1
|
Jin X, Liu P, Li H, Yu H, Ouyang J, Zheng Z. Sustainable wheat straw pretreatment process by self-produced and cyclical crude lactic acid. BIORESOURCE TECHNOLOGY 2024; 402:130788. [PMID: 38703960 DOI: 10.1016/j.biortech.2024.130788] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/27/2024] [Revised: 04/30/2024] [Accepted: 05/01/2024] [Indexed: 05/06/2024]
Abstract
The purpose of this study was to investigate an environmentally friendly and recyclable pretreatment approach that would enhance the enzymatic digestibility of wheat straw. Wheat straw was pretreated using self-produced crude lactic acid obtained from enzymatic hydrolysate fermentation by Bacillus coagulans. Experimentally, crude lactic acid at low concentration could achieve a pretreatment effect comparable to that of commercial lactic acid. After pretreatment at 180 °C for 60 min with 2.0 % crude lactic acid, hemicellulose could be effectively separated and high recovery of cellulose was ensured, achieving cellulose recovery rate of 95.5 % and hemicellulose removal rate of 92.7 %. Excellent enzymatic hydrolysis was accomplished with a glucose yield of 99.7 %. Moreover, the crude lactic acid demonstrated acceptable pretreatment and enzymatic hydrolysis performance even after three repeated cycles. This not only effectively utilizes the pretreatment solution, but also offers insights into biomass pretreatment using other fermentable acids.
Collapse
Affiliation(s)
- Xiaohu Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Peng Liu
- School of Grain Science and Technology, Jiangsu University of Science and Technology, Zhenjiang 212003, PR China
| | - Hongxiao Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hongxin Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China.
| |
Collapse
|
2
|
Tian R, Zhu B, Hu Y, Liu Q, Bian J, Li M, Ren J, Peng F. Selectively fractionate hemicelluloses with high molecular weight from poplar thermomechanical pulp by tetramethylammonium hydroxide. Int J Biol Macromol 2024; 254:127499. [PMID: 38287562 DOI: 10.1016/j.ijbiomac.2023.127499] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Revised: 08/22/2023] [Accepted: 10/16/2023] [Indexed: 01/31/2024]
Abstract
Selective fractionation of hemicelluloses is of great significance for realizing high-value application of hemicelluloses and comprehensive utilization of lignocellulosic biomass. Tetramethylammonium hydroxide (TMAH) solvent has been confirmed as a promising solvent to selectively fractionate hemicelluloses from holocellulose. Herein, TMAH solvent was adopted to pretreat poplar thermomechanical pulp (PTMP) for the selective fractionation of hemicelluloses and enhancement of enzymatic hydrolysis performance of residues. The maximal hemicelluloses yield (65.0 %) and excellent cellulose retention rate (93.3 %) were achieved after pretreatment by the 25 wt% TMAH solvent, while the delignification was only 33.9 %. The hemicelluloses fractions could be selectively fractionated with high molecular weights (109,800-118,500 g/mol), the contents of Klason lignin in them were low (3.2-5.9 %), and the dominating structure of them was 4-O-methylglucurono-β-D-xylan. Compared to the H2SO4 and NaOH methods, the hemicelluloses fractionated by TMAH method exhibited higher yields, more complete structures and higher molecular weights. Furthermore, the crystalline structure of cellulose practically remained stable, and the highest yield of enzymatic hydrolysis glucose was 57.5 %, which was 3.3 times of that of PTMP. The fractionation effectiveness of TMAH solvent was not significantly reduced after repeatedly recycling. This work demonstrated TMAH solvent could selectively fractionate hemicelluloses from PTMP and efficiently promote sustainable poplar-based biorefinery.
Collapse
Affiliation(s)
- Rui Tian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Bolang Zhu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Yajie Hu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Qiaoling Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Jing Bian
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Mingfei Li
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China
| | - Junli Ren
- State Key Laboratory of Pulp and Paper Engineering, School of Light Industry and Engineering, South China University of Technology, Guangzhou 510640, China
| | - Feng Peng
- Beijing Key Laboratory of Lignocellulosic Chemistry, MOE Engineering Research Center of Forestry Biomass Materials and Energy, Beijing Forestry University, Beijing 100083, China; State Key Laboratory of Efficient Productin of Forest Resources, Beijing 100083, China.
| |
Collapse
|
3
|
Qiao H, Wang Y, Ma Z, Han M, Zheng Z, Ouyang J. In-depth investigation of formic acid pretreatment for various biomasses: Chemical properties, structural features, and enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2023; 374:128747. [PMID: 36804857 DOI: 10.1016/j.biortech.2023.128747] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2023] [Revised: 02/10/2023] [Accepted: 02/11/2023] [Indexed: 06/18/2023]
Abstract
Formic acid pretreatment is a promising approach for fractionating biomass, and it has the advantages of efficient recycling and removal of hemicellulose and lignin. Biomass is one of the most plentiful resources on earth, yet its chemical structure differs significantly between woody and herbaceous biomass. The influence of formic acid pretreatment on the fractionation of woody and herbaceous biomasses, as well as changes in physical-chemical properties, was investigated in this study. The results indicated that formic acid is universal in the biorefinery of different biomass, however, herbaceous biomass had greater xylan and lignin removal than woody biomass (especially softwood). Formic acid pretreatment not only considerably improved the enzymatic efficiency of herbaceous biomass, but also had a good effect on the enzymatic efficiency of poplar. This study also found that the correlation between residual xylan content and enzymatic efficiency after pretreatment was much higher than that of lignin content.
