanism of rice straw catalytic conversion had a synergistic effect due to in situ acid catalysis and metal catalysis. The conditions for the hydrogenation of hemicellulose from rice straw were optimized: catalyst to rice straw solid/solid ratio of 3:10, stirring speed of 600 r/min, temperature of 160 °C, time of 3 h, solid/liquid ratio of 1:15, and H2 gas pressure of 1.5 MPa. An excellent hemicellulose conversion of 97.3% with the yields of xylose and arabinose at 53.0% and 17.3%, respectively, were obtained. The results from FTIR and SEM experiments also confirmed the destruction of the rigidity and reticulate structure of rice straw after the catalytic reaction.
Collapse
|
30
|
Hansen BB, Spittle S, Chen B, Poe D, Zhang Y, Klein JM, Horton A, Adhikari L, Zelovich T, Doherty BW, Gurkan B, Maginn EJ, Ragauskas A, Dadmun M, Zawodzinski TA, Baker GA, Tuckerman ME, Savinell RF, Sangoro JR. Deep Eutectic Solvents: A Review of Fundamentals and Applications. Chem Rev 2020; 121:1232-1285. [PMID: 33315380 DOI: 10.1021/acs.chemrev.0c00385] [Citation(s) in RCA: 839] [Impact Index Per Article: 167.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Abstract
Deep eutectic solvents (DESs) are an emerging class of mixtures characterized by significant depressions in melting points compared to those of the neat constituent components. These materials are promising for applications as inexpensive "designer" solvents exhibiting a host of tunable physicochemical properties. A detailed review of the current literature reveals the lack of predictive understanding of the microscopic mechanisms that govern the structure-property relationships in this class of solvents. Complex hydrogen bonding is postulated as the root cause of their melting point depressions and physicochemical properties; to understand these hydrogen bonded networks, it is imperative to study these systems as dynamic entities using both simulations and experiments. This review emphasizes recent research efforts in order to elucidate the next steps needed to develop a fundamental framework needed for a deeper understanding of DESs. It covers recent developments in DES research, frames outstanding scientific questions, and identifies promising research thrusts aligned with the advancement of the field toward predictive models and fundamental understanding of these solvents.
Collapse
Affiliation(s)
- Benworth B Hansen
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Stephanie Spittle
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Brian Chen
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Derrick Poe
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Yong Zhang
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Jeffrey M Klein
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Alexandre Horton
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Laxmi Adhikari
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Tamar Zelovich
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Brian W Doherty
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Burcu Gurkan
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Edward J Maginn
- Department of Chemical and Biomolecular Engineering, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Arthur Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Mark Dadmun
- Department of Chemistry, University of Tennessee, Knoxville, Tennessee 37916, United States
| | - Thomas A Zawodzinski
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| | - Gary A Baker
- Department of Chemistry, University of Missouri-Columbia, Columbia, Missouri 65211, United States
| | - Mark E Tuckerman
- Department of Chemistry, New York University, New York, New York 10003, United States
| | - Robert F Savinell
- Department of Chemical and Biomolecular Engineering, Case Western Reserve University, Cleveland, Ohio 44106, United States
| | - Joshua R Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, Tennessee37996-2200, United States
| |
Collapse
|
31
|
Chen X, Zhang Q, Yu Q, Chen L, Sun Y, Wang Z, Yuan Z. Depolymerization of holocellulose from Chinese herb residues by the mixture of lignin-derived deep eutectic solvent with water. Carbohydr Polym 2020; 248:116793. [DOI: 10.1016/j.carbpol.2020.116793] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/02/2020] [Accepted: 07/16/2020] [Indexed: 12/25/2022]
|
32
|
