1
|
Ge Q, Liu Y, Liu P, Yang Z, Yang L, Liu Z, Li Z. Research on a harmless treatment method for oily sludge in coal chemical wastewater and the pollutant transformation mechanism of oily sludge during the treatment process. JOURNAL OF HAZARDOUS MATERIALS 2024; 478:135568. [PMID: 39178785 DOI: 10.1016/j.jhazmat.2024.135568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 08/15/2024] [Accepted: 08/16/2024] [Indexed: 08/26/2024]
Abstract
This study developed an ultrasound synergistic subcritical hydrothermal treatment method (U-SHT) to address the challenges posed by the high oil and water content, complex composition, and hazardous nature of oily sludge (OS) generated during the pretreatment of coal chemical wastewater. The study investigated the efficiency of this method for the harmless disposal and resource recovery of OS, and the migration-transformation mechanism of hazardous organic pollutants in OS. The findings revealed that U-SHT achieved a removal efficiency of chemical oxygen demand in OS of 91.16 %, an oil resource recovery efficiency of 96.60 %, and a residual oil rate of 0.28 %, meeting API emission standards. Further research indicated that the solubilizing effect of the surfactant on the oil enhanced the demulsifying effect of ultrasonic cavitation on the emulsified structure of OS, enabling ultrasound to efficiently release and disperse pollutants within OS. This promoted the decomposition and transformation of pollutants under subcritical hydrothermal conditions, with synergistic removal efficiencies for typical pollutants such as long-chain alkanes, polycyclic aromatic hydrocarbons, and phenols reaching 96.61 %, 97.63 %, and 97.76 %, respectively. Economic evaluation indicated that the cost of OS treatment was $29.66/m3, significantly lower than existing methods, demonstrating promising practical application prospects.
Collapse
Affiliation(s)
- Qian Ge
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Yongjun Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China.
| | - Pan Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhuangzhuang Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Lu Yang
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhe Liu
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| | - Zhihua Li
- School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Yan Ta Road. No.13, Xi'an 710055, China; Key Lab of Northwest Water Resource, Environment and Ecology, Ministry of Education, Xi'an University of Architecture and Technology, Xi'an 710055, China
| |
Collapse
|
2
|
D'Almeida AP, de Albuquerque TL, Rocha MVP. Recent advances in Emulsan production, purification, and application: Exploring bioemulsifiers unique potentials. Int J Biol Macromol 2024; 278:133672. [PMID: 38971276 DOI: 10.1016/j.ijbiomac.2024.133672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2024] [Accepted: 07/02/2024] [Indexed: 07/08/2024]
Abstract
Bioemulsifiers are compounds produced by microorganisms that reduce the interfacial forces between hydrophobic substances and water. Due to their potential in the pharmaceutical and food industries and their efficiency in oil spill remediation, they have been the subject of study in the scientific community while being safe, biodegradable, and sustainable compared to synthetic options. These biomolecules have high molecular weight and polymeric structures, distinguishing them from traditional biosurfactants. Emulsan, a bioemulsifier exopolysaccharide, is produced by Acinetobacter strains and is highly efficient in forming stable emulsions. Its low toxicity and high potential as an emulsifying agent promote its application in pharmaceutical and food industries as a drug-delivery vehicle and emulsion stabilizer. Due to the high environmental impact of oil spills, bioemulsifiers have great potential for environmental applications, such as bioremediation. This unique feature gives them a distinct mechanism of action in forming emulsions, resulting in minimal environmental impact. A better understanding of these aspects can improve the use of bioemulsifiers and environmental remediation in various industries. This review will discuss the production and characterization of Emulsan, focusing on recent advancements in cultivation conditions, purification techniques, compound identification, and ecotoxicity.
Collapse
|
3
|
Zhao W, Chen X, Ma H, Li D, Yang H, Hu T, Zhao Q, Jiang J, Wei L. Impact of co-substrate molecular weight on methane production potential, microbial community dynamics, and metabolic pathways in waste activated sludge anaerobic co-digestion. BIORESOURCE TECHNOLOGY 2024; 400:130678. [PMID: 38588784 DOI: 10.1016/j.biortech.2024.130678] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/23/2024] [Revised: 04/04/2024] [Accepted: 04/06/2024] [Indexed: 04/10/2024]
Abstract
Proteins and carbohydrates are important organics in waste activated sludge, and greatly affect methane production and microbial community composition in anaerobic digestion systems. Here, a series of co-substrates with different molecular weight were applied to investigate the interactions between microbial dynamics and the molecular weight of co-substrates. Biochemical methane production assays conducted in batch co-digesters showed that feeding high molecular weight protein and carbohydrate substrates resulted in higher methane yield and production rates. Moreover, high-molecular weight co-substrates increased the microbial diversity, enriched specific microbes including Longilinea, Anaerolineaceae, Syner-01, Methanothrix, promoted acidogenic and acetoclastic methanogenic pathways. Low-molecular weight co-substrates favored the growth of JGI-0000079-D21, Armatimonadota, Methanosarcina, Methanolinea, and improved hydrogenotrophic methanogenic pathway. Besides, Methanoregulaceae and Methanolinea were indicators of methane yield. This study firstly revealed the complex interactions between co-substrate molecular weight and microbial communities, and demonstrated the feasibility of adjusting co-substrate molecular weight to improve methane production process.
