1
|
Wang X, Jiang C, Wang H, Xu S, Zhuang X. Strategies for energy conversion from sludge to methane through pretreatment coupled anaerobic digestion: Potential energy loss or gain. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 330:117033. [PMID: 36603247 DOI: 10.1016/j.jenvman.2022.117033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 12/06/2022] [Accepted: 12/11/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of wasted activated sludge from wastewater plants is recognized as an effective method to reclaim energy in the form of methane. AD performance has been enhanced by coupling various pretreatments that impact energy conversion from sludge. This paper mainly reviewed the development of pretreatments based on different technologies reported in recent years and evaluated their energy benefit. Significant increases in methane yield are generally obtained in AD with pretreatments demanding energy input, including thermal- and ultrasound-based methods. However, these energy-intense pretreatments usually gained negative energy benefit that the increase in methane yield consumed extra energy input. The unbalanced relationship counts against the goal of energy reclamation from sludge. Combined pretreatment consisting of multiple technologies normally outcompetes the single pretreatment, and the combination of energy-intense methods and chemicals potentially reduces energy input and simultaneously ensure high methane yield. For determining whether the energy reclamation from sludge via AD contribute to mitigating global warming, integrating greenhouse gas emission into the evaluation system of pretreated AD is further warranted.
Collapse
Affiliation(s)
- Xu Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Cancan Jiang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Huacai Wang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; The Institute of International Rivers and Eco-security, Yunnan University, Kunming, 650500, China
| | - Shengjun Xu
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xuliang Zhuang
- Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 100085, China; College of Resources and Environment, University of Chinese Academy of Sciences, Beijing, 100049, China; Institute of Tibetan Plateau Research, Chinese Academy of Sciences, Beijing, 100101, China.
| |
Collapse
|
2
|
Wang J, Sun Y, Zhang D, Broderick T, Strawn M, Santha H, Pallansch K, Deines A, Wang Z. Unblocking the rate-limiting step of the municipal sludge anaerobic digestion. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10793. [PMID: 36184901 PMCID: PMC9827873 DOI: 10.1002/wer.10793] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/10/2022] [Revised: 07/24/2022] [Accepted: 09/03/2022] [Indexed: 05/31/2023]
Abstract
Anaerobic digestion stabilizes municipal sludge through total solids reduction and biogas production. It is generally accepted that hydrolysis accounts for the rate-limiting step of municipal sludge anaerobic digestion, impacting the overall rates of solids reduction and methane production. Technically, the sludge hydrolysis rate can be enhanced by the application of thermal hydrolysis pretreatment (THP) and is also affected by the total solids concentration, temperature, and solids retention time used in the anaerobic digestion. This study systematically analyzed and compared ways to take these four factors into the consideration of modern anaerobic digestion system for achieving the maximum solid reduction. Results showed that thermophilic anaerobic digestion was superior to mesophilic anaerobic digestion in terms of solids reduction but vice versa in terms of the methane production when integrated with THP. This difference has to do with the intermediate product accumulation and inhibition when hydrolysis outpaced methanogenesis in THP-enhanced thermophilic anaerobic digestion, which can be mitigated by adjusting the solids retention time. PRACTITIONER POINTS: THP followed by TAD offers the greatest solids reduction rate. THP followed by MAD offered the greatest methane production rate. FAN inhibition appears to be an ultimate limiting factor constraining the methane production rate. In situ ammonia removal technique should be developed to further unblock the rate-limiting step.