Lin KP, Feng GJ, Pu FL, Hou XD, Cao SL. Enhancing the Thermostability of Papain by Immobilizing on Deep Eutectic Solvents-Treated Chitosan With Optimal Microporous Structure and Catalytic Microenvironment. Front Bioeng Biotechnol 2020; 8:576266. [PMID: 33134288 PMCID: PMC7561714 DOI: 10.3389/fbioe.2020.576266] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/25/2020] [Accepted: 09/16/2020] [Indexed: 01/22/2023] Open
Abstract
Deep eutectic solvents (DESs) have attracted an increasing attention in the fields of biocatalysis and biopolymer processing. In this study, papain immobilized on choline chloride- lactic acid (ChCl-Lac) DES-treated chitosan exhibited excellent thermostability as compared to the free enzyme. The properties of native or DES-treated chitosan and immobilized enzyme were characterized by FT-IR, SEM, surface area and pore property analysis. Like the common enzyme immobilization, papain immobilized on DES-treated chitosan resulted in a lower catalytic efficiency and a higher thermostability than the free enzyme due to the restricted diffusion. The results also revealed that DES could control the active group content, thus achieving the appropriate microporous structure of immobilized enzyme. Meanwhile, it could also help to construct the optimal microenvironment by hydrogen-bonding interaction between enzyme, chitosan, and residual DES, which are benefit for maintaining an active conformation and subsequently a high thermostability of papain. Moreover, it was found that trace DES (10 mM) significantly promoted the activity of free papain (145%). Deactivation thermodynamics study showed that the DES could enhance the thermostability of papain especially at high temperature (half-life of 7.4 vs. 3.5 h) because of the increased Gibbs free energy of denaturation. Secondary structure analysis by circular dichroism spectroscopy (CD) agreed well with the activity and thermostability data, further confirming the formation of rigid conformation induced by a specific amount of DES. This work provides a new way of enzyme immobilization synergistically intensified by solvents and supporting materials to achieve better microporous structure and catalytic microenvironment.
Collapse
Affiliation(s)
- Kai-Peng Lin
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Guo-Jian Feng
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Fu-Long Pu
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Xue-Dan Hou
- Department of Bioengineering, School of Biomedical and Pharmaceutical Sciences, Guangdong University of Technology, Guangzhou, China
| | - Shi-Lin Cao
- School of Food Science and Engineering, Foshan University, Foshan, China
| |
Collapse
|
33
|
Song Y, Chandra RP, Zhang X, Saddler JN. Non-productive celluase binding onto deep eutectic solvent (DES) extracted lignin from willow and corn stover with inhibitory effects on enzymatic hydrolysis of cellulose. Carbohydr Polym 2020; 250:116956. [PMID: 33049860 DOI: 10.1016/j.carbpol.2020.116956] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2020] [Revised: 07/31/2020] [Accepted: 08/13/2020] [Indexed: 10/23/2022]
Abstract
In this work, deep eutectic solvent (DES) was prepared by mixing choline chloride (ChCl) with lactic acid (LA), and effects of cellulase non-productive binding onto DES-extracted lignin from willow and corn stover on enzymatic hydrolysis of cellulose was investigated. The correlation between hydrolysis yield of cellulose and chemical features of lignin was evaluated, and a potential inhibitory mechanism was proposed. Condensation of lignin was observed during DES treatment, and these condensed aromatic structures had an increased tendency to adsorb enzymes through hydrophobic interactions. As well as hydrophobic interactions mediated by lignin condensation, an increase in phenolic hydroxyl groups resulted in a greater amount of hydrogen bonds between cellulases and lignin that appeared to inhibit enzymatic hydrolysis yields of cellulose (39.96-42.86 % to 31.96-32.68 %). Although large amounts of COOHs were generated, the elevated electrostatic repulsion as a result of ionic groups was insufficient to decrease non-productive adsorption.
Collapse
Affiliation(s)
- Yanliang Song
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China; Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Richard P Chandra
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| | - Xu Zhang
- Beijing Key Laboratory of Bioprocess, College of Life Science and Technology, Beijing University of Chemical Technology, Beijing, 100029, China.