Collapse
Affiliation(s)
- Weixin Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Xinwei Chen
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Hao Ma
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Dan Li
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Haizhou Yang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Tianyi Hu
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Qingliang Zhao
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Junqiu Jiang
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China
| | - Liangliang Wei
- State Key Laboratory of Urban Water Resources and Environment (SKLUWRE), School of Environment, Harbin Institute of Technology, Harbin 150090, China.
| |
Collapse
|
4
|
Wang J, Lai Y, Wang X, Ji H. Advances in ultrasonic treatment of oily sludge: mechanisms, industrial applications, and integration with combined treatment technologies. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:14466-14483. [PMID: 38296931 DOI: 10.1007/s11356-024-32089-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2023] [Accepted: 01/16/2024] [Indexed: 02/02/2024]
Abstract
In the petroleum sector, the generation of oily sludge is an unavoidable byproduct, necessitating the development of efficient treatment strategies for both economic gain and the mitigation of negative environmental impacts. The intricate composition of oily sludge poses a formidable challenge, as existing treatment methodologies frequently fall short of achieving baseline disposal criteria. The processes of demulsification and dehydration are integral to diminishing the oil content and reclaiming valuable crude oil, thereby playing a critical role in the management of oily sludge. Among the myriad of treatment solutions, ultrasonic technology has emerged as a particularly effective physical method, celebrated for its diverse applications and lack of resultant secondary pollution. This comprehensive review delves into the underlying mechanisms and recent progress in the ultrasonic treatment of oily sludge, with a specific focus on its industrial implementations within China. Both isolated ultrasonic treatment and its combination with other technological approaches have proven successful in addressing oily sludge challenges. The adoption of industrial-scale systems that amalgamate ultrasound with multi-technological processes has shown marked enhancements in treatment efficacy. The fusion of ultrasonic technology with other cutting-edge methods holds considerable potential across a spectrum of applications. To fulfill the goals of resource recovery, reduction, and neutralization in oily sludge management, the industrial adoption and adept application of a variety of treatment technologies are imperative.
Collapse
Affiliation(s)
- Jian Wang
- University of Science and Technology Beijing, Beijing, China
| | - Yujian Lai
- University of Science and Technology Beijing, Beijing, China
| | - Xuemei Wang
- University of Science and Technology Beijing, Beijing, China
| | - Hongbing Ji
- University of Science and Technology Beijing, Beijing, China.
| |
Collapse
|
5
|
Greenman J, Thorn R, Willey N, Ieropoulos I. Energy harvesting from plants using hybrid microbial fuel cells; potential applications and future exploitation. Front Bioeng Biotechnol 2024; 12:1276176. [PMID: 38357705 PMCID: PMC10865378 DOI: 10.3389/fbioe.2024.1276176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Accepted: 01/15/2024] [Indexed: 02/16/2024] Open
Abstract
Microbial Fuel Cells (MFC) can be fuelled using biomass derived from dead plant material and can operate on plant produced chemicals such as sugars, carbohydrates, polysaccharides and cellulose, as well as being "fed" on a regular diet of primary biomass from plants or algae. An even closer relationship can exist if algae (e.g., prokaryotic microalgae or eukaryotic and unicellular algae) can colonise the open to air cathode chambers of MFCs driving photosynthesis, producing a high redox gradient due to the oxygenic phase of collective algal cells. The hybrid system is symbiotic; the conditions within the cathodic chamber favour the growth of microalgae whilst the increased redox and production of oxygen by the algae, favour a more powerful cathode giving a higher maximum voltage and power to the photo-microbial fuel cell, which can ultimately be harvested for a range of end-user applications. MFCs can utilise a wide range of plant derived materials including detritus, plant composts, rhizodeposits, root exudates, dead or dying macro- or microalgae, via Soil-based Microbial Fuel Cells, Sediment Microbial Fuel Cells, Plant-based microbial fuel cells, floating artificial islands and constructed artificial wetlands. This review provides a perspective on this aspect of the technology as yet another attribute of the benevolent Bioelectrochemical Systems.