Collapse
Affiliation(s)
- Jiefu Wang
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | - Yuepeng Sun
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| | | | - Tom Broderick
- Arlington County Water Pollution Control BureauArlingtonVirigniaUSA
| | - Mary Strawn
- Arlington County Water Pollution Control BureauArlingtonVirigniaUSA
| | - Hari Santha
- Alexandria Renew EnterprisesAlexandriaVirginiaUSA
| | | | | | - Zhi‐Wu Wang
- Department of Biological Systems EngineeringVirginia TechBlacksburgVirginiaUSA
| |
Collapse
|
3
|
Zeng Q, Huang H, Tan Y, Chen G, Hao T. Emerging electrochemistry-based process for sludge treatment and resources recovery: A review. WATER RESEARCH 2022; 209:117939. [PMID: 34929476 DOI: 10.1016/j.watres.2021.117939] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 11/17/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
The electrochemical process is gaining widespread interest as an emerging alternative for sludge treatment. Its potentials for sludge stabilization and resources recovery have been well proven to date. Despite the high effectiveness of the electrochemical process having been highlighted in several studies, concerns about the electrochemical sludge treatment, including energy consumption, scale-up feasibility, and electrode stability, have not yet been addressed. The present paper critically reviews the versatile uses of the electrochemical processes for sludge treatment and resource recovery, from the fundamentals to the practical applications. Particularly considered are the enhancement of the digestion of the anaerobic sludge and dewaterability, removal of pathogens and heavy metals, and control of sludge malodor. In addition, the opportunities and challenges of the sludge-based resource recovery (i.e., nitrogen, phosphorus, and volatile fatty acids) are discussed. Insights into the working mechanisms (e.g., electroporation, electrokinetics and electrooxidation) of electrochemical processes are reviewed, and perspectives and future research directions are proposed. This work is expected to provide an in-depth understanding and broaden the potential applications of electrochemical processes for sludge treatment and resource recovery.
Collapse
Affiliation(s)
- Qian Zeng
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Hao Huang
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Yunkai Tan
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| | - Guanghao Chen
- Department of Civil and Environmental Engineering, Chinese National Engineering Research Center for Control & Treatment of Heavy Metals Pollution (Hong Kong Branch) and Water Technology Center, The Hong Kong University of Science and Technology, Hong Kong, China
| | - Tianwei Hao
- Department of Civil and Environmental Engineering, Faculty of Science and Technology, University of Macau, Macau, China
| |
Collapse
|
4
|
Kim GB, Cayetano RDA, Park J, Jo Y, Jeong SY, Lee MY, Kim SH. Effect of low-thermal pretreatment on the methanogenic performance and microbiome population of continuous high-solid anaerobic digester treating dewatered sludge. BIORESOURCE TECHNOLOGY 2021; 341:125756. [PMID: 34419881 DOI: 10.1016/j.biortech.2021.125756] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2021] [Revised: 08/06/2021] [Accepted: 08/08/2021] [Indexed: 06/13/2023]
Abstract
Undigested and dewatered sludge at 10% total solids was pretreated at 60 °C for 3 h and fed to a lab-scale horizontal anaerobic bioreactor for 130 days with solids retention time (SRTs) from 25 to 16 d. The low-thermal pretreatment enabled higher net energy production, improved sludge treatment efficiency, and enhanced digestion stability. The highest average biomethane yield and production rate were 138.5 mL/g VS and 0.43 L/L.d, respectively, and the economic benefit was expected to be the maximum at SRT 16 d. Pretreatment did not increase the specific methanogenic activity per unit methanogen, but resulted in higher abundance of methanogenic archaea and hydrolytic bacteria. Methanogenic population shifted from hydrogenotrophic to acetoclastic, consistent with predicted gene expression at SRT equal or below 20 d. Anaerobic digestion along with low-thermal could be a feasible management strategy for undigested dewatered sludge from small WWTPs.
Collapse
Affiliation(s)
- Gi-Beom Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Roent Dune A Cayetano
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jungsu Park
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Yura Jo
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seong Yeob Jeong
- Environment N Energy O&M Inc, Gyeonggi-do 17970, Republic of Korea
| | - Myung Yeol Lee
- Environment N Energy O&M Inc, Gyeonggi-do 17970, Republic of Korea
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
5
|
Donoso-Bravo A, Toledo-Alarcón J, Ortega V, Barría V, Lesty Y, Fontana J, Bossche HV. New findings on the anaerobic co-digestion of thermally pretreated sludge and food waste: laboratory and pilot-scale studies. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2021; 84:2530-2540. [PMID: 34810329 DOI: 10.2166/wst.2021.422] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Co-digestion of thermally pretreated sewage sludge with food waste is an innovative strategy that could improve the balance and availability of nutrients needed to increase the efficiency of anaerobic digestion in terms of biogas production. In this context, the aim of this research was to evaluate the impact of different proportions of sewage sludge/food waste in laboratory- and pilot-scale reactors. Special focus was placed on the impact of the variability of food waste composition on the behaviour of the pilot digester. Our results show that by adding 40% of co-substrate, a higher biogas production was possible during laboratory operation. Interestingly, using a co-substrate of variable composition had no negative impact on the reactor's stability at pilot-scale, promoting an increase in biogas production through a more efficient use of organic matter. In both the lab and pilot experiences there was an impact on the amount of nitrogen in the digestate compared to digester operating in monodigestion. This impact is more significant as the proportion of co-substrate rises. Overall, our results show that co-digestion of thermally pretreated sewage sludge with food waste allows better management of food waste, especially when their composition is variable.