| | - Jack N Saddler
- Forest Products Biotechnology/Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC, V6T 1Z4, Canada
| |
Collapse
|
34
|
Teo HL, Wahab RA. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int J Biol Macromol 2020; 161:1414-1430. [PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
Abstract
There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
Collapse
Affiliation(s)
- Hwee Li Teo
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
35
|
Liang Y, Duan W, An X, Qiao Y, Tian Y, Zhou H. Novel betaine-amino acid based natural deep eutectic solvents for enhancing the enzymatic hydrolysis of corncob. BIORESOURCE TECHNOLOGY 2020; 310:123389. [PMID: 32335347 DOI: 10.1016/j.biortech.2020.123389] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 04/13/2020] [Accepted: 04/13/2020] [Indexed: 05/14/2023]
Abstract
A novel natural deep eutectic solvent (NDES) with water content ranging from 65 to 93 wt%, in which betaine (Bet) acts as the cation and amino acids (AAs) as the anions, was prepared by a simple and green chemical route. [Bet][AA] NDES showed excellent xylan and lignin solubility, however, scare cellulose solubility. A mild and facile pretreatment process with [Bet][AA] NDES was carried out at 60 °C for 5 h. The enzymatic hydrolysis efficiency of cellulose and corncob was significantly improved. Detailed characterization showed that the enhancement of cellulose digestibility derived mainly from xylan and lignin removal. Xylan and lignin removal for [Bet][Lys]-W87 was 47.68 and 49.06%, while it was 42.20% and 57.01% for [Bet][Arg]-W82, respectively. FT-IR, SEM, XRD, and HSQC NMR studies confirmed the effectiveness and mechanism of [Bet][Lys]-W87 and [Bet][Arg]-W82 on biomass pretreatment.
Collapse
Affiliation(s)
- Yuan Liang
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Wenjing Duan
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Xiaoxi An
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China
| | - Yingyun Qiao
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Yuanyu Tian
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China; State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China), Qingdao 266580, China
| | - Haifeng Zhou
- Key Laboratory of Low Carbon Energy and Chemical Engineering, College of Chemistry and Bioengineering, Shandong University of Science and Technology, Qingdao 277590, China.
| |
Collapse
|
36
|
Xu H, Peng J, Kong Y, Liu Y, Su Z, Li B, Song X, Liu S, Tian W. Key process parameters for deep eutectic solvents pretreatment of lignocellulosic biomass materials: A review. BIORESOURCE TECHNOLOGY 2020; 310:123416. [PMID: 32334906 DOI: 10.1016/j.biortech.2020.123416] [Citation(s) in RCA: 82] [Impact Index Per Article: 16.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 04/17/2020] [Accepted: 04/18/2020] [Indexed: 05/22/2023]
Abstract
Deep eutectic solvent (DES) has been considered as a novel green solvent for lignocellulosic biomass pretreatment. The efficiency of DES pretreatment is affected by the synergy of various process parameters. The study of effect of DES physicochemical properties and pretreatment reaction conditions on the mechanism of lignocellulose biomass fractionation was of great significance for the development of biomass conversion. Form the view of process control, this review summarized recent advances in DES pretreatment, analyzed the challenges, and prospected the future development of this research field.
Collapse
Affiliation(s)
- Huanfei Xu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China.
| | - Jianjun Peng
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yi Kong
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Yaoze Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Zhenning Su
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Dalian National Laboratory for Clean Energy, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, Shandong 266101, PR China
| | - Xiaoming Song
- College of Marine Science and Biological Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China
| | - Shiwei Liu
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| | - Wende Tian
- State Key Laboratory Base for Eco-Chemical Engineering, College of Chemical Engineering, Qingdao University of Science and Technology, Qingdao 266042, PR China; Key Laboratory of Multiphase Flow Reaction and Separation Engineering of Shandong Province, Qingdao 266042, PR China
| |
Collapse
|
37
|
Wang ZK, Li H, Lin XC, Tang L, Chen JJ, Mo JW, Yu RS, Shen XJ. Novel recyclable deep eutectic solvent boost biomass pretreatment for enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2020; 307:123237. [PMID: 32229409 DOI: 10.1016/j.biortech.2020.123237] [Citation(s) in RCA: 33] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2020] [Revised: 03/18/2020] [Accepted: 03/19/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) with protonic acid shows the great potential for biomass valorization. However, the acid corrosion and recycling are still severe challenges in biorefinery. Herein, a novel DES by coordinating FeCl3 in choline chloride/glycerol DES was designed for effective and recyclable pretreatment. As compared to DESs with FeCl2, ZnCl2, AlCl3 and CuCl2, DES with FeCl3 approvingly retained most of cellulose in pretreated Hybrid Pennisetum (95.2%). Meanwhile, the cellulose saccharification significantly increased to 99.5%, which was six-fold higher than that of raw biomass. The excellent pretreatment performance was mainly attributed to the high removal of lignin (78.88 wt%) and hemicelluloses (93.63 wt%) under the synergistic effect of Lewis acid and proper hydrogen-bond interaction of DES with FeCl3. Furthermore, almost all cellulose still can be converted into glucose after five recycling process. Overall, the process demonstrated designed pretreatment was great potential for the low-cost biorefinery and boost the biofuel development.