Collapse
Affiliation(s)
- John Greenman
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Robin Thorn
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Neil Willey
- School of Applied Sciences, College of Health, Science and Society, University of the West of England, Bristol, United Kingdom
| | - Ioannis Ieropoulos
- Civil, Maritime and Environmental Engineering Department, University of Southampton, Southampton, United Kingdom
| |
Collapse
|
6
|
Khazaal RM, Ismail ZZ. Valorization and co-treatment of hazardous petroleum refinery oily sludge and sewage associated with bioenergy recovery in tubular microbial fuel cell. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:119297-119308. [PMID: 37924404 DOI: 10.1007/s11356-023-30773-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/02/2023] [Accepted: 10/26/2023] [Indexed: 11/06/2023]
Abstract
Petroleum refineries generate large amounts of oily sludge which is normally loaded with different residual hazardous petroleum derivatives. Also, the residential complexes affiliated to the petroleum refineries generate considerable volumes of sewage. This study was devoted to investigate the potential of energy recovery from co-bioelectrochemical treatment of petroleum refinery oily sludge (PROS) and sewage using a tubular dual-chambers microbial fuel cell (MFC). Initially, the MFC was operated in a fill and draw mode of 4 cycles, each cycle at a different organic load (OL). The results revealed that maximum removal efficiencies of the organic content as COD were 93.67%, 98.57%, 99.64%, and 99.74%, whereby maximum power outputs were 225 ± 10, 324 ± 7, 1230 ± 18, and 1156 ± 14 mW/m3 for cycle1of OL1 (1138 ± 60 mg/L), cycle2 of OL2 (7000 ± 75 mg/L), cycle3 of OL3 (13,890 ± 50 mg/L), and cycle4 of OL4 (17,100 ± 150 mg/L), respectively. Based on those promising results, the MFC was operated continually for 60 days by feeding the MFC with PROS and sewage at organic loading of 13,000 ± 1000 mg/L. Significant results concerning COD and TPH elimination efficiency > 99.85% and 94.12%, respectively were obtained associated with power output of 1225 ± 25 mW/m3.
Collapse
Affiliation(s)
- Rusul M Khazaal
- Petroleum Research and Development Center, Ministry of Oil, Baghdad, Iraq
| | - Zainab Z Ismail
- Department of Environmental Engineering, University of Baghdad, Baghdad, Iraq.
| |
Collapse
|
7
|
Duan Y, Gao N, Quan C. Integration of hydrothermal and pyrolysis for oily sludge treatment: A novel collaborative process. JOURNAL OF HAZARDOUS MATERIALS 2023; 449:131005. [PMID: 36801709 DOI: 10.1016/j.jhazmat.2023.131005] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 02/06/2023] [Accepted: 02/13/2023] [Indexed: 06/18/2023]
Abstract
In this study, hydrothermal treatment and in situ pyrolysis were combined to develop a novel collaborative process (HCP treatment method). In a self-designed reactor, the HCP method was used to study the influences of hydrothermal temperature and pyrolysis temperature on the product distribution of OS. The products from the HCP treatment of OS were compared with that from the traditional pyrolysis. In addition, the energy balance in the different processes of treatment was analyzed. The results showed that compared to the traditional pyrolysis method, the gas products obtained after HCP treatment achieve a higher H2 production. As the hydrothermal temperature raising from 160 to 200 °C, the H2 production showed an increase from 4.14 to 9.83 ml/g. In addition, GC-MS analysis showed that the content of olefins from the HCP treatment oil was increased from 1.92% to 6.01% compared to traditional pyrolysis. Energy consumption analysis showed that only 55.39% energy consumption of traditional pyrolysis is required for treating 1 kg OS by employing the HCP treatment at 500 °C. All results indicated that the HCP treatment is a clean production process of OS with low energy consumption.