Collapse
Affiliation(s)
- Hui Qiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yan Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zewen Ma
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Mingyang Han
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Zhaojuan Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, People's Republic of China.
| |
Collapse
|
4
|
Daimary N, Eldiehy KSH, Bora N, Boruah P, Rather MA, Mandal M, Bora U, Deka D. Towards integrated sustainable biofuel and chemical production: An application of banana pseudostem ash in the production of biodiesel and recovery of lignin from bamboo leaves. CHEMOSPHERE 2023; 314:137625. [PMID: 36572360 DOI: 10.1016/j.chemosphere.2022.137625] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2022] [Revised: 11/26/2022] [Accepted: 12/20/2022] [Indexed: 06/17/2023]
Abstract
This study investigated an integrated approach to the biowaste transformation and valorization of byproducts. Biochar obtained from the banana pseudostem was calcined to synthesize a heterogeneous catalyst and sustainably prepare a highly alkaline solution. The ash was utilized directly as a heterogeneous catalyst in biodiesel production from waste cooking oil. At the same time, an alkaline solution prepared from the ash was used for delignification and recovery of lignin from bamboo leaves by the hydrothermal reaction. Techniques like Fourier-transform infrared spectroscopy (FTIR), Field emission scanning electron microscopy (FESEM), Brunauer-Emmett-Teller (BET), Transmission electron microscopy (TEM), and Energy dispersive X-ray (EDX) were applied to characterized the catalyst. The alkaline solution was analyzed with Atomic absorption spectroscopy (AAS). The Response surface methodology (RSM) technique was considered for the optimization of different parameters in the transesterification and hydrothermal reaction. Under the optimized condition, waste cooking oil (WCO) to Fatty acid methyl ester (FAME) conversion was 97.56 ± 0.11%, and lignin recovery was 43.20 ± 0.45%. While at the best operating pyrolysis temperature, the liquid fraction yield from the banana pseudostem (500 °C) was 38.10 ± 0.31 wt%. This integrated study approach encourages the inexpensive, sustainable, and environment-friendly pathway for synthesizing catalysts and preparing a highly alkaline solution for the valorization of biowaste into biofuel and biochemicals.
Collapse
Affiliation(s)
- Niran Daimary
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India.
| | - Khalifa S H Eldiehy
- Department of Botany and Microbiology, Faculty of Science, Al-Azhar University, 71524, Assiut Branch, Egypt; Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Neelam Bora
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India
| | - Pankaj Boruah
- Department of Chemical Engineering, Indian Institute of Technology, Guwahati, 781039, Assam, India
| | - Muzamil Ahmad Rather
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Manabendra Mandal
- Department of Molecular Biology and Biotechnology, Tezpur University, Napaam, 784028, Assam, India
| | - Utpal Bora
- Department of Chemical Science, Tezpur University, Napaam, 784028, Assam, India
| | - Dhanapati Deka
- Department of Energy, Tezpur University, Napaam, 784028, Assam, India
| |
Collapse
|
5
|
Chen D, Tang W, Wang H, Sheng Y, Tan X, Shi Y, Fan W, Ge S. Phosphoric acid pretreatment of poplar to optimize fermentable sugars production based on orthogonal experimental design. Front Chem 2023; 11:1119215. [PMID: 36909714 PMCID: PMC9993246 DOI: 10.3389/fchem.2023.1119215] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2022] [Accepted: 01/12/2023] [Indexed: 02/24/2023] Open
Abstract
The recalcitrant structure of raw poplar limited the production of fermentable sugars when applied as the material in the pretreatment of biochemical conversions. Phosphoric acid pretreatment is an efficient method to destroy the compact lignocellulose matrix presence in the poplar. In this study, phosphoric acid pretreatment of poplar was optimised by an orthogonal experimental design [L9(33)] to improve enzymatic digestibility through investigating the effects of reaction temperature, time duration, and phosphoric acid concentration. The optimal conditions were selected based on the variance of chemical compositions, hemicellulose removal ratio, and delignification of the woody material after pretreatment. The optimum enzymatic hydrolysis yield of up to 73.44% was obtained when the phosphoric acid pretreatment performed at 190°C for 150 min under 1.5% of v/v phosphoric acid concentration.