Collapse
Affiliation(s)
- Zhi-Kun Wang
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China; Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Hanyin Li
- College of Forestry, Henan Agricultural University, Zhengzhou 450002, PR China
| | - Xin-Chun Lin
- State Key Laboratory of Subtropical Silviculture, Zhejiang A & F University, Lin'an, Zhejiang 311300, PR China
| | - Lv Tang
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Jun-Jie Chen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Jia-Wei Mo
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Ri-Sheng Yu
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China
| | - Xiao-Jun Shen
- Zhejiang Provincial Key Laboratory of Chemical Utilization of Forestry Biomass, Lin'an, Zhejiang 311300, PR China; Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Colloid and Interface and Thermodynamics, CAS Research/Education Center for Excellence in Molecular Sciences, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, PR China; School of Chemistry and Chemical Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
38
|
Hu S, Meng F, Huang D, Huang J, Lou W. Hydrolysis of corn stover pretreated by DESs with carbon-based solid acid catalyst. SN APPLIED SCIENCES 2020. [DOI: 10.1007/s42452-020-3022-7] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023] Open
|
39
|
Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. BIORESOURCE TECHNOLOGY 2020; 306:123163. [PMID: 32182471 DOI: 10.1016/j.biortech.2020.123163] [Citation(s) in RCA: 104] [Impact Index Per Article: 20.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) is a promising pretreatment for improving enzymatic digestibility of lignocellulosic material by altering the physicochemical properties. However, few work has been done to quantitatively analysis the physicochemical properties changes of lignocellulosic material with enzymatic digestibility. In this work, DES pretreatment with different molar ratios of choline chloride/lactic acid was carried out on bamboo residues and respective enzymatic digestibility was investigated and linearly fitted with corresponding physicochemical features changes of the pretreated bamboo residues. Results showed that enzymatic digestibility of DES-pretreated bamboo residues was enhanced with the increasing molar ratio of choline chloride/lactic acid, which was due to DES pretreatment's ability to remove lignin and xylan, reduce the degree of polymerization of cellulose, enhance the crystallite size of cellulose, and improve cellulose accessibility. Several compelling linear correlations (R2 = 0.6-0.9) were observable between enzymatic digestibility and these changes of physicochemical properties, demonstrating how DES pretreatment improve the enzymatic digestibility.
Collapse
Affiliation(s)
- Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
40
|
Fast and Efficient Method to Evaluate the Potential of Eutectic Solvents to Dissolve Lignocellulosic Components. SUSTAINABILITY 2020. [DOI: 10.3390/su12083358] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/13/2022]
Abstract
The application of eutectic solvents (ESs) in lignocellulosic biomass fractionation has been demonstrated as a promising approach to accomplish efficient and environmentally friendly biomass valorization. In general, ESs are a combination of two components, a hydrogen-bonding donor and a hydrogen-bonding acceptor, in which the melting point of the mixture is lower than that of the individual components. However, there are plenty of possible combinations to form ESs with the potential to apply in biomass processing. Therefore, the development of fast and effective screening methods to find combinations capable to dissolve the main biomass components—namely cellulose, hemicelluloses, and lignin—is highly required. An accurate and simple technique based on optical microscopy with or without polarized lenses was used in this study to quickly screen and monitor the dissolution of cellulose, xylose (a monomer of hemicelluloses), and lignin in several ESs. The dissolution of these solutes were investigated in different choline-chloride-based ESs (ChCl:UREA, ChCl:PROP, ChCl:EtGLY, ChCl:OXA, ChCl:GLY, ChCl:LAC). Small amounts of solute and solvent with temperature control were applied and the dissolution process was monitored in real time. The results obtained in this study showed that cellulose was insoluble in these ESs, while lignin and xylose were progressively dissolved.