Collapse
Affiliation(s)
- Andrés Donoso-Bravo
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340 Santiago, Chile E-mail: ; Departamento de Ingeniería Química y Ambiental, Universidad Técnica Federico Santa María, Avenida Vicuña, Mackenna 3939 Santiago, Chile
| | - Javiera Toledo-Alarcón
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340 Santiago, Chile E-mail: ; Escuela de Ingeniería Bioquímica, Pontificia Universidad Católica de Valparaíso. Av. Brasil 2085 Valparaíso, Chile
| | - Valentina Ortega
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340 Santiago, Chile E-mail:
| | - Valeria Barría
- Cetaqua, Centro Tecnológico del Agua, Los Pozos 7340 Santiago, Chile E-mail:
| | - Yves Lesty
- Aguas Andinas, Gerencia Economía Circular, Presidente Balmaceda 1398 Santiago, Chile
| | - Jordi Fontana
- EDAM Limitada, Alonso de Córdova 5151 Oficina 901, Santiago, Chile
| | | |
Collapse
|
6
|
Piccolo N, Goel R, Snowling S, Kim Y. Modeling the anaerobic digestion of wastewater sludge under sulfate-rich conditions. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2021; 93:2084-2096. [PMID: 33991363 DOI: 10.1002/wer.1583] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2020] [Revised: 05/03/2021] [Accepted: 05/05/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a biological treatment process to stabilize organic solids and produce biogas. If present, sulfate is reduced to sulfide by anaerobic sulfate-reducing bacteria and the sulfide can be toxic to anaerobic microorganisms. Here, the effect of high initial sulfate concentration on AD of wastewater sludge was investigated using lab-scale batch experiments. Additionally, a systematic mathematical modeling approach was applied for insight into the experimental results. Cumulative biogas and methane production decreased with increasing initial sulfate doses (0-3.300 mg S L-1 ). The correlation between the sulfate dose and methane production was consistent with theoretical predictions and model results, indicating no toxic effect of sulfide on methane production. The carbon dioxide content in the biogas decreased linearly with the increasing sulfate dose, which is consistent with the model-predicted behavior of the bicarbonate and hydrogen sulfide buffering system. The examined high sulfate concentrations resulted in no clear negative effects on the COD removal or VSS destruction of the wastewater sludge, indicating negligible inhibition by sulfide toxicity. Even considering the possibility of ferrous sulfide precipitation and the low model estimates of residual sulfide concentration the residual sulfide concentration was higher than reported concentrations that trigger process inhibition. PRACTITIONER POINTS: The effect of sulfate loading on anaerobic digestion of waste activated sludge was characterized. The stoichiometry of sulfate reduction allows accurate prediction of CH4 loss. High sulfate levels (up to 3300 mg/L as S) did not affect COD/VSS removal. Sulfide formation increases effluent COD; often misinterpreted as sulfide toxicity. Correcting COD for sulfide's contributions is crucial for results interpretation.
Collapse
Affiliation(s)
- Nicholas Piccolo
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| | - Rajeev Goel
- Digital Water Solutions, Hatch, Oakville, ON, Canada
| | | | - Younggy Kim
- Department of Civil Engineering, McMaster University, Hamilton, ON, Canada
| |
Collapse
|
7
|
Liu H, Wang X, Qin S, Lai W, Yang X, Xu S, Lichtfouse E. Comprehensive role of thermal combined ultrasonic pre-treatment in sewage sludge disposal. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 789:147862. [PMID: 34052489 DOI: 10.1016/j.scitotenv.2021.147862] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/23/2021] [Revised: 04/29/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
Thermal/ultrasonic pre-treatment of sludge has been proven to break the hydrolysis barriers of sewage sludge (SS) and improve the performance of anaerobic digestion (AD). In this study, the objective was to investigate whether the combination of two pre-treatment methods can achieve better results on the AD of SS. The results indicated that, compared with the control group and separate pre-treatment groups, the thermal combined ultrasonic pre-treatment presented more obvious solubilization of soluble proteins, polysaccharides, and other organic matters in SS. The combined method promoted the dissolution of protein-like substances more effectively, with biogas production increased by 19% and the volatile solid (VS) removal rate improved to above 50% compared with the control group. The capillary suction time is reduced by about 85%, which greatly improved the dewatering performance of SS. In addition, the combined method has advantages in degrading sulfonamide antibiotics, roxithromycin and tetracycline. Particularly, by analyzing the interaction between the degradation of different antibiotics and the composition of dissolved organic matters (DOMs), it was found that the composition of DOMs could affect the degradability of different antibiotics. Among them, the high content of tyrosine-like and tryptophan-like was conducive to the degradation of sulfamethoxazole, and the high content of fulvic acid-like and humic acid-like was conducive to the degradation of roxithromycin and tetracycline. This work evaluated the comprehensive effect of thermal combined ultrasonic pre-treatment on SS disposal and provided useful information for its engineering.