Collapse
Affiliation(s)
- Deming Chen
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Wenjing Tang
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Hui Wang
- Ministry of Forestry Bioethanol Research Center, College of Materials Science and Engineering, Central South University of Forestry and Technology, Changsha, Hunan, China
| | - Yequan Sheng
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, Anhui, China
| | - Yang Shi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| | - Wei Fan
- Key Laboratory of Functional Textile Material and Product of Ministry of Education, School of Textile Science and Engineering, Xi'an Polytechnic University, Xi'an, Shanxi, China
| | - Shengbo Ge
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, China
| |
Collapse
|
6
|
Ying W, Li X, Lian Z, Xu Y, Zhang J. An integrated process using acetic acid hydrolysis and deep eutectic solvent pretreatment for xylooligosaccharides and monosaccharides production from wheat bran. BIORESOURCE TECHNOLOGY 2022; 363:127966. [PMID: 36113818 DOI: 10.1016/j.biortech.2022.127966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organic acid hydrolysis for xylooligosaccharides (XOS) production from lignocelluloses provides the benefits of simple operation, rapid reaction and high XOS yield. However, no literature reported the XOS production from wheat bran (WB) by organic acid hydrolysis. In this paper, acetic acid (AA) hydrolysis was employed to produce XOS from WB. After AA hydrolysis (5 %, v/v, 170 °C, 20 min) of 100 g/L WB, the concentrations of X2, X3, X4, X5 and X6 were 2.4, 5.0, 1.9, 1.9 and 1.4 g/L respectively and the total XOS yield was 62.9 %, which was the highest among the previous researches. The arabinose yield reached 76.1 %. Then, AA-hydrolyzed WB was delignified by deep eutectic solvent (DES) pretreatment and the resulting residue had the glucose and xylose yields of 83.8 % and 54.8 %, respectively. This work offers a productive method for the conversion of WB into XOS, arabinose and glucose by AA hydrolysis and DES pretreatment.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xudong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
7
|
Duan Y, Tarafdar A, Kumar V, Ganeshan P, Rajendran K, Shekhar Giri B, Gómez-García R, Li H, Zhang Z, Sindhu R, Binod P, Pandey A, Taherzadeh MJ, Sarsaiya S, Jain A, Kumar Awasthi M. Sustainable biorefinery approaches towards circular economy for conversion of biowaste to value added materials and future perspectives. FUEL 2022; 325:124846. [DOI: 10.1016/j.fuel.2022.124846] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
8
|
Ying W, Ouyang J, Lian Z, Xu Y, Zhang J. Lignin removal improves xylooligosaccharides production from poplar by acetic acid hydrolysis. BIORESOURCE TECHNOLOGY 2022; 354:127190. [PMID: 35452823 DOI: 10.1016/j.biortech.2022.127190] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Revised: 04/14/2022] [Accepted: 04/15/2022] [Indexed: 06/14/2023]
Abstract
Organic acid hydrolysis is a potential method for xylooligosaccharides (XOS) production from lignocelluloses. However, the effect of lignin content on XOS production using organic acid hydrolysis remains unclear. In this work, the effect of delignification on XOS production from poplar by acetic acid (AC) hydrolysis was investigated. Hydrogen peroxide-acetic acid (HPAC) pretreatment catalyzed by 0-200 mM H2SO4 (HPAC0-HPAC200) removed 21.6-86.5% of lignin in poplar. HPAC pretreatment increased the xylan accessibility to AC solution, thus increasing the xylan removal during AC hydrolysis. An appropriate delignification (61.7%) resulted in the highest XOS yield of 37.4% by AC hydrolysis, increased by 29.9% compared to the optimal XOS yield (28.8%) from raw poplar. After alkaline post-incubation, the glucose yield of poplar residue rose from 57.1% to 78.6%. This work developed a delignification process to efficiently improve XOS and monosaccharides production from poplar.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Jia Ouyang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; College of Forestry, Northwest A&F University, Yangling 712100, China.
| |
Collapse
|
9
|
Tang W, Wu X, Huang C, Ling Z, Lai C, Yong Q. Revealing the influence of metallic chlorides pretreatment on chemical structures of lignin and enzymatic hydrolysis of waste wheat straw. BIORESOURCE TECHNOLOGY 2021; 342:125983. [PMID: 34592616 DOI: 10.1016/j.biortech.2021.125983] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/10/2021] [Accepted: 09/16/2021] [Indexed: 06/13/2023]
Abstract
The addition of various metallic chlorides in pretreatment of lignocellulose have been widely reported to improve cellulose conversion via cellulolytic processing. However, the interaction mechanism between lignin and metallic cations is not well known. In this work, pretreatment with different concentrations of FeCl3 and AlCl3 were performed upon waste wheat straw to enhance enzymatic hydrolysis efficiency. Results showed that pretreatment with FeCl3 and AlCl3 could facilitate the enzymatic hydrolysis efficiency increasing from 50.4% to 82.9% and 76.6%, which was attributed to the enhancement of xylan removal by 33.8% (FeCl3) and 36.5% (AlCl3), respectively. Meanwhile, the surface charge, hydrophobicity, and protein adsorption capacity of lignin from waste wheat straw can be decreased by 3.3 mV, 0.6 L/g, 7.6 mg/g (FeCl3). This was due to the depolymerization of lignin in metallic chlorides pretreatment. These findings will be used to further evaluate the effect of metallic chlorides in biorefinery pretreatment.
Collapse
Affiliation(s)
- Wei Tang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Xinxing Wu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Zhe Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China; State Key Laboratory of Pulp Paper Engineering, South China University of Technology, Guangzhou, 510640, People's Republic of China
| | - Chenhuan Lai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology, Ministry of Education, Nanjing 210037, People's Republic of China.
| |
Collapse
|
10
|
Kang X, Wang YY, Wang S, Song X. Xylan and xylose decomposition during hot water pre-extraction: A pH-regulated hydrolysis. Carbohydr Polym 2021; 255:117391. [PMID: 33436220 DOI: 10.1016/j.carbpol.2020.117391] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 11/04/2020] [Accepted: 11/05/2020] [Indexed: 11/19/2022]
Abstract
One of the key issues in the development of biofuels using lignocellulosic feedstocks is to increase the yield of fermented sugar, and simultaneously decrease the generation of fermentation inhibitors. Therefore, it is essential to understand the degradation mechanism of xylan during hot-water pretreatment. We analyzed the hydrothermal degradation products of xylan and xylose under different conditions. Results showed that furfural and formic acid formed from xylose reached a maximum value of 32.56 % and 35.14 %, respectively. By increasing the initial pH of the xylan solution, the furfural concentration can be reduced effectively to 2% and the formation of formic acid was preferred under alkaline conditions. On this basis, we proposed a new hydrothermal degradation pathway of xylan in alkaline solution. The in-depth understanding of xlyan degradation during hot water pre-treatment will be beneficial for improving the efficiency of biofuel production.