Collapse
|
41
|
Tan YT, Chua ASM, Ngoh GC. Deep eutectic solvent for lignocellulosic biomass fractionation and the subsequent conversion to bio-based products - A review. BIORESOURCE TECHNOLOGY 2020; 297:122522. [PMID: 31818720 DOI: 10.1016/j.biortech.2019.122522] [Citation(s) in RCA: 74] [Impact Index Per Article: 14.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2019] [Revised: 11/26/2019] [Accepted: 11/27/2019] [Indexed: 06/10/2023]
Abstract
Since the introduction of deep eutectic solvent (DES) in biomass processing field, the efficiency of DES in lignocellulosic biopolymer model compounds' (cellulose, hemicellulose and lignin) solubilisation and conversion was widely recognized. Nevertheless, DES's potential for biorefinery application can be reflected more accurately through their performance in raw lignocellulosic biomass processing rather than model compound conversion. Therefore, this review examines the studies on raw lignocellulosic biomass fractionation using DES and the subsequent conversion of DES-fractionated products into bio-based products. The review stresses on three key parts: performance of varying types of DESs and pretreatment schemes for biopolymer fractionation, properties and conversion of fractionated saccharides as well as DES-extracted lignin. The prospects and challenges of DES implementation in biomass processing will also be discussed. This review provides a front-to-end view on the DES's performance, starting from pretreatment to DES-fractionated products conversion, which would be helpful in devising a comprehensive biomass utilization process.
Collapse
Affiliation(s)
- Yee Tong Tan
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Adeline Seak May Chua
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| | - Gek Cheng Ngoh
- Department of Chemical Engineering, Faculty of Engineering, University of Malaya, 50603 Kuala Lumpur, Malaysia.
| |
Collapse
|
42
|
Zhang H, Lang J, Lan P, Yang H, Lu J, Wang Z. Study on the Dissolution Mechanism of Cellulose by ChCl-Based Deep Eutectic Solvents. MATERIALS (BASEL, SWITZERLAND) 2020; 13:E278. [PMID: 31936299 PMCID: PMC7014281 DOI: 10.3390/ma13020278] [Citation(s) in RCA: 39] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/05/2019] [Revised: 12/29/2019] [Accepted: 01/03/2020] [Indexed: 11/16/2022]
Abstract
Four deep eutectic solvents (DESs), namely, glycerol/chlorocholine (glycerol/ChCl), urea/ChCl, citric acid/ChCl, and oxalic acid/ChCl, were synthesized and their performance in the dissolution of cellulose was studied. The results showed that the melting point of the DESs varied with the proportion of the hydrogen bond donor material. The viscosity of the DESs changed considerably with the change in temperature; as the temperature increased, the viscosity decreased and the electrical conductivity increased. Oxalic acid/ChCl exhibited the best dissolution effects on cellulose. The microscopic morphology of cellulose was observed with a microscope. The solvent system effectively dissolved the cellulose, and the dissolution method of the oxalic acid/ChCl solvent on cellulose was preliminarily analyzed. The ChCl solvent formed new hydrogen bonds with the hydroxyl groups of the cellulose through its oxygen atom in the hydroxyl group and its nitrogen atom in the amino group. That is to say, after the deep eutectic melt formed an internal hydrogen bond, a large number of remaining ions formed a hydrogen bond with the hydroxyl groups of the cellulose, resulting in a great dissolution of the cellulose. Although the cellulose and regenerated cellulose had similar structures, the crystal form of cellulose changed from type I to type II.
Collapse
Affiliation(s)
- Heng Zhang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (J.L.); (H.Y.); (J.L.); (Z.W.)
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
- Key Laboratory of Biomass Chemical Engineering of Ministry of Education, Zhejiang University, Hangzhou 310027, China
| | - Jinyan Lang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (J.L.); (H.Y.); (J.L.); (Z.W.)
| | - Ping Lan
- Guangxi Key Laboratory of Polysaccharide Materials and Modification, School of Chemistry and Chemical Engineering, Guangxi University for Nationalities, Nanning 530008, China;
| | - Hongyan Yang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (J.L.); (H.Y.); (J.L.); (Z.W.)
| | - Junliang Lu
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (J.L.); (H.Y.); (J.L.); (Z.W.)
| | - Zhe Wang
- College of Marine Science and Biological Engineering, Qingdao University of Science & Technology, Qingdao 266042, China; (J.L.); (H.Y.); (J.L.); (Z.W.)
