1
|
Wang C, Guo H, Yu P, Huang B, Xin Z, Zheng X, Zhang J, Tang T. An efficient co-culture of Halomonas mongoliensis and Dunaliella salina for phenol degradation under high salt conditions. Front Microbiol 2024; 15:1505542. [PMID: 39723148 PMCID: PMC11668763 DOI: 10.3389/fmicb.2024.1505542] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2024] [Accepted: 11/29/2024] [Indexed: 12/28/2024] Open
Abstract
Phenol is one of the major organic pollutants in high salt industrial wastewater. The biological treatment method is considered to be a cost-effective and eco-friendly method, in which the co-culture of microalgae and bacteria shows a number of advantages. In the previous study, a co-culture system featuring Dunaliella salina (D. salina) and Halomonas mongoliensis (H. mongoliensis) was established and could degrade 400 mg L-1 phenol at 3% NaCl concentration. In order to enhance the performance of this system, D. salina strain was subjected to adaptive laboratory evolution (ALE) by gradually increasing the phenol concentration from 200 mg L-1 to 500 mg L-1 at 3% NaCl concentration. At a phenol concentration of 500 mg L-1, the phenol removal rate of the resulting D. salina was 78.4% within 7 days, while that of the original strain was only 49.2%. The SOD, POD, and MDA contents of the resulting strain were lower than those of the original strain, indicating that the high concentration of phenol was less harmful to the resulting strain. A co-culture system was established with the resulting D. salina and H. mongoliensis, which could complete degrade 500 mg L-1 of phenol within 8 days, outperforming the original D. salina co-culture system. This study proved that ALE could improve the phenol tolerance and phenol degradation capability of D. salina, and then effectively improve the phenol degradation capability of D. salina and H. mongoliensis co-culture system.
Collapse
Affiliation(s)
- Changjian Wang
- CHN Energy BaoRiXiLe Energy Co., Ltd., Hulunbeier, China
| | - Haiqiao Guo
- CHN Energy BaoRiXiLe Energy Co., Ltd., Hulunbeier, China
| | - Peng Yu
- School of Civil and Resources Engineering, Graduate School of University of Science and Technology Beijing, Beijing, China
- CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Zhikun Xin
- CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Xufan Zheng
- CHN Energy New Energy Technology Research Institute Co., Ltd., Beijing, China
| | - Jinli Zhang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science and Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
- State Key Laboratory of Low Carbon Catalysis and Carbon Dioxide Utilization, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
2
|
Wang J, Zhang L, He Y, Ji R. Biodegradation of phenolic pollutants and bioaugmentation strategies: A review of current knowledge and future perspectives. JOURNAL OF HAZARDOUS MATERIALS 2024; 469:133906. [PMID: 38430590 DOI: 10.1016/j.jhazmat.2024.133906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/02/2023] [Revised: 01/28/2024] [Accepted: 02/25/2024] [Indexed: 03/05/2024]
Abstract
The widespread use of phenolic compounds renders their occurrence in various environmental matrices, posing ecological risks especially the endocrine disruption effects. Biodegradation-based techniques are efficient and cost-effective in degrading phenolic pollutants with less production of secondary pollution. This review focuses on phenol, 4-nonylphenol, 4-nitrophenol, bisphenol A and tetrabromobisphenol A as the representatives, and summarizes the current knowledge and future perspectives of their biodegradation and the enhancement strategy of bioaugmentation. Biodegradation and isolation of degrading microorganisms were mainly investigated under oxic conditions, where phenolic pollutants are typically hydroxylated to 4-hydroxybenzoate or hydroquinone prior to ring opening. Bioaugmentation efficiencies of phenolic pollutants significantly vary under different application conditions (e.g., increased degradation by 10-95% in soil and sediment). To optimize degradation of phenolic pollutants in different matrices, the factors that influence biodegradation capacity of microorganisms and performance of bioaugmentation are discussed. The use of immobilization strategy, indigenous degrading bacteria, and highly competent exogenous bacteria are proposed to facilitate the bioaugmentation process. Further studies are suggested to illustrate 1) biodegradation of phenolic pollutants under anoxic conditions, 2) application of microbial consortia with synergistic effects for phenolic pollutant degradation, and 3) assessment on the uncertain ecological risks associated with bioaugmentation, resulting from changes in degradation pathway of phenolic pollutants and alterations in structure and function of indigenous microbial community.