Collapse
Affiliation(s)
- Hongbo Liu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Xingkang Wang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Song Qin
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Wenjia Lai
- Chongqing New World Environment Detection Technology Co.LTD, 22 Jinyudadao, 401122 Chongqing, China
| | - Xin Yang
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China
| | - Suyun Xu
- School of Environment and Architecture, University of Shanghai for Science and Technology, 516 Jungong Road, 200093 Shanghai, China.
| | - Eric Lichtfouse
- Aix-Marseille Univ, CNRS, IRD, INRA, Coll France, CEREGE, 13100 Aix en Provence, France
| |
Collapse
|
8
|
Choi G, Kim H, Lee C. Long-term monitoring of a thermal hydrolysis-anaerobic co-digestion plant treating high-strength organic wastes: Process performance and microbial community dynamics. BIORESOURCE TECHNOLOGY 2021; 319:124138. [PMID: 32980668 DOI: 10.1016/j.biortech.2020.124138] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2020] [Revised: 09/12/2020] [Accepted: 09/13/2020] [Indexed: 06/11/2023]
Abstract
Two parallel anaerobic digesters (8500 m3 capacity each), combined with thermal hydrolysis (TH) pretreatment, co-digesting dewatered sewage sludge, dewatered human feces, and food wastewater were monitored over a 12-month period from start-up to explore the feasibility of field application of the combined process. The waste mixtures before and after pretreatment and the feed and digestate of each digester were taken semimonthly (i.e., 48 samples in total) for analysis of the feed characteristics, process parameters, and digester microbial community structure. The TH pretreatment proved effective in improving the bioavailability of the waste mixture. The solubilization efficiency tended to increase with the particulate organic fraction in the raw mixture. Although fluctuations in the feed characteristics and loading significantly influenced the process and microbial behaviors, the digesters maintained stable performance during the study period. Our results demonstrate that the TH-anaerobic digestion process can achieve an effective and robust treatment of the waste mixture.
Collapse
Affiliation(s)
- Gyucheol Choi
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Hanwoong Kim
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea
| | - Changsoo Lee
- School of Urban and Environmental Engineering, Ulsan National Institute of Science and Technology (UNIST), 50 UNIST-gil, Eonyang-eup, Ulju-gun, Ulsan 44919, Republic of Korea.
| |
Collapse
|
9
|
A Comparison of the Influence of Kraft Lignin and the Kraft Lignin/Silica System as Cell Carriers on the Stability and Efficiency of the Anaerobic Digestion Process. ENERGIES 2020. [DOI: 10.3390/en13215803] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
This study compares the effects of pure kraft lignin and the kraft lignin/silica system (1:4 by weight). The comparative analysis of the physicochemical properties of both carriers showed that the kraft lignin/silica system was characterised by better properties. The experiment conducted in the study involved continuous anaerobic digestion under mesophilic conditions. Three samples were degraded in the following order: (i) sewage sludge (SS), (ii) SS with the addition of kraft lignin, and (iii) SS with the addition of the kraft lignin/silica system. A quantitative analysis of the digestate samples was carried out by means of in situ fluorescence. It showed more intense proliferation of microorganisms in the SS + kraft lignin/silica variant than in the sample with pure kraft lignin. The highest amount of biogas was obtained in the SS + kraft lignin/silica variant (689 m3 Mg−1 VS, including 413 m3 Mg−1 VS of methane; VS—volatile solids). There were comparable amounts of biogas in the SS variant (526 m3 Mg−1 VS of biogas, including 51% of methane) and the SS + kraft lignin variant (586 m3 Mg−1 VS of biogas, including 54% of methane). The research clearly showed that the material with a high share of silica was an effective cell carrier.