Collapse
Affiliation(s)
- Yihang Duan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource, Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningbo Gao
- Xi'an Key Laboratory of Solid Waste Recycling and Resource, Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Cui Quan
- Xi'an Key Laboratory of Solid Waste Recycling and Resource, Recovery, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
8
|
Cano V, Nolasco MA, Kurt H, Long C, Cano J, Nunes SC, Chandran K. Comparative assessment of energy generation from ammonia oxidation by different functional bacterial communities. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 869:161688. [PMID: 36708822 DOI: 10.1016/j.scitotenv.2023.161688] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/27/2022] [Revised: 01/13/2023] [Accepted: 01/14/2023] [Indexed: 06/18/2023]
Abstract
Bioelectrochemical ammonia oxidation (BEAO) in a microbial fuel cell (MFC) is a recently discovered process that has the potential to reduce energy consumption in wastewater treatment. However, level of energy and limiting factors of this process in different microbial groups are not fully understood. This study comparatively investigated the BEAO in wastewater treatment by MFCs enriched with different functional groups of bacteria (confirmed by 16S rRNA gene sequencing): electroactive bacteria (EAB), ammonia oxidizing bacteria (AOB), and anammox bacteria (AnAOB). Ammonia oxidation rates of 0.066, 0.083 and 0.082 g NH4+-N L-1 d-1 were achieved by biofilms enriched with EAB, AOB, and AnAOB, respectively. With influent 444 ± 65 mg NH4+-N d-1, nitrite accumulation between 84 and 105 mg N d-1 was observed independently of the biofilm type. The AnAOB-enriched biofilm released electrons at higher potential energy levels (anode potential of 0.253 V vs. SHE) but had high internal resistance (Rint) of 299 Ω, which limits its power density (0.2 W m-3). For AnAOB enriched biofilm, accumulation of nitrite was a limiting factor for power output by allowing conventional anammox activity without current generation. AOB enriched biofilm had Rint of 18 ± 1 Ω and yielded power density of up to 1.4 W m-3. The activity of the AOB-enriched biofilm was not dependent on the accumulation of dissolved oxygen and achieved 1.5 fold higher coulombic efficiency when sulfate was not available. The EAB-enriched biofilm adapted to oxidize ammonia without organic carbon, with Rint of 19 ± 1 Ω and achieved the highest power density of 11 W m-3. Based on lab-scale experiments (scaling-up factors not considered) energy savings of up to 7 % (AnAOB), 44 % (AOB) and 475 % (EAB) (positive energy balance), compared to conventional nitrification, are projected from the applications of BEAO in wastewater treatment plants.
Collapse
Affiliation(s)
- Vitor Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil; Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Marcelo A Nolasco
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Halil Kurt
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Chenghua Long
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| | - Julio Cano
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Sabrina C Nunes
- University of São Paulo, School of Arts, Sciences and Humanities, Av. Arlindo Béttio, 1000, Sao Paulo, SP 03828-000, Brazil.
| | - Kartik Chandran
- Columbia University, Department of Earth and Environmental Engineering, 500 West 120th Street, Room 1045 Mudd Hall, New York, NY 10027, United States.
| |
Collapse
|
9
|
He Y, Zhou Q, Mo F, Li T, Liu J. Bioelectrochemical degradation of petroleum hydrocarbons: A critical review and future perspectives. ENVIRONMENTAL POLLUTION (BARKING, ESSEX : 1987) 2022; 306:119344. [PMID: 35483484 DOI: 10.1016/j.envpol.2022.119344] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/21/2022] [Revised: 04/11/2022] [Accepted: 04/20/2022] [Indexed: 06/14/2023]
Abstract
As typical pollutants, petroleum hydrocarbons that are widely present in various environmental media such as soil, water, sediments, and air, seriously endanger living organisms and human health. In the meantime, as a green environmental technology that integrates pollutant removal and resource recovery, bioelectrochemical systems (BESs) have been extensively applied to the removal of petroleum hydrocarbons from the environment. This review introduces working principles of BESs, following which it discusses the different reactor structures, application progresses, and key optimization factors when treating water, sewage sludges, sediments, and soil. Furthermore, bibliometrics was first used in this field to analyze the evolution of knowledge structure and forecast future hot topics. The research focus has shifted from the early generation of bioelectric energy to exploring mechanisms of soil remediation and microbial metabolisms, which will be closely integrated in the future. Finally, the future prospects of this field are proposed. This review focuses on the research status of bioelectrochemical degradation of petroleum hydrocarbons and provides a scientific reference for subsequent research.
Collapse
Affiliation(s)
- Yuqing He
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Qixing Zhou
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Fan Mo
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Tian Li
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China
| | - Jianv Liu
- Ministry of Education Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin, 300350, China.