Collapse
Affiliation(s)
- Jiacheng Wang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Lidan Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Yujie He
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China.
| | - Rong Ji
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China; Quanzhou Institute for Environment Protection Industry, Nanjing University, Quanzhou 362000, China
| |
Collapse
|
3
|
Sun G, Zhang X, Zhang F, Wang Y, Wu Y, Jiang Z, Hao S, Ye S, Zhang H, Zhang X. Use microalgae to treat coke wastewater for producing biofuel: Influence of phenol on photosynthetic properties and intracellular components of microalgae. CHEMOSPHERE 2024; 349:140805. [PMID: 38040255 DOI: 10.1016/j.chemosphere.2023.140805] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 11/12/2023] [Accepted: 11/22/2023] [Indexed: 12/03/2023]
Abstract
Using microalgae to treat coking wastewater has important application prospects and environmental significance. Previous studies have suggested that phycoremediation of pollutants from coking wastewater is feasible and can potentially enhance biodiesel production. This work investigates the effects of phenol in coking wastewater on C. pyrenoidosa and S. obliquus growth, photosynthesis activity, and intracellular components. The results indicated that when the phenol concentration was lower than 300 mg L-1, both microalgae maintained good photosynthetic and physiological activity, with a maximum quantum yield potential ranging from 0.6 to 0.7. At the phenol concentration of 300 mg L-1, the biomass of C. pyrenoidosa was 2.4 times that of the control group. For S. obliquus, at the phenol concentration of 150 mg L-1, the biomass was approximately 0.85 g L-1, which increased by 68% than that of the control group (0.58 g L-1). The lipid content in both microalgae increased with the phenol concentrations, with the maximum content exceeding 40%. The optimal phenol concentrations for C. pyrenoidosa and S. obliquus growth were determined to be 246.18 and 152.73 mg L-1, respectively, based on a developed kinetic model. This work contributes to further elucidating the effects of phenol on microalgae growth, photosynthesis, and intracellular components, and suggests that using microalgae to treat phenol-containing coking wastewater for producing biofuel is not only environmentally friendly but also holds significant energy promise.
Collapse
Affiliation(s)
- Guangpu Sun
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinru Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Engineering Research Center of Energy Saving and Environmental Protection, Beijing, 100083, China.
| | - Fan Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yi Wang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Yuyang Wu
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Zeyi Jiang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing, 100083, China.
| | - Siyuan Hao
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Shiya Ye
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Hu Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China
| | - Xinxin Zhang
- School of Energy and Environmental Engineering, University of Science and Technology Beijing, Beijing, 100083, China; Beijing Key Laboratory for Energy Saving and Emission Reduction of Metallurgical Industry, Beijing, 100083, China
| |
Collapse
|
4
|
Jaiswal KK, Kumar V, Arora N, Vlaskin MS. Evaluation of the mechanisms underlying altered fatty acid biosynthesis in heterotrophic microalgal strain Chlorella sorokiniana during biodegradation of phenol and p-nitrophenol. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:87866-87879. [PMID: 37432577 DOI: 10.1007/s11356-023-28615-5] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2022] [Accepted: 07/01/2023] [Indexed: 07/12/2023]
Abstract
Phenolic compounds have become a severe environmental concern due to water contamination, affecting the sustainability of the ecosystem. The microalgae enzymes have enticed for the efficient involvement in the biodegradation of phenolics compound in metabolic processes. In this investigation, the oleaginous microalgae Chlorella sorokiniana was cultured heterotrophically under the influence of phenol and p-nitrophenol. The enzymatic assays of algal cell extracts were used to decipher the underlying mechanisms for phenol and p-nitrophenol biodegradation. A reduction of 99.58% and 97.21% in phenol and p-nitrophenol values, respectively, was recorded after the 10th day of microalgae cultivation. Also, the biochemical components in phenol, p-nitrophenol, and control were found to be 39.6 ± 2.3%, 36.7 ± 1.3%, and 30.9 ± 1.8% (total lipids); 27.4 ± 1.4%, 28.3 ± 1.8%, and 19.7 ± 1.5% (total carbohydrates); and 26.7 ± 1.9%, 28.3 ± 1.9%, and 39.9 ± 1.2% (total proteins), respectively. The GC-MS and 1H-NMR spectroscopy attested the incidence of fatty acid methyl esters in the synthesized microalgal biodiesel. The activity of catechol 2,3-dioxygenase and hydroquinone 1,2-dioxygenase in microalgae under heterotrophic conditions has conferred the ortho- and hydroquinone pathways for phenol and p-nitrophenol biodegradation, respectively. Also, the acceleration of fatty acid profiles in microalgae is deliberated under the impact of the phenol and p-nitrophenol biodegradation process. Thus, microalgae enzymes in the metabolic degradation process of phenolic compounds encourage ecosystem sustainability and biodiesel prospects due to the increased lipid profiles of microalgae.