Collapse
Affiliation(s)
- Xiheng Kang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Yun-Yan Wang
- Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA
| | - Shuangfei Wang
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China
| | - Xueping Song
- School of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, PR China; Center for Renewable Carbon, Department of Forestry, Wildlife and Fisheries, University of Tennessee, Knoxville, TN, 37996, USA.
| |
Collapse
|
11
|
Delignification of Cistus ladanifer Biomass by Organosolv and Alkali Processes. ENERGIES 2021. [DOI: 10.3390/en14041127] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Residues of Cistus ladanifer obtained after commercial steam distillation for essential oil production were evaluated to produce cellulose enriched solids and added-value lignin-derived compounds. The delignification of extracted (CLRext) and extracted and hydrothermally pretreated biomass (CLRtreat) was studied using two organosolv processes, ethanol/water mixtures (EO), and alkali-catalyzed glycerol (AGO), and by an alkali (sodium hydroxide) process (ASP) under different reaction conditions. The phenolic composition of soluble lignin was determined by capillary zone electrophoresis and by Py-GC/MS, which was also used to establish the monomeric composition of both the delignified solids and isolated lignin. The enzymatic saccharification of the delignified solids was also evaluated. The ASP (4% NaOH, 2 h) lead to both the highest delignification and enzymatic saccharification (87% and 79%, respectively). A delignification of 76% and enzymatic hydrolysis yields of 72% were obtained for AGO (4% NaOH) while EO processes led to lower delignification (maximum lignin removal 29%). The residual lignin in the delignified solids were enriched in G- and H-units, with S-units being preferentially removed. The main phenolics present in the ASP and AGO liquors were vanillic acid and epicatechin, while gallic acid was the main phenolic in the EO liquors. The results showed that C. ladanifer residues can be a biomass source for the production of lignin-derivatives and glucan-rich solids to be further used in bioconversion processes.
Collapse
|
12
|
Ying W, Xu Y, Zhang J. Effect of sulfuric acid on production of xylooligosaccharides and monosaccharides from hydrogen peroxide-acetic acid-pretreated poplar. BIORESOURCE TECHNOLOGY 2021; 321:124472. [PMID: 33307483 DOI: 10.1016/j.biortech.2020.124472] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2020] [Revised: 11/25/2020] [Accepted: 11/26/2020] [Indexed: 06/12/2023]
Abstract
Lignin is one of the main obstacles for enzymatic hydrolysis, which can be selectively removed by hydrogen peroxide-acetic acid pretreatment (HPAC). In this work, the effects of sulfuric acid concentration on chemical composition, structural features, physical properties and enzymatic digestibility of HPAC pretreated poplar were investigated. The increased H2SO4 dosage enhanced the lignin removal of HPAC-pretreated poplar, resulting in the increased accessibility and decreased hydrophobicity. A satisfying glucose yield (91.84%) was obtained from HPAC pretreated poplar (100 mM H2SO4) at 5 FPU/g DM of cellulase loading with the addition of xylanase (30 U/g DM) and Tween 80 (3 g/L). The increment of H2SO4 concentration promoted the yield of xylooligosaccharides from 0.69% to 20.45% and monosaccharides from 5.76% to 92.89% respectively by two-step enzymatic hydrolysis. This work demonstrated that HPAC pretreatment played a critical role in efficient utilization of poplar carbohydrates by enzymatic hydrolysis.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; College of Forestry, Nothwest A&F University, Yangling 712100, People's Republic of China.
| |
Collapse
|
13
|
Li C, Ong KL, Cui Z, Sang Z, Li X, Patria RD, Qi Q, Fickers P, Yan J, Lin CSK. Promising advancement in fermentative succinic acid production by yeast hosts. JOURNAL OF HAZARDOUS MATERIALS 2021; 401:123414. [PMID: 32763704 DOI: 10.1016/j.jhazmat.2020.123414] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 06/27/2020] [Accepted: 07/05/2020] [Indexed: 05/22/2023]
Abstract
As a platform chemical with various applications, succinic acid (SA) is currently produced by petrochemical processing from oil-derived substrates such as maleic acid. In order to replace the environmental unsustainable hydrocarbon economy with a renewable environmentally sound carbohydrate economy, bio-based SA production process has been developed during the past two decades. In this review, recent advances in the valorization of solid organic wastes including mixed food waste, agricultural waste and textile waste for efficient, green and sustainable SA production have been reviewed. Firstly, the application, market and key global players of bio-SA are summarized. Then achievements in SA production by several promising yeasts including Saccharomyces cerevisiae and Yarrowia lipolytica are detailed, followed by calculation and comparison of SA production costs between oil-based substrates and raw materials. Lastly, challenges in engineered microorganisms and fermentation processes are presented together with perspectives on the development of robust yeast SA producers via genome-scale metabolic optimization and application of low-cost raw materials as fermentation substrates. This review provides valuable insights for identifying useful directions for future bio-SA production improvement.