| |
Collapse
|
10
|
Luo D, Zhang K, Song T, Xie J. Enhancing microbial electrosynthesis by releasing extracellular polymeric substances: Novel strategy through extracellular electron transfer improvement. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108496] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
11
|
Liu B, Teng Y, Song W, Wu H. Novel conditioner for efficient dewaterability and modification of oily sludge with high water content. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:25417-25427. [PMID: 34841490 DOI: 10.1007/s11356-021-17150-w] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Accepted: 10/18/2021] [Indexed: 06/13/2023]
Abstract
The oily sludge with high water content (OS) was dewatered, modified, and converted into solid fuel by a novel chemical conditioner (OSO-101). The effect of OSO-101 dosage on the dewaterability of OS was studied, showing that OSO-101 dosage of 15% (wt.) could achieve the best dewaterability efficiency of OS (98.18%). Meanwhile, compared with some conventional conditioners, OSO-101 developed by our team was more effective in improving OS dewaterability efficiency. And OSO-101 may have free radical reaction, polar reaction, and redox reaction with petroleum hydrocarbons in OS, thereby polymerizing and forming condensed solid structures. The calorific value change of OS after conditioning, heavy metal content, and dioxin content of fly ash leached from incinerated product were measured for resource analysis and environmental assessment. Results showed that the resultant OS fuel blocks had extremely low content of heavy metals, dioxins, and other toxic and hazardous substances leached from fly ash. And this process did not require secondary treatment and fully met environmental protection emission standards. Additionally, OSO-101 had certain economic rationality and could effectively recover the calorific value contained in OS. This research is expected to provide new insights for efficient dewaterability and modification of OS, as well as subsequent resource utilization and harmless treatment, bringing potential environmental and economic benefits.
Collapse
Affiliation(s)
- Biming Liu
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing, 211800, China.
| | - Yue Teng
- College of Civil Engineering, Nanjing Tech University, Nanjing, 211800, China.
| | - Wenbin Song
- School of Environmental Sciences and Engineering, Nanjing Tech University, Nanjing, 211800, China
| | - Haixia Wu
- College of Urban Construction, Nanjing Tech University, Nanjing, 211800, China
| |
Collapse
|
12
|
Duan Y, Gao N, Sipra AT, Tong K, Quan C. Characterization of heavy metals and oil components in the products of oily sludge after hydrothermal treatment. JOURNAL OF HAZARDOUS MATERIALS 2022; 424:127293. [PMID: 34600372 DOI: 10.1016/j.jhazmat.2021.127293] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2021] [Revised: 09/03/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
In this study, the method combining hydrothermal treatment (HT) and in-situ mechanical compression (MC) is used to treat oily sludge. The possible transfer and reaction pathways of different oil components during the process of HT&MC were investigated. In addition, the leaching toxicity, distribution, and risk of heavy metals in oily sludge treated in different temperatures and residence times were evaluated. The results revealed that siloxane and heavy oil components are left in the solid residue, and the light oils and oils with hydrophilic groups are transferred to hydrothermal fluids. The content of Cd, Cr, Pb, and Zn in form of F4 (residual) in the solid residue obtained at a hydrothermal temperature of 240 °C and residence time of 60 min increased by 7.37%, 1.21%, 3.06%, and 9.97%. This reduced the biological availability and environmental risk of heavy metals in the treated oily sludge. Meanwhile, the result of FT-IR illustrated an increase in hydroxyl groups of alcohols, phenols and organic acids, which have a beneficial effect on the adsorption of heavy metals and other pollutants. All results indicated that HT&MC might be a suitable pretreatment method for the stabilization of heavy metals in oily sludge.
Collapse
Affiliation(s)
- Yihang Duan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Ayesha Tariq Sipra
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kun Tong
- State Key Laboratory of Petroleum Pollution Control, Beijing 102206, China
| | - Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
13
|
Deng S, Yu S, Tan H, Wang X, Lu X. Experimental investigation of the dewatering performance and product characteristics of oily scum at increased reaction time through hydrothermal treatment. ASIA-PAC J CHEM ENG 2021. [DOI: 10.1002/apj.2737] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Shuanghui Deng
- MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| | - Shilin Yu
- MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| | - Houzhang Tan
- MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xuebin Wang
- MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| | - Xuchao Lu
- MOE Key Laboratory of Thermo‐Fluid Science and Engineering Xi'an Jiaotong University Xi'an Shaanxi China
| |
Collapse
|
14
|
Effects of Rhamnolipids on Growth Performance, Immune Function, and Cecal Microflora in Linnan Yellow Broilers Challenged with Lipopolysaccharides. Antibiotics (Basel) 2021; 10:antibiotics10080905. [PMID: 34438955 PMCID: PMC8388811 DOI: 10.3390/antibiotics10080905] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/17/2021] [Revised: 07/16/2021] [Accepted: 07/20/2021] [Indexed: 11/17/2022] Open
Abstract