Collapse
Affiliation(s)
- Krishna Kumar Jaiswal
- Bioprocess Engineering Laboratory, Department of Green Energy Technology, Pondicherry University, Puducherry, 605014, India
| | - Vinod Kumar
- Algal Research and Bioenergy Lab, Department of Life Sciences, Graphic Era (Deemed to Be University), Dehradun, 248002, India.
- Peoples' Friendship University of Russia (RUDN University), Moscow, 117198, Russian Federation.
| | - Neha Arora
- Patel College of Global Sustainability, University of South Florida, Tampa, FL, USA
| | - Mikhail S Vlaskin
- Joint Institute for High Temperatures of the Russian Academy of Sciences, 13/2 Izhorskaya St, Moscow, 125412, Russia
| |
Collapse
|
5
|
Zhang J, Huang B, Tang T. Effect of co-culture with Halomonas mongoliensis on Dunaliella salina growth and phenol degradation. Front Bioeng Biotechnol 2022; 10:1072868. [PMID: 36479431 PMCID: PMC9720160 DOI: 10.3389/fbioe.2022.1072868] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/09/2022] [Indexed: 08/02/2024] Open
Abstract
The discharge of industrial phenol wastewater has caused great harm to the environment. This study aims to construct microalgae and bacteria co-culture system to remove phenol from simulated high-salt phenol wastewater and accumulate microalgae biomass. The degradation of phenol by marine microalgae Dunaliella salina (D. salina) and phenol-degrading bacteria Halomonas mongoliensis (H. mongoliensis) was investigated preliminarily, and then the effects of co-culture H. mongoliensis and D. salina on the degradation of phenol and the growth of D. salina were studied. The effects of D. salina/H. mongoliensis inoculation ratio, light intensity, temperature and pH on the performance of the co-culture system were systematically evaluated and optimized. The optimal conditions for phenol degradation were as follows: a D. salina/H. mongoliensis inoculation ratio of 2:1, a light intensity of 120 μmol m-2 s-1, a temperature of 25°C and a pH around 7.5. Under optimal conditions, this co-culture system could completely degrade 400 mg L-1 of phenol within 5 days. Correspondingly, the phenol degradation rate of D. salina monoculture was only 30.3% ± 1.3% within 5 days. Meanwhile, the maximum biomass concentration of D. salina in coculture was 1.7 times compared to the monoculture. This study suggested that this coculture system had great potential for the bioremediation of phenol contaminants and accumulate microalgae biomass.
Collapse
Affiliation(s)
| | | | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai, China
| |
Collapse
|
6
|
Ali Kubar A, Jin N, Cui Y, Hu X, Qian J, Zan X, Zhang C, Zhu F, Kumar S, Huo S. Magnetic/electric field intervention on oil-rich filamentous algae production in the application of acrylonitrile butadiene styrene based wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 356:127272. [PMID: 35526707 DOI: 10.1016/j.biortech.2022.127272] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 05/01/2022] [Accepted: 05/02/2022] [Indexed: 06/14/2023]
Abstract
Globally, the release of acrylonitrile-butadienestyrene (ABS) wastewater from numerous industries is a serious concern. Recently, oil-rich filamentous algae Tribonema sp has been grown utilizing toxic but nutrient-rich ABS effluent. Here, Tribonema sp. was cultivated under intervention of different magneto-electric combinatory fields (MCFs) (control, 0.6 V/cm, 1 h/d-1.2 V/cm, 1 h/d-0.6 V/cm, and 1 h/d-1.2 V/cm). Results showed MCF (1 h/d-0.6 V/cm) intervention increased the biomass by 9.7% (2.4 g/L) combined with high removal efficiencies (95% and 99%) of ammonium nitrogen and total phosphorus. The chemical oxygen demand (COD) removal rate increased to 82%, 6% higher than the control. Moreover, MCF of 1 h/d-0.6 V/cm significantly increased lipid and carbohydrate by 7.71% and 4.73% respectively. MCF increased premium fatty acid content such as palmitic acid (C16:0), myristic acid (C14: 0), and hexadecenoic acid (C16:1). MCF intervention also supported a diverse microbial flora, offering a favorable solution for ABS wastewater treatment.