Collapse
|
10
|
Li Y, Fang Z, Teng W, Shen S, Li R. Comprehensive Evaluation of the Control Efficiency of Heavy-Metal Emissions during Two-Step Thermal Treatment of Sewage Sludge. ACS OMEGA 2020; 5:24467-24476. [PMID: 33015463 PMCID: PMC7528340 DOI: 10.1021/acsomega.0c02939] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Accepted: 08/26/2020] [Indexed: 06/11/2023]
Abstract
Recycling the phosphorus in sludge by incineration has received great interest at home and abroad. However, heavy metals (HMs) is a restrictive factor for SS thermal treatment. In this study, a comprehensive evaluation method was adopted to evaluate the comprehensive control efficiency of HM emissions during two-step thermal treatment (incineration-calcination). The effects of temperature, calcination time, and additives (CaO and NaCl) on leaching rates, stabilized rates, and comprehensive control efficiency of HM emissions were investigated. Results showed that comprehensive control efficiency increased significantly with an increase of temperature because of the transformation of chemical speciation from a leachable to a more stable combined form. Additives Cao and NaCl promoted the volatilization of HMs and reduced the comprehensive control efficiency. The highest comprehensive control efficiency of HM emissions was 78% when the incineration temperature reached 950 °C. Furthermore, a comparison was made between leaching rates, stabilized rates, and a comprehensive evaluation method. The results were inconsistent when leaching rates and stabilized rates were adopted. In contrast, when the comprehensive evaluation method was used, the results were coordinated and unique. This work can provide a promising approach for the evaluation of control efficiency of HM emissions during the process of thermal treatment of sludge.
Collapse
Affiliation(s)
- Yanlong Li
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
- College
of Energy and Environment, Shenyang Aerospace
University, Key Laboratory of Clean Energy, (Liaoning Province), Shenyang 110136, China
| | - Zhenquan Fang
- College
of Energy and Environment, Shenyang Aerospace
University, Key Laboratory of Clean Energy, (Liaoning Province), Shenyang 110136, China
| | - Wenchao Teng
- College
of Energy and Environment, Shenyang Aerospace
University, Key Laboratory of Clean Energy, (Liaoning Province), Shenyang 110136, China
| | - Shengqiang Shen
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
| | - Rundong Li
- Key
Laboratory of Ocean Energy Utilization and Energy Conservation of
Ministry of Education, School of Energy and Power Engineering, Dalian University of Technology, Dalian 116024, China
- College
of Energy and Environment, Shenyang Aerospace
University, Key Laboratory of Clean Energy, (Liaoning Province), Shenyang 110136, China
| |
Collapse
|
11
|
Donoso-Bravo A, Olivares D, Lesty Y, Bossche HV. Exploitation of the ADM1 in a XXI century wastewater resource recovery facility (WRRF): The case of codigestion and thermal hydrolysis. WATER RESEARCH 2020; 175:115654. [PMID: 32146207 DOI: 10.1016/j.watres.2020.115654] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2019] [Revised: 02/19/2020] [Accepted: 02/25/2020] [Indexed: 05/26/2023]
Abstract
The aim of this study is to test the capability of the anaerobic digestion model n1 (ADM1) to reproduce data from full-scale digesters operated in a wastewater resource recovery facility (WRRF) where both thermal hydrolysis and codigestion with industrial waste are carried out. Furthermore, the potential uses of the model in a WRRF are also described, with particular relevance for plant engineers/operators. The model capability was calibrated and validated with data from full-scale digesters from the Mapocho-Trebal WRRF (Biofactoría) in Santiago, Chile. A success simulation rate, defined as the percentage of experimental values of a certain variable that lies within the simulation band given by a simulation tolerance established by the user/operator, was established to test the capability of the model as objectively as possible. Regarding the full-scale digester fed with thermally pretreated mixed sludge, success rates of 65% for biogas production and 60-100% for other variables were achieved. Regarding the full-scale digester in codigestion mode, the model had a success rate of approximately 60% for predicting the biogas flow for the whole evaluation period, while for the other variables, values between 70 and 100% were attained. The lowest success rates were observed for the volatile fatty acid (VFA) concentration in the digestate. Despite the lack of available data and the number of assumptions that had to be made, the model was demonstrated to be capable of reproducing the behavior of the full-scale reactors. A proper, up-to-date, calibrated and validated model can aid in the decision-making process in a WRRF, for instance, in determining some unmeasured inlet conditions, in improving the resilience of the process and in managing the incorporation of a new cosubstrate into the plant, among others.