| |
Collapse
|
43
|
Kontogianni N, Barampouti EM, Mai S, Malamis D, Loizidou M. Effect of alkaline pretreatments on the enzymatic hydrolysis of wheat straw. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2019; 26:35648-35656. [PMID: 31792789 DOI: 10.1007/s11356-019-06822-3] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2019] [Accepted: 10/18/2019] [Indexed: 06/10/2023]
Abstract
Lignocellulosic materials are mainly consisted of lignin, cellulose, and hemicellulose. Lignin is recognized as the main obstacle for the enzymatic saccharification of cellulose towards the fermentable sugars' production. Hence, the removal of lignin from the lignocellulosic feedstock is beneficial for reducing the recalcitrance of lignocellulose for enzymatic attack. For this purpose, various different alkaline pretreatments were examined in order to study their effect on the enzymatic saccharification of wheat straw, as a typical lignocellulosic material. Results revealed that the alkaline pretreatments promoted delignification reactions. Regarding the removal of lignin, the most efficient pretreatments were alkaline treatment with hydrogen peroxide 10% and NaOH 2% autoclave with delignification efficiencies of 89.60% and 84.86% respectively. X-ray diffraction analysis was performed to enlighten the structural changes of raw and pretreated materials. The higher the delignification of the raw material, the higher the conversion of cellulose during enzymatic saccharification. In all cases after enzymatic saccharification, the cellulosic conversion was much higher (32-77%) than the untreated wheat straw (8.6%). After undergoing alkaline peroxide 10% pretreatment and cellulase treatment, 99% of the initial raw straw was eventually solubilized. Thus, wheat straw could be considered as an ideal material for the production of glucose with proper pretreatments and effective enzymatic hydrolysis.
Collapse
Affiliation(s)
- Nikoleta Kontogianni
- School of Chemical Engineering, Unit of Environmental Science & Technology, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Elli Maria Barampouti
- School of Chemical Engineering, Unit of Environmental Science & Technology, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Sofia Mai
- School of Chemical Engineering, Unit of Environmental Science & Technology, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Dimitris Malamis
- School of Chemical Engineering, Unit of Environmental Science & Technology, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece
| | - Maria Loizidou
- School of Chemical Engineering, Unit of Environmental Science & Technology, National Technical University of Athens, 9 Iroon Polytechniou Str., Zographou Campus, GR-15780, Athens, Greece.
| |
Collapse
|
44
|
Chen Z, Jacoby WA, Wan C. Ternary deep eutectic solvents for effective biomass deconstruction at high solids and low enzyme loadings. BIORESOURCE TECHNOLOGY 2019; 279:281-286. [PMID: 30738354 DOI: 10.1016/j.biortech.2019.01.126] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2018] [Revised: 01/24/2019] [Accepted: 01/25/2019] [Indexed: 05/05/2023]
Abstract
Ternary deep eutectic solvents (DESs) were developed to enable rapid and high-solid biomass pretreatment as well as concentrated sugar hydrolysate production. Six ternary DESs constituted choline chloride (ChCl) or guanidine hydrochloride (GH) as a hydrogen bond acceptor (HBA), ethylene glycol (EG) or propylene glycol (PG) or glycerin (GLY) as a polyol-based hydrogen bond donor (HBD), and p-toluenesulfonic acid (PTSA) as an acidic HBD. GH-EG-PTSA was the most effective, evidenced by 79% xylan and 82% lignin removal in only 6 min at 120 °C and 10 wt% solid loading. Even at 35 wt% solid loading, both GH-EG-PTSA and ChCl-EG-PTSA still removed more than 60% xylan and lignin in 30 min. Using a 20% solid loading and a low enzyme loading of 5 mg protein/g solid, 128 g/L glucose and 20 g/L xylose was obtained, with a glucose yield of 78.4%. Overall, this study demonstrated novel and high-performance ternary DESs for effective lignocellulose deconstruction.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA
| | - William A Jacoby
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA
| | - Caixia Wan
- Department of Biomedical, Bioengineering, and Chemical Engineering, University of Missouri, Columbia, MO 65203, USA.