Collapse
Affiliation(s)
- Ameer Ali Kubar
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Nana Jin
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Yi Cui
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinjuan Hu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jingya Qian
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xinyi Zan
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Cunsheng Zhang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- School of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Santosh Kumar
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
7
|
Radziff SBM, Ahmad SA, Shaharuddin NA, Merican F, Kok YY, Zulkharnain A, Gomez-Fuentes C, Wong CY. Potential Application of Algae in Biodegradation of Phenol: A Review and Bibliometric Study. PLANTS (BASEL, SWITZERLAND) 2021; 10:2677. [PMID: 34961148 PMCID: PMC8709323 DOI: 10.3390/plants10122677] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Revised: 10/29/2021] [Accepted: 11/02/2021] [Indexed: 06/14/2023]
Abstract
One of the most severe environmental issues affecting the sustainable growth of human society is water pollution. Phenolic compounds are toxic, hazardous and carcinogenic to humans and animals even at low concentrations. Thus, it is compulsory to remove the compounds from polluted wastewater before being discharged into the ecosystem. Biotechnology has been coping with environmental problems using a broad spectrum of microorganisms and biocatalysts to establish innovative techniques for biodegradation. Biological treatment is preferable as it is cost-effective in removing organic pollutants, including phenol. The advantages and the enzymes involved in the metabolic degradation of phenol render the efficiency of microalgae in the degradation process. The focus of this review is to explore the trends in publication (within the year of 2000-2020) through bibliometric analysis and the mechanisms involved in algae phenol degradation. Current studies and publications on the use of algae in bioremediation have been observed to expand due to environmental problems and the versatility of microalgae. VOSviewer and SciMAT software were used in this review to further analyse the links and interaction of the selected keywords. It was noted that publication is advancing, with China, Spain and the United States dominating the studies with total publications of 36, 28 and 22, respectively. Hence, this review will provide an insight into the trends and potential use of algae in degradation.
Collapse
Affiliation(s)
- Syahirah Batrisyia Mohamed Radziff
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Siti Aqlima Ahmad
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
| | - Noor Azmi Shaharuddin
- Department of Biochemistry, Faculty of Biotechnology and Biomolecular Sciences, Universiti Putra Malaysia, Serdang 43400, Selangor, Malaysia; (S.B.M.R.); (S.A.A.); (N.A.S.)
| | - Faradina Merican
- School of Biological Sciences, Universiti Sains Malaysia, Minden, Gelugor 11800, Penang, Malaysia;
| | - Yih-Yih Kok
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| | - Azham Zulkharnain
- Department of Bioscience and Engineering, College of Systems Engineering and Science, Shibaura Institute of Technology, Saitama-shi 337-8570, Saitama, Japan;
| | - Claudio Gomez-Fuentes
- Center for Research and Antarctic Environmental Monitoring (CIMAA), Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile;
- Department of Chemical Engineering, Universidad de Magallanes, Avda. Bulnes, Punta Arenas 01855, Chile
| | - Chiew-Yen Wong
- Division of Applied Biomedical Sciences and Biotechnology, School of Health Sciences, International Medical University, Bukit Jalil, Kuala Lumpur 57000, Selangor, Malaysia;
| |
Collapse
|
8
|
Jin J, Sun J, Lv K, Guo X, Hou Q, Liu J, Wang J, Bai Y, Huang X. Oxygen vacancy BiO 2-x/Bi 2WO 6 synchronous coupling with Bi metal for phenol removal via visible and near-infrared light irradiation. J Colloid Interface Sci 2021; 605:342-353. [PMID: 34332408 DOI: 10.1016/j.jcis.2021.06.085] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2021] [Revised: 06/09/2021] [Accepted: 06/13/2021] [Indexed: 12/13/2022]
Abstract
The introduction of oxygen-defects has been a versatile strategy to enhance photocatalysis efficiency. In this work, a 2D/3D Bi/BiO2-x/Bi2WO6 heterojunction photocatalyst with rich oxygen-defective was in sequence prepared through a facile solvothermal method, which displays favorable photocatalytic activity towards organic contaminants under visible-NIR light irradiation. The enhancement in photocatalytic performance can be attributed to the synergistic effect between oxygen-vacancy-rich heterojunction and the localized surface plasmon resonance induced by metallic Bi. The functional group interaction, surface morphology, crystal structure, element composition, and tuned bandgap were investigated by FT-IR, SEM, Raman shift, ICP-MS, and XPS technique. The spectrum response performance of the photocatalyst was verified by UV-visible DRS analysis. Results of photodegradation experiments toward organic contaminants showed that the prepared photocatalyst can degrade 90% of phenol in 20 mins under visible-NIR light irradiation, both Z-scheme heterojunction and the introduction of Bi metal contribute to the enhancement in the photocatalytic activity. The results of the DFT calculation suggest that the valence band-edge hybridization within BiO2-x and Bi2WO6 can effectively enhance the photocatalytic performance by increasing the migration efficiencies of electron-hole pairs. Moreover, a possible mechanism was proposed on the results of EIS, ESR and GC-MS tests. This work offers a novel insight for synthesizing efficient visible-NIR light photocatalysis by activating the semiconductors with Bi metal.