Collapse
Affiliation(s)
- Chong Li
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China
| | - Khai Lun Ong
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Zhiyong Cui
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Zhenyu Sang
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China; School of Life Sciences, Zhengzhou University, Zhengzhou, China
| | - Xiaotong Li
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Raffel Dharma Patria
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China
| | - Qingsheng Qi
- State Key Laboratory of Microbial Technology, Shandong University, Qingdao, 266237, China
| | - Patrick Fickers
- Microbial Processes and Interactions, TERRA Teaching and Research Center, University of Liège - Gembloux Agro-Bio Tech., Av. de la Faculté, 2B, 5030, Gembloux, Belgium
| | - Jianbin Yan
- Shenzhen Branch, Guangdong Laboratory for Lingnan Modern Agriculture, Genome Analysis Laboratory of the Ministry of Agriculture, Agricultural Genomics Institute at Shenzhen, Chinese Academy of Agricultural Sciences, Shenzhen, China.
| | - Carol Sze Ki Lin
- School of Energy and Environment, City University of Hong Kong, Hong Kong, China.
| |
Collapse
|
14
|
Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. BIORESOURCE TECHNOLOGY 2020; 306:123163. [PMID: 32182471 DOI: 10.1016/j.biortech.2020.123163] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) is a promising pretreatment for improving enzymatic digestibility of lignocellulosic material by altering the physicochemical properties. However, few work has been done to quantitatively analysis the physicochemical properties changes of lignocellulosic material with enzymatic digestibility. In this work, DES pretreatment with different molar ratios of choline chloride/lactic acid was carried out on bamboo residues and respective enzymatic digestibility was investigated and linearly fitted with corresponding physicochemical features changes of the pretreated bamboo residues. Results showed that enzymatic digestibility of DES-pretreated bamboo residues was enhanced with the increasing molar ratio of choline chloride/lactic acid, which was due to DES pretreatment's ability to remove lignin and xylan, reduce the degree of polymerization of cellulose, enhance the crystallite size of cellulose, and improve cellulose accessibility. Several compelling linear correlations (R2 = 0.6-0.9) were observable between enzymatic digestibility and these changes of physicochemical properties, demonstrating how DES pretreatment improve the enzymatic digestibility.
Collapse
Affiliation(s)
- Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
15
|
Xu Y, Wang P, Xue S, Kong F, Ren H, Zhai H. Green biorefinery - the ultra-high hydrolysis rate and behavior of Populus tomentosa hemicellulose autohydrolysis under moderate subcritical water conditions. RSC Adv 2020; 10:18908-18917. [PMID: 35518329 PMCID: PMC9053882 DOI: 10.1039/d0ra02350g] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2020] [Accepted: 05/11/2020] [Indexed: 11/23/2022] Open
Abstract
A high monosaccharide conversion rate of hemicellulose in a green solvent and under moderate reaction conditions for industrialization is one of the most important keys in a lignocellulosic biorefinery. The behavior of Populus tomentosa hemicellulose polysaccharides, crystallinity and the furfural formation in the autohydrolysis process under moderate subcritical water conditions (160-180 °C, 0.618-1.002 MPa) were studied. The results have shown that the hemicellulose was converted to corresponding monosaccharides at an ultra-high hydrolysis rate. Factor analysis indicates that the temperature is the most important factor affecting hemicellulose autohydrolysis. When the autohydrolysis temperature increased from 160 to 180 °C for 2 h, the hydrolysis rate of xylose, rhamnose, galactose, mannose, and glucose from hemicellulose increased from 70% to 91%, 71% to 100%, 82% to 95%, 42% to 58%, and 34% to 37%, respectively. Arabinose was completely dissolved in 30 min. The xylose, rhamnose, galactose, and arabinose from hemicellulose could be almost completely removed under the conditions. The hemicellulose removal rate obtained herein exceeded the values reported for most acid, alkali, ionic liquid, or deep eutectic solvent treatments. It is notable that almost all glucose in hemicellulose was dissolved and the glucose in cellulose was partially hydrolyzed. An analysis of the sugar composition and the crystallinity change in the process at 180 °C demonstrate that hydrolysis reaction started to shift from amorphous regions to crystalline regions, due to the partial hydrolysis of crystalline cellulose after 90 min at 180 °C. Overall, these results show that the moderate subcritical water autohydrolysis of hemicellulose in Populus tomentosa may be a potential bio-refinery process.