This present study aimed to investigate the effects of rhamnolipids (RLS) on the growth performance, intestinal morphology, immune function, short-chain fatty acid content, and microflora community in broiler chickens challenged with lipopolysaccharides (LPS). A total of 450 broiler chickens were randomly allocated into three groups: basal diet with no supplement (NCO), basal diet with bacitracin (ANT), and basal diet with rhamnolipids (RLS). After 56 d of feeding, 20 healthy broilers were selected from each group, with half being intraperitoneally injected with lipopolysaccharides (LPS) and the other half with normal saline. Treatments with LPS were labelled LPS-NCO, LPS-ANT, and LPS-RLS, whereas treatments with normal saline were labelled NS-NCO, NS-ANT, and NS-RLS. LPS-challenged birds had lower jejunal villus height and higher crypt depth than unchallenged birds. LPS-RLS broilers had increased jejunal villus height and villus height/crypt depth ratio (V/C) but lower crypt depth than LPS-NCO. Dietary supplementation with RLS reduced the LPS-induced immunological stress. Compared with LPS-NCO, birds in LPS-RLS had lower concentrations of IL-1β, IL-6, and TNF-α. In LPS-challenged broilers, RLS and ANT increased the concentrations of IgA, IgM, and IgY compared with LPS-NCO. In LPS treatments, RLS enhanced the contents of acetic acid, butyrate, isobutyric acid, isovalerate, and valerate more than LPS-NCO birds. High-throughput sequencing indicated that RLS supplementation led to changes in the cecal microbial community of broilers. At the species level, Clostridium-sp-Marseille-p3244 was more abundant in NS-RLS than in NS-NCO broilers. In summary, RLS improved the growth performance and relative abundance of cecal microbiota and reduced the LPS-induced immunological stress in broiler chickens.
Collapse
|
15
|
Jerez S, Ventura M, Molina R, Pariente MI, Martínez F, Melero JA. Comprehensive characterization of an oily sludge from a petrol refinery: A step forward for its valorization within the circular economy strategy. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 285:112124. [PMID: 33592452 DOI: 10.1016/j.jenvman.2021.112124] [Citation(s) in RCA: 14] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 12/29/2020] [Accepted: 02/02/2021] [Indexed: 06/12/2023]
Abstract
Refinery treatment plants produce large quantities of oily sludge during the petroleum refining processes. The hazardousness associated with the disposal of these wastes, make necessary the development of innovative technologies to handle it adequately, linked to the concepts of circular economy and environmental sustainability. This work provides for the first time a methodology for the deep characterization of this kind of wastes and consequently new insights regarding its valorization. A review of works dealing with the characterization of this type of wastes has been addressed evidencing the complexity and variability of these effluents. The oily sludge under study contains a high concentration of Chemical Oxygen Demand of 196 g COD/L, a Total Kjeldahl Nitrogen of 2.8 g TKN/kg, a phosphorous content as PO43- of 7 g/kg, as well as a great presence of heavy metals in a different range of concentrations. This sludge is composed of three different phases: oily, aqueous and solid. The oily and the solid phases present high percentages of carbon content (84 and 26%, respectively), related to the presence of alkanes ranged from n-C9 to n-C44. Therefore, it could be possible their valorization by the synthesis of catalyst and/or adsorbents. A dark fermentation process could be also proposed for the oily phase to obtain H2 as an alternative energy source. Finally, the aqueous phase contains low carbon and nutrients concentration. A previous thermal pre-treatment applied to the oily sludge might increase nutrient and organic loading in the aqueous phase due to solid destruction, making this aqueous effluent suitable for a further conventional biological treatment.
Collapse
Affiliation(s)
- S Jerez
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - M Ventura
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - R Molina
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - M I Pariente
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - F Martínez
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain
| | - J A Melero
- Department of Chemical and Environmental Technology. ESCET, Universidad Rey Juan Carlos, 28933, Móstoles, Madrid, Spain.
| |
Collapse
|
16
|
Gao N, Duan Y, Li Z, Quan C, Yoshikawa K. Hydrothermal treatment combined with in-situ mechanical compression for floated oily sludge dewatering. JOURNAL OF HAZARDOUS MATERIALS 2021; 402:124173. [PMID: 33070990 DOI: 10.1016/j.jhazmat.2020.124173] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 09/30/2020] [Accepted: 09/30/2020] [Indexed: 06/11/2023]
Abstract
Due to the high moisture content of the oily sludge, the conventional use of oily sludge treatment presents poor feasibility in industrial applications. Hence, finding an efficient and energy-saving technology is still an urgent need for the dewatering of oily sludge. In this paper, an innovative method combining hydrothermal treatment (HT) and in-situ mechanical compression (MC) for dewatering of floated oily sludge (FOS) was proposed. Series of experiments on HT&MC were conducted to verify the method. 77-96 wt% of water can directly be separated from FOS by the HT&MC treatment under the temperature of 120-240 °C and residence times of 10-60 min. The bound water content in raw and HT&MT treated FOS were measured by employing the differential scanning calorimetry (DSC) to evaluate the dewatering ability. The result of DSC illustrates the freezing peaks shifted from -11.1 °C to -21.2 °C as the diameter of water droplets reduced. Meanwhile, the comprehensive characterization analysis of products, including chemical oxygen demand (COD), NH4+-N, and gas chromatograph (GC) were conducted. All results indicated that HT&MC is advisable for dewatering of oily sludge.