Collapse
Affiliation(s)
- Jiafeng Jin
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Jinsheng Sun
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China; CNPC Engineering Technology R & D Company Limited, Beijing 102206, PR China.
| | - Kaihe Lv
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Xuan Guo
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Qilin Hou
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Jingping Liu
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Jintang Wang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Yingrui Bai
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| | - Xianbin Huang
- School of Petroleum Engineering, China University of Petroleum (East China), Qingdao, Shandong 266580, PR China; Key Laboratory of Unconventional Oil & Gas Development (China University of Petroleum (East China)), Ministry of Education, Qingdao 266580, PR China
| |
Collapse
|
9
|
Annotated Genome Sequence of the High-Biomass-Producing Yellow-Green Alga Tribonema minus. Microbiol Resour Announc 2021; 10:e0032721. [PMID: 34137633 PMCID: PMC8210698 DOI: 10.1128/mra.00327-21] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/20/2022] Open
Abstract
Here, we report the annotated genome sequence for a heterokont alga from the class Xanthophyceae. This high-biomass-producing strain, Tribonema minus UTEX B 3156, was isolated from a wastewater treatment plant in California. It is stable in outdoor raceway ponds and is a promising industrial feedstock for biofuels and bioproducts.
Collapse
|
10
|
El-Gendy NS, Nassar HN. Phycoremediation of phenol-polluted petro-industrial effluents and its techno-economic values as a win-win process for a green environment, sustainable energy and bioproducts. J Appl Microbiol 2021; 131:1621-1638. [PMID: 33386652 DOI: 10.1111/jam.14989] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2020] [Revised: 12/18/2020] [Accepted: 12/30/2020] [Indexed: 02/02/2023]
Abstract
The discharge of the toxic phenol-polluted petro-industrial effluents (PPPIE) has severe environmental negative impacts, thus it is mandatory to be treated before its discharge. The objective of this review was to discuss the sustainable application of microalgae in phenols degradation, with a special emphasis on the enzymes involved in this bioprocess and the factors affecting the success of PPPIE phycoremediation. Moreover, it confers the microalgae bioenergetic strategies to degrade different forms of phenols in PPPIE. It also points out the advantages of the latest application of bacteria, fungi and microalgae as microbial consortia in phenols biodegradation. Briefly, phycoremediation of PPPIE consumes carbon dioxide emitted from petro-industries for; valorization of the polluted water to be reused and production of algal biomass which can act as a source of energy for such integrated bioprocess. Besides, the harvested algal biomass can feasibly produce; third-generation biofuels, biorefineries, bioplastics, fish and animal feed, food supplements, natural dyes, antioxidants and many other valuable products. Consequently, this review precisely confirms that the phycoremediation of PPPIE is a win-win process for a green environment and a sustainable future. Thus, to achieve the three pillars of sustainability; social, environmental and economic; it is recommendable to integrate PPPIE treatment with algal cultivation. This integrated process would overcome the problem of greenhouse gas emissions, global warming and climate change, solve the problem of water-scarce, and protect the environment from the harmful negative impacts of PPPIE.