Collapse
Affiliation(s)
- Andres Donoso-Bravo
- Cetaqua, Centro Tecnológico del Agua, Los Pozos, 7340, Santiago, Chile; Department of Chemical Engineering, Universidad Técnica Federico Santa María, Chile.
| | - Diego Olivares
- Cetaqua, Centro Tecnológico del Agua, Los Pozos, 7340, Santiago, Chile
| | - Yves Lesty
- Gerencia Economía Circular, Aguas Andinas, Chile
| | | |
Collapse
|
12
|
Giongo A, Granada CE, Borges LGA, Pereira LM, Trindade FJ, Mattiello SP, Oliveira RR, Shubeita FM, Lovato A, Marcon C, Medina-Silva R. Microbial communities in anaerobic digesters change over time and sampling depth. Braz J Microbiol 2020; 51:1177-1190. [PMID: 32394239 DOI: 10.1007/s42770-020-00272-7] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/06/2019] [Accepted: 04/09/2020] [Indexed: 10/24/2022] Open
Abstract
Anaerobic digestion (AD) is a process resulting from the anaerobic metabolism of specific microorganisms that produce an eco-friendly type of energy and a stabilized soil fertilizer. We described the microbial communities and their changes in three depths of BioKöhler® biodigester, fed with cattle manure for 18 days, under anaerobic incubation at the psychrophilic temperature range (~ 20 °C). During the experiment, the maximum methane content in the raw biogas was 79.9%. Non-metric multidimensional scaling (MDS) showed significant differences among microbial communities in the bottom, medium, and upper depths. Considering all the periods of incubation, the microbial communities changed until the eighth day, and they remained stable from eighth to seventeenth days. Bacteroidetes, Firmicutes, and Synergistetes were the most abundant phyla in samples, representing approximately 41% of the total OTUs. The relative abundance of the phyla Euryarchaeota, Actinobacteria, Firmicutes, and Verrucomicrobia changed from bottom to medium sampling points. Moreover, Crenarchaeota differed in frequencies from medium to upper, and Acidobacteria from bottom to upper samples. Lentisphaerae, Chloroflexi, and LD1 were different solely at the bottom, whereas OP9 and Tenericutes only in the medium. Psychrophilic AD performed in this work removed pathogens like Salmonella and Escherichia, as observed at the digestate analyzed. This type of treatment of raw manure besides producing eco-friendly energy efficiently also generates a stabilized and safe biomass that can be used as fertilizer in soils.
Collapse
Affiliation(s)
- Adriana Giongo
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Camille E Granada
- Programa de Pós-graduação em Biotecnologia, Universidade do Vale do Taquari (UNIVATES), Rua Avelino Tallini, 171, Lajeado, RS, Brazil.
| | - Luiz G A Borges
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Leandro M Pereira
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Fernanda J Trindade
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Shaiana P Mattiello
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| | - Rafael R Oliveira
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil
| | - Fauzi M Shubeita
- Sociedade Educacional Três de Maio (SETREM), Três de Maio, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Porto Alegre, RS, Brazil
| | | | - César Marcon
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola Politécnica, Porto Alegre, RS, Brazil
| | - Renata Medina-Silva
- Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Instituto do Petróleo e dos Recursos Naturais, Porto Alegre, RS, Brazil.,Pontifícia Universidade Católica do Rio Grande do Sul (PUCRS), Escola de Ciências da Saúde da Vida, Porto Alegre, RS, Brazil
| |
Collapse
|
13
|
Lu D, Wu D, Qian T, Jiang J, Cao S, Zhou Y. Liquid and solids separation for target resource recovery from thermal hydrolyzed sludge. WATER RESEARCH 2020; 171:115476. [PMID: 31927095 DOI: 10.1016/j.watres.2020.115476] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2019] [Revised: 11/18/2019] [Accepted: 01/05/2020] [Indexed: 06/10/2023]
Abstract
This study proposed an integrated process for biogas generation and biochar production from thermal hydrolysis pretreated sludge (THP sludge). In this study, the liquid and solids fractions of THP sludge were separately processed for the first time. The liquid fraction of THP sludge (THP-L) reached the biodegradability (262.6 ± 5.1 mL CH4/g tCODfeed) on the 15th day during anaerobic treatment, while the solids fraction of THP sludge (THP-S) only contributed 31.0% to the total methane production and required more than 30 days digestion time. We investigated the feasibility to convert THP-S into biochar to realize the higher value of the solids fraction. The results prove the produced biochar can be used as slow-release fertilizer. Preliminary energy analysis was performed to evaluate the energy efficiency of the integrated approach, namely, methane generation from THP-L coupled with biochar production from THP-S. The process realized energy surplus of 0.81 MWh/tonne dry sludge. In addition, THP-L digested sludge showed better dewaterability, lower yield stress and reduced viscosity during digestion. The proposed new sludge treatment process therefore has lower operating cost and higher value returns.