| |
Collapse
|
45
|
Synthesis of Nitrogen-Doped Lignin/DES Carbon Quantum Dots as a Fluorescent Probe for the Detection of Fe 3+ Ions. Polymers (Basel) 2018; 10:polym10111282. [PMID: 30961207 PMCID: PMC6401814 DOI: 10.3390/polym10111282] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/24/2018] [Revised: 10/30/2018] [Accepted: 11/15/2018] [Indexed: 12/17/2022] Open
Abstract
Carbon quantum dots (CQDs) as a rising star of carbon nanomaterials have extensive applications due to their excellent characteristics. In this work, we introduce a simple and green method to prepare nitrogen-doped lignin carbon quantum dots (N-L-CQDs) by using alkali lignin carbon sources and deep eutectic solvent (DES) as solution and nitrogen source. The physiochemical characterization results suggested that N-L-CQDs with diameters ranging from 4 to 12 nm were successfully synthesized. The optical properties data indicated that the as-prepared N-L-CQDs with a quantum yield of 7.95% exhibited excellent optoelectronic properties, excitation-dependent and pH stability. After that, we have investigated the N-L-CQDs used as fluorescent probes to detect iron ions, which suggested that the as-prepared N-L-CQDs exhibited excellent sensitivity and selectivity for Fe3+ with a detection limit of 0.44 μM. Besides, cytotoxicity of N-L-CQDs was also evaluated by MTT assay. These results demonstrated that the as-prepared N-L-CQDs with excellent properties have potential applications in environment and biomedicine.
Collapse
|
46
|
Satlewal A, Agrawal R, Bhagia S, Sangoro J, Ragauskas AJ. Natural deep eutectic solvents for lignocellulosic biomass pretreatment: Recent developments, challenges and novel opportunities. Biotechnol Adv 2018; 36:2032-2050. [PMID: 30193965 DOI: 10.1016/j.biotechadv.2018.08.009] [Citation(s) in RCA: 145] [Impact Index Per Article: 20.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2018] [Revised: 07/09/2018] [Accepted: 08/26/2018] [Indexed: 12/26/2022]
Abstract
Conversion of lignocellulosic biomass to fuels and chemicals has attracted immense research and development around the world. Lowering recalcitrance of biomass in a cost-effective manner is a challenge to commercialize biomass-based technologies. Deep eutectic solvents (DESs) are new 'green' solvents that have a high potential for biomass processing because of their low cost, low toxicity, biodegradability, easy recycling and reuse. This article discusses the properties of DESs and recent advances in their application for lignocellulosic biomass processing. The effectiveness of DESs in hydrolyzing lignin-carbohydrate complexes, removing lignin/hemicellulose from biomass as well as their effect on biomass deconstruction, crystallinity and enzymatic digestibility have been discussed. Moreover, this review presents recent findings on the compatibility of natural DESs with enzymes and microorganisms.
Collapse
Affiliation(s)
- Alok Satlewal
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), TN 37831, USA; Department of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana 121007, India
| | - Ruchi Agrawal
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Department of Bioenergy, DBT-IOC Centre for Advanced Bioenergy Research, Research and Development Centre, Indian Oil Corporation Ltd, Faridabad, Haryana 121007, India
| | - Samarthya Bhagia
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Joshua Sangoro
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA.
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA; Joint Institute for Biological Sciences, Biosciences Division, Oak Ridge National Laboratory (ORNL), TN 37831, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, University of Tennessee, Institute of Agriculture, Knoxville, TN 37996, USA.
| |
Collapse
|
47
|
Li AL, Hou XD, Lin KP, Zhang X, Fu MH. Rice straw pretreatment using deep eutectic solvents with different constituents molar ratios: Biomass fractionation, polysaccharides enzymatic digestion and solvent reuse. J Biosci Bioeng 2018; 126:346-354. [DOI: 10.1016/j.jbiosc.2018.03.011] [Citation(s) in RCA: 46] [Impact Index Per Article: 6.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/03/2017] [Revised: 02/15/2018] [Accepted: 03/13/2018] [Indexed: 10/17/2022]
|
48
|
Chen Z, Reznicek WD, Wan C. Deep eutectic solvent pretreatment enabling full utilization of switchgrass. BIORESOURCE TECHNOLOGY 2018; 263:40-48. [PMID: 29729540 DOI: 10.1016/j.biortech.2018.04.058] [Citation(s) in RCA: 57] [Impact Index Per Article: 8.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/01/2018] [Revised: 04/11/2018] [Accepted: 04/13/2018] [Indexed: 06/08/2023]
Abstract
In this study, an acidified, aqueous DES comprising choline chloride: glycerol (ChCl:Gly) was used to fractionate switchgrass into three major streams under a relatively mild condition: cellulose-rich pulp, lignin, and xylose-rich liquor. The pulp showed good digestibility with about 89% glucose yield. The solvent can be recycled successfully and reused for at least four more pretreatment cycles while maintaining its pretreatment capability. The solvent recycling also improved the lignin recovery from the pretreatment liquor. Lignin recovered from different pretreatment cycles had the β-O-4 bonds preserved, and shared similar structures with native lignin. Using the pretreatment liquor as a substrate, the oleaginous yeast Rhodotorula toruloides produced 18.7 g/L biomass with lipid and carotenoid titers of 8.1 g/L and 15.0 mg/L, respectively. Overall, this study demonstrated a green process integrating chemical and biological methods toward full utilization of lignocellulosic biomass.