Collapse
Affiliation(s)
- N Sh El-Gendy
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| | - H N Nassar
- Department of Process Design and Development, Egyptian Petroleum Research Institute (EPRI), Nasr City, Cairo, PO 11727, Egypt.,Center of Excellence, October University for Modern Sciences and Arts (MSA), 6th of October City, Giza, PO 12566, Egypt.,Nanobiotechnology Program, Faculty of Nanotechnology for Postgraduate Studies, Cairo University, Sheikh Zayed Branch Campus, Sheikh Zayed City, Giza, PO 12588, Egypt
| |
Collapse
|
11
|
Yi T, Shan Y, Huang B, Tang T, Wei W, Quinn NWT. An efficient Chlorella sp.-Cupriavidus necator microcosm for phenol degradation and its cooperation mechanism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 743:140775. [PMID: 32663680 DOI: 10.1016/j.scitotenv.2020.140775] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2020] [Revised: 07/03/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
A Chlorella sp.-Cupriavidus necator (C. necator) microcosm was artificially established for phenol degradation. The cooperation relationship between Chlorella sp. and C. necator was initially demonstrated, and then the effects of Chlorella sp./C. necator inoculation ratio, light intensity, temperature and pH on the performance of this microcosm were systematically evaluated and optimized. The optimal conditions for phenol degradation were as follows: a Chlorella sp./C. necator inoculation ratio of 1:1, a light intensity of 110 μmol m-2 s-1, a temperature in the range of 25-32 °C and a pH in the range of 5.5-7.5. Under optimal conditions, this microcosm could degrade phenol with a maximum concentration of 1200 mg L-1 within 60 h. It was found that only when the phenol concentration was reduced to the tolerance concentration of microalgae, that is, the last stage of phenol degradation, the cooperation effect could be generated, indicating that the tolerance of microalgae to phenol may be more important than its degradation performance. Comparative transcriptomic analysis was conducted to discuss the cooperation mechanism of this microcosm subject to high phenol concentrations. The up-regulation of genes involved in photosynthesis and carbon fixation of Chlorella sp. demonstrated the CO2 and O2 exchange between Chlorella sp. and C. necator and their cooperation relationship. This study suggests that this microcosm has great potential for the bioremediation of phenol contaminants.
Collapse
Affiliation(s)
- Tao Yi
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; School of Life Sciences, Shanghai University, Shanghai 200444, China
| | - Ying Shan
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Bo Huang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China
| | - Tao Tang
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Earth Science Division, Lawrence Berkeley National Laboratory, California 94720, USA.
| | - Wei Wei
- CAS Key Lab of Low-Carbon Conversion Science & Engineering, Shanghai Advanced Research Institute, Chinese Academy of Sciences, Shanghai 201210, China; Center for Excellence in Urban Atmospheric Environment, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Nigel W T Quinn
- Earth Science Division, Lawrence Berkeley National Laboratory, California 94720, USA
| |
Collapse
|
12
|
Wang F, Chen J, Zhang C, Gao B. Resourceful treatment of cane sugar industry wastewater by Tribonema minus towards the production of valuable biomass. BIORESOURCE TECHNOLOGY 2020; 316:123902. [PMID: 32738560 DOI: 10.1016/j.biortech.2020.123902] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/27/2020] [Revised: 07/19/2020] [Accepted: 07/21/2020] [Indexed: 06/11/2023]
Abstract
Tribonema minus was cultivated in different concentrations of sugarcane wastewater (SW) diluted with mBG-11 medium to produce biomass for biodiesel, bioproduct, and biomaterial production. The results showed that T. minus grew mixotrophically in 50%SW, with the highest biomass accumulation (7.86 g/L) and nutrient removal efficiency (84.85% of nitrogen, 62.57% of phosphorus, and 44.72% of COD). Excluding 100%SW, the chrysolaminarin and cellulose contents increased with increasing SW concentration; the highest contents of 8.11% and 25.69% dry weight were reached in 75%SW, respectively. Although fewer lipids and palmitoleic acid accumulated at higher SW concentrations, their productivities were significantly higher than those in the control due to the higher contribution of biomass. Moreover, the fatty acid profiles produced at the tested concentrations showed superior biodiesel properties. These findings suggested that the addition of mBG-11 medium to SW might be an effective strategy for valuable biomass production in T. minus and SW bioremediation.