Collapse
Affiliation(s)
- Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Dan Wu
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore; Interdisciplinary Graduate School, Nanyang Technological University, 639798, Singapore
| | - Tingting Qian
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Jiankai Jiang
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Shenbin Cao
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 637141, Singapore.
| |
Collapse
|
14
|
Azizi A, Hosseini Koupaie E, Hafez H, Elbeshbishy E. Improving single- and two-stage anaerobic digestion of source separated organics by hydrothermal pretreatment. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.05.001] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/26/2022]
|
15
|
Razavi AS, Hosseini Koupaie E, Azizi A, Hafez H, Elbeshbishy E. Hydrothermal pretreatment of source separated organics for enhanced solubilization and biomethane recovery. BIORESOURCE TECHNOLOGY 2019; 274:502-511. [PMID: 30553962 DOI: 10.1016/j.biortech.2018.12.024] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/11/2018] [Revised: 12/07/2018] [Accepted: 12/08/2018] [Indexed: 06/09/2023]
Abstract
The objective of this research was to evaluate the effect of the hydrothermal pretreatment on the solubilization of source separated organics (SSO) as well as the biomethane recovery through the mesophilic batch anaerobic digestion process. For this purpose, the SSO was subjected to fifteen different pretreatment conditions within five different severity index (SI) values (3, 3.5, 4, 4.5, and 5). The pretreatment temperature, holding time, and pressure ranged from 150 to 240 °C, 5 to 30 min, and 476 to 3367 kPa, respectively. The highest solubilization improvement of ∼50% was achieved under the pretreatment condition of "220 °C-10 min-2323 kPa" corresponding to the SI value of 4.5. However, the maximum biomethane production yield of 280 mL/g TCODadded and biomethane production rate of 30 mL/g TCODadded were obtained under the less intense pretreatment conditions of "190 °C-20 min-1247 kPa" and "170 °C-30 min-786 kPa", respectively.
Collapse
Affiliation(s)
- A S Razavi
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - E Hosseini Koupaie
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - A Azizi
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada
| | - H Hafez
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada; Greenfield Global, 275 Bloomfield Road, Chatham, Ontario N7M 0N6, Canada
| | - E Elbeshbishy
- Environmental Research Group for Resource Recovery, Department of Civil Engineering, Faculty of Engineering, Architecture and Science, Ryerson University, 350 Victoria Street, Toronto, Ontario M5B 2K3, Canada.
| |
Collapse
|
16
|
Lu D, Sun F, Zhou Y. Insights into anaerobic transformation of key dissolved organic matters produced by thermal hydrolysis sludge pretreatment. BIORESOURCE TECHNOLOGY 2018; 266:60-67. [PMID: 29957291 DOI: 10.1016/j.biortech.2018.06.059] [Citation(s) in RCA: 56] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/09/2018] [Revised: 06/16/2018] [Accepted: 06/19/2018] [Indexed: 06/08/2023]
Abstract
The detailed dissolved organic matters (DOMs) profile by thermal hydrolysis pretreatment and their transformation during anaerobic digestion (AD) were investigated. Among the temperature tested, 172 °C treatment showed the best sludge solubilization and the maximum methane production. The study revealed that high temperature sludge pretreatment mainly improved the release of low molecular weight (LMW) proteins, LMW neutrals and LMW polysaccharides. Notably, the effluent from thermal treated sludge digesters contained more DOMs residues. The predominant residual DOMs were humic substances, LMW proteins and LMW neutrals. At the molecular level, over 50% of the residual LMW components were slowly biodegradable or nonbiodegradable steroid-like compounds and aromatics. Further profiling of the higher MW compounds detected the recalcitrant or inhibitory compounds, e.g. benzenoids, flavonoids, pyridines and their derivatives. It is recommended that polishing step should be considered to further reduce the refractory residues in AD liquor.