Collapse
Affiliation(s)
- Zhu Chen
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Wesley D Reznicek
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA
| | - Caixia Wan
- Department of Bioengineering, University of Missouri, Columbia, MO 65211, USA.
| |
Collapse
|
49
|
Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 263:325-333. [PMID: 29758482 DOI: 10.1016/j.biortech.2018.05.016] [Citation(s) in RCA: 69] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A series of ethanolamine based deep eutectic solvents (DESs), which have strong basicity, were firstly applied in wheat straw pretreatment. Typically, choline chloride: monoethanolamine (C:M) as the best solvent among these DESs can remove 71.4% lignin and reserve 93.7% cellulose (70 °C, L/S mass ratio of 20:1, 9 h), and improve the enzymatic hydrolysis of residue, i.e., 89.8% cellulose and 62.0% xylan conversion. The pretreatment capacity of C:M is comparable to other solvents while C:M has several advantages, e.g., lower cost with cheap materials and simpler preparation process, mild conditions and lower polysaccharide loss. The XRD, SEM and FT-IR results verified that the polysaccharide conversion and sugars yield were enhanced by the removal of lignin in the pretreatment process. The basic ethanolamine based DESs are promising solvents for industrial application of wheat straw pretreatment.
Collapse
Affiliation(s)
- Zheng Zhao
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaochun Chen
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Furqan Ali
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed A Abdeltawab
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangren Yu
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|
50
|
Liu D, Yan X, Zhuo S, Si M, Liu M, Wang S, Ren L, Chai L, Shi Y. Pandoraea sp. B-6 assists the deep eutectic solvent pretreatment of rice straw via promoting lignin depolymerization. BIORESOURCE TECHNOLOGY 2018; 257:62-68. [PMID: 29482167 DOI: 10.1016/j.biortech.2018.02.029] [Citation(s) in RCA: 26] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2017] [Revised: 02/03/2018] [Accepted: 02/05/2018] [Indexed: 06/08/2023]
Abstract
Lignin depolymerization is a challenging process in biorefinery due to the recalcitrant and complex structure of lignin. This challenge was herein addressed via elaborating a new strategy of combining the bacterial strain Pandoraea sp. B-6 (hereafter B-6) with a deep eutectic solvent (DES) to pretreat rice straw (RS). In this approach, DES effectively depolymerized lignin yet easily caused sugar loss under severe conditions. B-6 not only overcame the obstacle of lignin droplets, but also significantly improved enzymatic digestibility. After B-6 assisted DES pretreatment, the reducing sugar yield increases by 0.3-1.5 times over DES pretreatment and 0.9-3.1 times over the untreated RS. Furthermore, a "cornhusking" mechanism explaining the improvement of the enzymatic digestibility by B-6 was suggested based on physicochemical characterizations of the untreated and pretreated RS. The findings provided a comprehensive perspective to establish a DES-microbial process for lignocellulose pretreatment.
Collapse
Affiliation(s)
- Dan Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Xu Yan
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Shengnan Zhuo
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mengying Si
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Mingren Liu
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Sheng Wang
- Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Lili Ren
- School of Metallurgy and Environment, Central South University, Changsha 410083, China
| | - Liyuan Chai
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China
| | - Yan Shi
- School of Metallurgy and Environment, Central South University, Changsha 410083, China; Chinese National Engineering Research Center for Control & Treatment of Heavy Metal Pollution, Changsha 410083, China.
| |
Collapse
|