Collapse
Affiliation(s)
- Feifei Wang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China; School of Food Science and Engineering, Wuhan Polytechnic University, Wuhan 430023, PR China
| | - Jiamin Chen
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Chengwu Zhang
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China
| | - Baoyan Gao
- Institute of Hydrobiology, Department of Ecology, Jinan University, Guangzhou 510632, PR China.
| |
Collapse
|
13
|
Li C, Ma Y, Zheng S, Hu C, Qin F, Wei L, Zhang C, Duo S, Hu Q. Acid etching followed by hydrothermal preparation of nanosized Bi2O4/Bi2O3 p-n junction as highly efficient visible-light photocatalyst for organic pollutants removal. J Colloid Interface Sci 2020; 576:291-301. [DOI: 10.1016/j.jcis.2020.02.115] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2020] [Revised: 02/25/2020] [Accepted: 02/27/2020] [Indexed: 02/01/2023]
|
14
|
Zhu Y, Cheng J, Zhang Z, Liu J. Mutation of Arthrospira platensis by gamma irradiation to promote phenol tolerance and CO2 fixation for coal-chemical flue gas reduction. J CO2 UTIL 2020. [DOI: 10.1016/j.jcou.2020.02.003] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/25/2022]
|
15
|
Kong W, Yang S, Guo B, Wang H, Huo H, Zhang A, Niu S. Growth behavior, glucose consumption and phenol removal efficiency of Chlorella vulgaris under the synergistic effects of glucose and phenol. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2019; 186:109762. [PMID: 31629189 DOI: 10.1016/j.ecoenv.2019.109762] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2019] [Revised: 10/01/2019] [Accepted: 10/03/2019] [Indexed: 06/10/2023]
Abstract
The use of algae is an effective approach to remove phenol and its derivatives from polluted water. The growth behavior, glucose consumption and phenol removal efficiency of Chlorella vulgaris under the synergistic effects of glucose and phenol were investigated. The evolutions of tolerance and removal efficiency of C. vulgaris to phenol under different trophic modes and glucose contents were observed. The results revealed that growth of C. vulgaris were inhibited with the increase of phenol from 0 to 400 mg L-1 in culture media; the tolerance to phenol enhanced with the addition of glucose from 2 to 10 g L-1, while glucose consumption was inhibited with the increase of phenol content; phenol removal efficiency varied with glucose concentrations in mixotrophic media. The finding suggested that phenol inhibited the growth of C. vulgaris and glucose assimilation under mixotrophic cultivation, while appropriate glucose addition could enhance the tolerance of C. vulgaris to phenol and affect the phenol removal efficiency.
Collapse
Affiliation(s)
- Weibao Kong
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China.
| | - Shuling Yang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Baomin Guo
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Hui Wang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Huanran Huo
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Aimei Zhang
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| | - Shiquan Niu
- College of Life Sciences, Northwest Normal University, Lanzhou, 730070, China
| |
Collapse
|
16
|
Zhu G, Cheng G, Lu T, Cao Z, Wang L, Li Q, Fan J. An ionic liquid functionalized polymer for simultaneous removal of four phenolic pollutants in real environmental samples. JOURNAL OF HAZARDOUS MATERIALS 2019; 373:347-358. [PMID: 30928677 DOI: 10.1016/j.jhazmat.2019.03.101] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/22/2019] [Revised: 03/22/2019] [Accepted: 03/23/2019] [Indexed: 05/10/2023]
Abstract
An ionic liquid functionalized polymer (IL-P) was prepared feasibly and simply by grafting1-butyl-3-vinylimidazolium bromide onto the silica surface. The IL-P was fully characterized, and the results showed that IL-P has a rough surface with a lower specific surface area (205.49 m2 g-1), and the involvement of ionic liquid significantly improved the adsorption performance of IL-P. The pH, initial concentration, adsorption time and temperature were investigated to discuss the adsorption behaviors of IL-P in aqueous solution. The adsorption process of 2,4-dichlorophenol (2,4-DCP), bisphenol A (BPA) and 2,4-dinitrophenol (2,4-DNP) onto IL-P better fitted the pseudo-second-order model, while that of 2-isonaphthol (2-NP) followed the pseudo-first-order model. The adsorption behaviors of IL-P towards 2,4-DCP and 2,4-DNP fitted well with Liu isotherm model, and that of BPA and 2-NP can be described by Langmuir model. The maximum adsorption capacities of 2,4-DCP, BPA, 2,4-DNP and 2-NP bound on IL-P was 239.7, 68.39, 56.86 and 64.28 mg g-1, respectively, and the adsorption of IL-P is a spontaneous physical process. Comparing with other adsorbent, the as-prepared IL-P showed excellent recognition ability towards the phenolic compounds and can be applied to adsorb and remove trace 2,4-DCP, 2-NP, 2,4-DNP and BPA simultaneously in complicated wastewater and soil samples.