Collapse
Affiliation(s)
- Dan Lu
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Faqian Sun
- Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore
| | - Yan Zhou
- School of Civil and Environmental Engineering, Nanyang Technological University, 50 Nanyang Avenue, Singapore 639798, Singapore; Advanced Environmental Biotechnology Centre, Nanyang Environment and Water Research Institute, Nanyang Technological University, 1 Cleantech Loop, Singapore 637141, Singapore.
| |
Collapse
|
17
|
Choi JM, Han SK, Lee CY. Enhancement of methane production in anaerobic digestion of sewage sludge by thermal hydrolysis pretreatment. BIORESOURCE TECHNOLOGY 2018; 259:207-213. [PMID: 29554601 DOI: 10.1016/j.biortech.2018.02.123] [Citation(s) in RCA: 69] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2017] [Revised: 02/25/2018] [Accepted: 02/26/2018] [Indexed: 06/08/2023]
Abstract
This study was performed to optimize thermal hydrolysis pretreatment (THP) of sewage sludge for enhanced anaerobic digestion (AD). Using the response surface methodology (RSM), the optimal conditions were found 180 °C of reaction temperature and 76 min of reaction time. Through THP under optimal conditions, high molecular substances in sewage sludge such as soluble microbial by-products (SMPs) and extracellular polymeric substances (EPSs) were hydrolyzed into low molecular ones without the generation of refractory compounds. The microbial community analysis revealed that relative abundances of Methanomicrobia such as Methanosarcina, Methanosaeta (acetoclastic methanogens), and Methanoculleus (hydrogenotrophic methanogens) in AD with THP were higher than those in conventional AD.
Collapse
Affiliation(s)
- Jae-Min Choi
- Department of Civil Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea
| | - Sun-Kee Han
- Department of Environmental Health, Korea National Open University, Seoul 03087, Republic of Korea
| | - Chae-Young Lee
- Department of Civil Engineering, The University of Suwon, Hwaseong, Gyeonggi 18323, Republic of Korea.
| |
Collapse
|
18
|
Wu J, Cao Z, Hu Y, Wang X, Wang G, Zuo J, Wang K, Qian Y. Microbial Insight into a Pilot-Scale Enhanced Two-Stage High-Solid Anaerobic Digestion System Treating Waste Activated Sludge. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2017; 14:ijerph14121483. [PMID: 29189754 PMCID: PMC5750901 DOI: 10.3390/ijerph14121483] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/09/2017] [Revised: 11/24/2017] [Accepted: 11/27/2017] [Indexed: 11/24/2022]
Abstract
High solid anaerobic digestion (HSAD) is a rapidly developed anaerobic digestion technique for treating municipal sludge, and has been widely used in Europe and Asia. Recently, the enhanced HSAD process with thermal treatment showed its advantages in both methane production and VS reduction. However, the understanding of the microbial community is still poor. This study investigated microbial communities in a pilot enhanced two-stage HSAD system that degraded waste activated sludge at 9% solid content. The system employed process “thermal pre-treatment (TPT) at 70 °C, thermophilic anaerobic digestion (TAD), and mesophilic anaerobic digestion (MAD)”. Hydrogenotrophic methanogens Methanothermobacter spp. dominated the system with relative abundance up to about 100% in both TAD and MAD. Syntrophic acetate oxidation (SAO) bacteria were discovered in TAD, and they converted acetate into H2 and CO2 to support hydrogenotrophic methanogenesis. The microbial composition and conversion route of this system are derived from the high solid content and protein content in raw sludge, as well as the operational conditions. This study could facilitate the understanding of the enhanced HSAD process, and is of academic and industrial importance.
Collapse
Affiliation(s)
- Jing Wu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Zhiping Cao
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yuying Hu
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Xiaolu Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Guangqi Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
- China Northwest Architecture Design and Research Institute Co. Ltd., Xi'an 710018, China.
| | - Jiane Zuo
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Kaijun Wang
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| | - Yi Qian
- State Key Joint Laboratory of Environment Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China.
| |
Collapse
|