Collapse
Affiliation(s)
- Yanru Xu
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, NanJing Forestry University Address No. 159 LongPan Road NanJing JiangSu Province 210037 China
| | - Pengfei Wang
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, NanJing Forestry University Address No. 159 LongPan Road NanJing JiangSu Province 210037 China
| | - Shiwen Xue
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, NanJing Forestry University Address No. 159 LongPan Road NanJing JiangSu Province 210037 China
| | - Fangong Kong
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences Jinan 250353 China
| | - Hao Ren
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, NanJing Forestry University Address No. 159 LongPan Road NanJing JiangSu Province 210037 China
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences Jinan 250353 China
| | - Huamin Zhai
- Jiangsu Provincial Key Lab of Pulp and Paper Science and Technology, NanJing Forestry University Address No. 159 LongPan Road NanJing JiangSu Province 210037 China
| |
Collapse
|
16
|
Tan L, Liu Z, Zhang T, Wang Z, Liu T. Enhanced enzymatic digestibility of poplar wood by quick hydrothermal treatment. BIORESOURCE TECHNOLOGY 2020; 302:122795. [PMID: 32004810 DOI: 10.1016/j.biortech.2020.122795] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/06/2019] [Revised: 01/09/2020] [Accepted: 01/10/2020] [Indexed: 05/26/2023]
Abstract
To elevate the glucose yield from the enzymatic hydrolysis of poplar wood for bio-ethanol production, quick hydrothermal treatment (QHT) was conducted at 200 °C for a short period of time from 5 min to 25 min. It was found that the QHT could remove >85% of the hemicelluloses and ~30% of the lignin in the poplar wood, and achieve 82% cellulose conversion at a low cellulase dosage of 10 FPU/g substrate. The enhancement digestibility of poplar wood was ascribed to the higher accessibility of cellulose, as the specific surface area of the substrate increased from 3.0 m2/g to 7.1 m2/g from the of untreated wood to the QHT-treated wood. The results demonstrate the improvements in digestibility and hydrolysis rates after QHT.
Collapse
Affiliation(s)
- Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhongyang Liu
- Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tongtong Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Zhaojiang Wang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Shandong Provincial Key Laboratory of Microbial Engineering, Department of Bioengineering, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China.
| |
Collapse
|
17
|
Huang C, Fang G, Yu L, Zhou Y, Meng X, Deng Y, Shen K, Ragauskas AJ. Maximizing enzymatic hydrolysis efficiency of bamboo with a mild ethanol-assistant alkaline peroxide pretreatment. BIORESOURCE TECHNOLOGY 2020; 299:122568. [PMID: 31874450 DOI: 10.1016/j.biortech.2019.122568] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/26/2019] [Revised: 12/03/2019] [Accepted: 12/04/2019] [Indexed: 05/24/2023]
Abstract
To overcome the delignification saturation point in traditional alkaline hydrogen peroxide pretreatment (AHP), a powerful modified AHP delignification methodology was established by introducing ethanol into the system. The pretreatment caused significant lignin removal of bamboo at elevated pretreatment temperature with the highest lignin removal reaching 80.0% at 100 °C, higher than that (74.9% lignin removal) in pretreatment without the ethanol assistance. In addition, a certain amount of carbohydrates was also solubilized during the process whose recovery was 83.3% (glucan) and 67.6% (hemicellulose), respectively. The pretreated solid exhibited excellent enzymatic digestibility, with hydrolysis yields of ~100% and 95.7% for glucan and xylan, respectively. Our studies further indicate that this delignification methodology is versatile for hardwood and herbaceous plants, but does not perform well on softwood.
Collapse
Affiliation(s)
- Chen Huang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Guigan Fang
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China; Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Longxiang Yu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yang Zhou
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xianzhi Meng
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA
| | - Yongjun Deng
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Kuizhong Shen
- Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee Knoxville, Knoxville, TN 37996, USA; Department of Forestry, Wildlife, and Fisheries, Center for Renewable Carbon, The University of Tennessee Institute of Agriculture, Knoxville, TN 37996, USA; UTK-ORNL Joint Institute for Biological Science, Biosciences Division, Oak Ridge National Laboratory, Oak Ridge, TN 37831, USA.
| |
Collapse
|
18
|
Nacre-inspired hemicelluloses paper with fire retardant and gas barrier properties by self-assembly with bentonite nanosheets. Carbohydr Polym 2019; 225:115219. [DOI: 10.1016/j.carbpol.2019.115219] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2019] [Revised: 07/30/2019] [Accepted: 08/19/2019] [Indexed: 12/19/2022]
|
19
|
Liu Y, Zheng J, Xiao J, He X, Zhang K, Yuan S, Peng Z, Chen Z, Lin X. Enhanced Enzymatic Hydrolysis and Lignin Extraction of Wheat Straw by Triethylbenzyl Ammonium Chloride/Lactic Acid-Based Deep Eutectic Solvent Pretreatment. ACS OMEGA 2019; 4:19829-19839. [PMID: 31788615 PMCID: PMC6882130 DOI: 10.1021/acsomega.9b02709] [Citation(s) in RCA: 32] [Impact Index Per Article: 6.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Accepted: 10/31/2019] [Indexed: 05/23/2023]
Abstract
Efficient and feasible pretreatment of lignocellulosic biomass waste is an important prerequisite step to promote subsequent enzymatic hydrolysis and enhance the economics of biofuels production. This study focuses on the pretreatment of wheat straw (WS) with triethylbenzyl ammonium chloride/lactic acid (TEBAC/LA)-based deep eutectic solvents to enhance biomass fractionation and lignin extraction. Effects of pretreatment time, temperature, and TEBAC/LA molar ratio on pretreatment were evaluated systematically. Results suggested that 89.06 ± 1.05% of cellulose and 71.00 ± 1.03% of xylan were hydrolyzed with enzyme loadings of 35 FPU cellulase and 82 CBU β-glucosidase (per gram of dry biomass) after pretreatment by TEBAC/LA (1:9) at 373 K for 10 h. A total monosaccharide yield of 0.550 g/g WS (91.27% of the theoretical yield) was achieved with 79.73 ± 0.93% of lignin removal. Furthermore, the 1H-13C two-dimensional heteronuclear single quantum correlation (2D-HSQC) NMR spectroscopy showed that the regenerated lignin (75.69 ± 1.32% purity) was mainly composed of the syringyl units and the guaiacyl units. Overall, the results in this study provide an effective and facile pretreatment method for lignocellulosic biomass waste to enhance enzymatic hydrolysis saccharification.