Collapse
Affiliation(s)
- Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Yihang Duan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Zongyang Li
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Kunio Yoshikawa
- Zhejiang ECO Environmental Technology Co., Ltd, Huzhou 313000, China
| |
Collapse
|
17
|
Wang Q, Yang M, Song X, Tang S, Yu L. Aerobic and Anaerobic Biodegradation of 1,2-Dibromoethane by a Microbial Consortium under Simulated Groundwater Conditions. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2019; 16:ijerph16193775. [PMID: 31597267 PMCID: PMC6802363 DOI: 10.3390/ijerph16193775] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/28/2019] [Revised: 09/24/2019] [Accepted: 09/28/2019] [Indexed: 11/16/2022]
Abstract
This study was conducted to explore the potential for 1,2-Dibromoethane (EDB) biodegradation by an acclimated microbial consortium under simulated dynamic groundwater conditions. The enriched EDB-degrading consortium consisted of anaerobic bacteria Desulfovibrio, facultative anaerobe Chromobacterium, and other potential EDB degraders. The results showed that the biodegradation efficiency of EDB was more than 61% at 15 °C, and the EDB biodegradation can be best described by the apparent pseudo-first-order kinetics. EDB biodegradation occurred at a relatively broad range of initial dissolved oxygen (DO) from 1.2 to 5.1 mg/L, indicating that the microbial consortium had a strong ability to adapt. The addition of 40 mg/L of rhamnolipid and 0.3 mM of sodium lactate increased the biodegradation. A two-phase biodegradation scheme was proposed for the EDB biodegradation in this study: an aerobic biodegradation to carbon dioxide and an anaerobic biodegradation via a two-electron transfer pathway of dihaloelimination. To our knowledge, this is the first study that reported EDB biodegradation by an acclimated consortium under both aerobic and anaerobic conditions, a dynamic DO condition often encountered during enhanced biodegradation of EDB in the field.
Collapse
Affiliation(s)
- Qing Wang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Miaoyan Yang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Xin Song
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
| | - Shiyue Tang
- Key Laboratory of Soil Environment and Pollution Remediation, Institute of Soil Science, Chinese Academy of Sciences, Nanjing 21008, China.
- University of Chinese Academy of Sciences, Beijing 100049, China.
| | - Lei Yu
- Department of Environmental Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
18
|
Zhao F, Jiang H, Sun H, Liu C, Han S, Zhang Y. Production of rhamnolipids with different proportions of mono-rhamnolipids using crude glycerol and a comparison of their application potential for oil recovery from oily sludge. RSC Adv 2019; 9:2885-2891. [PMID: 35518985 PMCID: PMC9059948 DOI: 10.1039/c8ra09351b] [Citation(s) in RCA: 25] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2018] [Accepted: 01/07/2019] [Indexed: 12/02/2022] Open
Abstract
The use of efficient green cleaning agents, such as biosurfactants, is important in oil sludge treatment. Enhanced oil recovery from oily sludge by different rhamnolipids was comparatively evaluated. Using crude glycerol, the wild-type strain Pseudomonas aeruginosa SG and the recombinant strains P. aeruginosa PrhlAB and P. stutzeri Rhl produced 1.98 g L−1, 2.87 g L−1 and 0.87 g L−1 of rhamnolipids, respectively. The three bacterial strains produced different rhamnolipid mixtures under the same conditions. The proportions of mono-rhamnolipids in the three rhamnolipid products were 55.92%, 94.92% and 100%, respectively. These rhamnolipid products also possessed different bioactivities. Emulsifying activity became higher as the proportion of mono-rhamnolipids increased. The three rhamnolipid products were stable at temperatures lower than 121 °C, pH values from 5–11 and NaCl concentrations from 0–15%. All three rhamnolipid products could recover oil from oily sludge, but oil recovery efficiency was positively related to the proportion of mono-rhamnolipids. Mono-rhamnolipids produced by the recombinant strain Rhl exhibited the best oil recovery efficiency (53.81%). The results reveal that mono-rhamnolipids are the most promising for oil recovery from oily sludge. Oil recovery from oily sludge is positively related to the proportion of mono-rhamnolipids.![]()
Collapse
Affiliation(s)
- Feng Zhao
- CAS Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences (CAS)
- Shenyang
- China
| | - Hao Jiang
- Heilongjiang Weikaier Biotechnology Company Limited
- Harbin
- China
- Harbin Hongda Construction Development Group
- Harbin
| | - Huichun Sun
- CAS Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences (CAS)
- Shenyang
- China