Collapse
Affiliation(s)
- Guifen Zhu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| | - Guohao Cheng
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Tong Lu
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Zhiguo Cao
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Lifang Wang
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China
| | - Qianjin Li
- School of Public Health, Nanchang University, Nanchang, Jiangxi 330006, PR China
| | - Jing Fan
- School of Environment, Henan Key Laboratory for Environmental Pollution Control, Key Laboratory for Yellow River and Huai River Water Environmental Pollution Control, Ministry of Education, Henan Normal University, Xinxiang, Henan 453007, PR China.
| |
Collapse
|
17
|
Huo S, Chen J, Zhu F, Zou B, Chen X, Basheer S, Cui F, Qian J. Filamentous microalgae Tribonema sp. cultivation in the anaerobic/oxic effluents of petrochemical wastewater for evaluating the efficiency of recycling and treatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.02.011] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
|
18
|
Huo S, Chen J, Chen X, Wang F, Xu L, Zhu F, Guo D, Li Z. Advanced treatment of the low concentration petrochemical wastewater by Tribonema sp. microalgae grown in the open photobioreactors coupled with the traditional Anaerobic/Oxic process. BIORESOURCE TECHNOLOGY 2018; 270:476-481. [PMID: 30245317 DOI: 10.1016/j.biortech.2018.09.024] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2018] [Revised: 09/03/2018] [Accepted: 09/04/2018] [Indexed: 06/08/2023]
Abstract
In this paper, the filamentous microalgae Tribonema sp. grown in the open photobioreactors (PBRs) was directly integrated with the traditional Anaerobic/Oxic (A/O) process for the advanced treatment of low concentration petrochemical wastewater. The COD removal rate was only 71.7% after direct treatment of wastewater effluent from the primary clarifier in the open PBRs, while in-depth purification could be achieved in the secondary clarifier with COD removal rates reached to 97.8% in the open PBRs. The NH3-N and P of the two effluents were almost completely removed after 5-7 days in the open PBRs. The biomass concentration, productivity and the oil content in the open PBRs with the secondary clarifier effluent were all higher than those in the primary clarifier group. The filamentous microalgae Tribonema sp. as a post-treatment step for the A/O process can achieve deep removal of the pollutants and accumulate higher biomass concentration and oil content.
Collapse
Affiliation(s)
- Shuhao Huo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Jing Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiu Chen
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feng Wang
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ling Xu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Feifei Zhu
- Institute of Life Sciences, Jiangsu University, Zhenjiang 212013, China
| | - Danzhao Guo
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Zhenjiang Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing 210009, China
| |
Collapse
|
19
|
Oh YK, Hwang KR, Kim C, Kim JR, Lee JS. Recent developments and key barriers to advanced biofuels: A short review. BIORESOURCE TECHNOLOGY 2018. [PMID: 29523378 DOI: 10.1016/j.biortech.2018.02.089] [Citation(s) in RCA: 90] [Impact Index Per Article: 12.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
Biofuels are regarded as one of the most viable options for reduction of CO2 emissions in the transport sector. However, conventional plant-based biofuels (e.g., biodiesel, bioethanol)'s share of total transportation-fuel consumption in 2016 was very low, about 4%, due to several major limitations including shortage of raw materials, low CO2 mitigation effect, blending wall, and poor cost competitiveness. Advanced biofuels such as drop-in, microalgal, and electro biofuels, especially from inedible biomass, are considered to be a promising solution to the problem of how to cope with the growing biofuel demand. In this paper, recent developments in oxy-free hydrocarbon conversion via catalytic deoxygenation reactions, the selection of and lipid-content enhancement of oleaginous microalgae, electrochemical biofuel conversion, and the diversification of valuable products from biomass and intermediates are reviewed. The challenges and prospects for future development of eco-friendly and economically advanced biofuel production processes also are outlined herein.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Kyung-Ran Hwang
- Biomass and Waste Energy Laboratory, Korea Institute of Energy Research, Daejeon 34129, Republic of Korea
| | - Changman Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical and Biomolecular Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Jin-Suk Lee
- Gwangju Bioenergy R&D Center, Korea Institute of Energy Research, Gwangju 61003, Republic of Korea.
| |
Collapse
|
20
|
Chen Y, Sun LP, Liu ZH, Martin G, Sun Z. Integration of Waste Valorization for Sustainable Production of Chemicals and Materials via Algal Cultivation. Top Curr Chem (Cham) 2017; 375:89. [DOI: 10.1007/s41061-017-0175-y] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2017] [Accepted: 10/20/2017] [Indexed: 10/18/2022]
|