Collapse
|
20
|
Wu X, Tang W, Huang C, Huang C, Lai C, Yong Q. The effects of exogenous ash on the autohydrolysis and enzymatic hydrolysis of wheat straw. BIORESOURCE TECHNOLOGY 2019; 286:121411. [PMID: 31078979 DOI: 10.1016/j.biortech.2019.121411] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/18/2019] [Revised: 04/29/2019] [Accepted: 04/30/2019] [Indexed: 05/24/2023]
Abstract
The effects of exogenous ash (EA) from harvest wheat straw and its internal components on wheat straw autohydrolysis efficiency and subsequent enzymatic hydrolysis were investigated. Results showed that when EA and its insoluble mineral components were included in the autohydrolysis, the enzymatic efficiencies of pretreated residues were significantly reduced from 84.9% to 66.3% and 58.4%, respectively. This was found to be largely attributable to the buffering of free H+ in the pretreatment medium which took place due to the ash. Specifically, the insoluble mineral fraction of said ash exerted strongest buffering capacity in EA. Furthermore, this decrease was found to linearly correlate with decreases to substrate enzymatic accessibility and hydrophobicity. These results demonstrate that the penalties of ash upon autohydrolysis are borne of specific fractions comprising the ash, making the case for ash removal processes or supplementation of processes with additives that will counter the negative effects of ash.
Collapse
Affiliation(s)
- Xinxing Wu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Wei Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Chen Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
21
|
Orozco Colonia BS, Lorenci Woiciechowski A, Malanski R, Junior Letti LA, Soccol CR. Pulp improvement of oil palm empty fruit bunches associated to solid-state biopulping and biobleaching with xylanase and lignin peroxidase cocktail produced by Aspergillus sp. LPB-5. BIORESOURCE TECHNOLOGY 2019; 285:121361. [PMID: 31018172 DOI: 10.1016/j.biortech.2019.121361] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2019] [Revised: 04/16/2019] [Accepted: 04/17/2019] [Indexed: 06/09/2023]
Abstract
Oil palm empty fruit bunches is a lignocellulosic feedstock with biotechnological potential and thousands of tons are generated in the world each year. Filamentous fungi producing xylanases and ligninases in biopulping to obtain cellulose is a pulp improvement alternative. The enzymatic cocktail was produced in solid-state biopulping by Aspergillus sp. LPB-5 with 54.32 U/g xylanase, 13.41 U/g lignin peroxidase and low cellulase activity. Biological, thermal and chemical pretreatments were compared and enzymatic biobleaching was applied to pretreated pulps. Biopulping and biobleaching combination had 36.80% lignin loss, 26.27% hemicellulose reduction, 74.36% pulp yield with 36.56% digestibility. Alkaline and biobleaching combination removed 81.97% hemicellulose and 93.89% lignin with 73.59% digestibility. Enzymatic biobleaching increased the pulp digestibility in all pretreatments. Finally, the development of a bio-pretreatment to remove hemicellulose and alter the lignin-carbohydrate complex interface presented a soft process with great eco-friendly potential, where mild pre-treatments would reduce the use of aggressive agents.
Collapse
Affiliation(s)
- Brigitte Sthepani Orozco Colonia
- Department of Agricultural Sciences and Technology, Federal University of Tocantins, CEP 7740-2970, Gurupi, TO, Brazil; Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Adenise Lorenci Woiciechowski
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Rodrigo Malanski
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Luiz Alberto Junior Letti
- Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, CEP 81531-970, Curitiba, PR, Brazil
| | - Carlos Ricardo Soccol
- Department of Agricultural Sciences and Technology, Federal University of Tocantins, CEP 7740-2970, Gurupi, TO, Brazil; Department of Bioprocess and Biotechnology Engineering, Federal University of Paraná, CEP 81531-970, Curitiba, PR, Brazil.
| |
Collapse
|
22
|
Ying W, Xu G, Yang H, Shi Z, Yang J. The sequential Fenton oxidation and sulfomethylation pretreatment for alleviating the negative effects of lignin in enzymatic saccharification of sugarcane bagasse. BIORESOURCE TECHNOLOGY 2019; 286:121392. [PMID: 31075663 DOI: 10.1016/j.biortech.2019.121392] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2019] [Revised: 04/25/2019] [Accepted: 04/26/2019] [Indexed: 06/09/2023]
Abstract
The sugarcane bagasse (SCB) was pretreated by the sequential Fenton oxidation and sulfomethylation pretreatment (FSP) for reducing the lignin inhibition in enzymatic saccharification. The FSP showed the delignification of 67.76% and the glucan retention in pretreated solid of 97.81%. Compared with sulfomethylation pretreated SCB (SP-SCB), the lignin surface coverage and surface hydrophobicity of FSP-SCB decreased by 1.84 and 4.84 times, respectively, led to enzymatic accessibility increased by 20%. Using the cellulase loading of 20 FPU/g glucan, the 72 h yields of glucose and xylose were 76.24% and 64.83%, respectively, which was 1.3-2.0 times higher than that of sulfomethylation treated SCB alone. Fenton oxidative reaction as a pre-step will help sulfomethyl group to easily and more introduce on aromatic ring, thereby accelerating the delignification.