| | - Chang Liu
- School of Environmental Science
- Liaoning University
- Shenyang 110036
- China
| | - Siqin Han
- CAS Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences (CAS)
- Shenyang
- China
| | - Ying Zhang
- CAS Key Laboratory of Pollution Ecology and Environmental Engineering
- Institute of Applied Ecology
- Chinese Academy of Sciences (CAS)
- Shenyang
- China
| |
Collapse
|
19
|
Yuan X, Guan R, Wu Z, Jiang L, Li Y, Chen X, Zeng G. Effective treatment of oily scum via catalytic wet persulfate oxidation process activated by Fe 2. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2018; 217:411-415. [PMID: 29627646 DOI: 10.1016/j.jenvman.2018.03.129] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/20/2017] [Revised: 03/02/2018] [Accepted: 03/31/2018] [Indexed: 06/08/2023]
Abstract
Oily scum, a hazardous by-product of petroleum industry, need to be deposed urgently to reduce environmental risks. This paper introduces catalytic wet persulfate oxidation (CWPO) process in the treatment of oily scum to realize risk relief. Under the activation of heat and Fe2+, persulfate (PS) was decomposed into sulfate radicals and hydroxyl radicals, which played a major role on the degradation of petroleum hydrocarbons. The effects of wet air oxidation (WAO) and CWPO process on the degradation of oily scum were compared. In CWPO process, the total petroleum hydrocarbons (TPHs) content of oily scum was decreased from 92.63% to 16.75%, which was still up to 70.19% in WAO process. The degradation rate of TPHs in CWPO process was about 3.38 times higher than that in WAO process. The great performance of CWPO process was also confirmed by elemental analysis, which indicated that the C and H contents of oily scum were reduced significantly by CWPO process. These results indicated that CWPO process has high potential on the degradation of oily scum for environmental protection.
Collapse
Affiliation(s)
- Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| | - Renpeng Guan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Zhibin Wu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Longbo Jiang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Yifu Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China
| | - Xiaohong Chen
- Mobile E-business 2011 Collaborative Innovation Center of Hunan Province, Hunan University of Commerce, Changsha 410205, PR China
| | - Guangming Zeng
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environment Biology and Pollution Control, Hunan University, Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
20
|
Miran W, Jang J, Nawaz M, Shahzad A, Lee DS. Sulfate-reducing mixed communities with the ability to generate bioelectricity and degrade textile diazo dye in microbial fuel cells. JOURNAL OF HAZARDOUS MATERIALS 2018; 352:70-79. [PMID: 29573731 DOI: 10.1016/j.jhazmat.2018.03.027] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/24/2017] [Revised: 02/25/2018] [Accepted: 03/15/2018] [Indexed: 06/08/2023]
Abstract
The biotreatment of recalcitrant wastes in microbial fuel cells (MFCs) rather than chemical, physical, and advanced oxidation processes is a low-cost and eco-friendly process. In this study, sulfate-reducing mixed communities in MFC anodic chamber were employed for simultaneous electricity generation, dye degradation, and sulfate reduction. A power generation of 258 ± 10 mW/m2 was achieved under stable operating conditions in the presence of electroactive sulfate-reducing bacteria (SRB). The SRBs dominant anodic chambers result in dye, chemical oxygen demand (COD), and sulfate removal of greater than 85% at an initial COD (as lactate)/SO42- mass ratio of 2.0 and dye concentration of 100 mg/L. The effects of the COD/SO42- ratio (5.0:1.0-0.5:1.0) and initial diazo dye concentration (100-1000 mg/L) were studied to evaluate and optimize the MFC performance. Illumina Miseq technology for bacterial community analysis showed that Proteobacteria (89.4%), Deltaproteobacteria (52.7%), and Desulfovibrio (48.2%) were most dominant at phylum, class, and genus levels, respectively, at the MFC anode. Integration of anaerobic SRB culture in MFC bioanode for recalcitrant chemical removal and bioenergy generation may lead to feasible option than the currently used technologies in terms of overall pollutant treatment.
Collapse
Affiliation(s)
- Waheed Miran
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Jiseon Jang
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Mohsin Nawaz
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Asif Shahzad
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea
| | - Dae Sung Lee
- Department of Environmental Engineering, Kyungpook National University, 80 Daehak-ro, Buk-gu, Daegu 41566, Republic of Korea.
| |
Collapse
|