Collapse
Affiliation(s)
- Wenjun Ying
- School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Gaofeng Xu
- School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Haiyan Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China
| | - Zhengjun Shi
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| | - Jing Yang
- Key Laboratory for Forest Resources Conservation and Utilization in the Southwest Mountains of China, Ministry of Education, Southwest Forestry University, Kunming 650224, China; School of Chemical Engineering, Southwest Forestry University, Kunming 650224, China.
| |
Collapse
|
23
|
Huang C, Lin W, Lai C, Li X, Jin Y, Yong Q. Coupling the post-extraction process to remove residual lignin and alter the recalcitrant structures for improving the enzymatic digestibility of acid-pretreated bamboo residues. BIORESOURCE TECHNOLOGY 2019; 285:121355. [PMID: 31004950 DOI: 10.1016/j.biortech.2019.121355] [Citation(s) in RCA: 122] [Impact Index Per Article: 24.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/13/2019] [Revised: 04/14/2019] [Accepted: 04/15/2019] [Indexed: 05/08/2023]
Abstract
In this work, a mild and facile post-extraction using different reagents was evaluated to overcome these recalcitrance for improving the enzymatic digestibility of acid-pretreated bamboo residues by removing the lignin and disrupting its inhibitory properties. Results showed that the enzymatic digestibility of acid-pretreated bamboo residues can be improved from 15.4% to 61.4%, 59.7%, and 42.8% by room temperature post-extraction with phosphoric acid, urea, and ethanol, respectively. Several compelling correlations (R2 > 0.5) were observable between enzymatic digestibility and structural changes, including delignification, reducing of substrate hydrophobicity, altering cellulose crystallinity, and elevations to the residual lignin syringyl-to-guaiacyl (S/G) ratio and functional groups. The results serve as a demonstration of the downstream value that can be gained when coupling a post-extraction process with acid pretreatment of bamboo residues, resulting in greater fermentable sugar production.
Collapse
Affiliation(s)
- Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
24
|
Tang W, Wu X, Huang C, Huang C, Lai C, Yong Q. Enhancing enzymatic digestibility of waste wheat straw by presoaking to reduce the ash-influencing effect on autohydrolysis. BIOTECHNOLOGY FOR BIOFUELS 2019; 12:222. [PMID: 31534481 PMCID: PMC6747752 DOI: 10.1186/s13068-019-1568-7] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/09/2019] [Accepted: 09/11/2019] [Indexed: 05/19/2023]
Abstract
BACKGROUND The acid buffering capacity of high free ash in waste wheat straw (WWS) has been revealed to be a significant hindrance on the efficiency of autohydrolysis pretreatment. Previous researches have mainly relied on washing to eliminate the influence of ash, and the underlying mechanism of the ash influencing was not extensively investigated. Presently, studies have found that cations can destroy the acid buffering capacity of ash through cation exchange. Herein, different cations were applied to presoak WWS with the aim to overcome the negative effects of ash on autohydrolysis efficiency, further improving its enzymatic digestibility. RESULTS Results showed that cations can be adsorbed on the surface of the material by electrostatic adsorption to change the acid buffering capacity of WWS. The acid buffering capacity of 120 mM Fe2+ presoaked WWS is reduced from 226.3 mmol/pH-kg of original WWS to 79.3 mmol/pH-kg. This reduced the autohydrolysis pretreatment medium pH from 5.7 to 3.8 and promoted the removal of xylan from 61.7 to 83.7%. In addition, the enzymatic digestibility of WWS was enhanced from 49.7 to 86.3% by presoaking with 120 mM Fe2+ solution. The relationship between enzymatic accessibility and hydrophobicity with enzymatic digestibility of the autohydrolyzed WWS was analyzed. CONCLUSIONS The results showed that the acid buffering capacity of the high free ash was detrimental for the autohydrolysis efficiency of WWS. After WWS was presoaked with different cations, the acid buffering capacity of ash was weakened by cation exchange and electrostatic adsorption, which improved the autohydrolysis efficiency. The results expound that the enzymatic digestibility of WWS can be enhanced through presoaking to reduce the ash-influencing effect on autohydrolysis.
Collapse
Affiliation(s)
- Wei Tang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Xinxing Wu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Chen Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Caoxing Huang
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Chenhuan Lai
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| | - Qiang Yong
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing, 210037 People’s Republic of China
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037 People’s Republic of China
- Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing, 210037 People’s Republic of China
| |
Collapse
|
25
|
Lai C, Yang B, He J, Huang C, Li X, Song X, Yong Q. Enhanced enzymatic digestibility of mixed wood sawdust by lignin modification with naphthol derivatives during dilute acid pretreatment. BIORESOURCE TECHNOLOGY 2018; 269:18-24. [PMID: 30145521 DOI: 10.1016/j.biortech.2018.08.086] [Citation(s) in RCA: 20] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2018] [Revised: 08/19/2018] [Accepted: 08/20/2018] [Indexed: 05/20/2023]
Abstract
Effects of the addition of 2-naphthol and 2-naphthol-7-sulfonate on the dilute acid pretreatment of mixed wood sawdust were investigated, respectively. Compared to 2-naphthol, 2-naphtnol-7-sulfonate was more effective to enhance delignification and facilitate the enzymatic hydrolysis. The 72 h hydrolysis yield was improved by 47.8% for 2-naphthol-7-sulfone, while only 9.1% was observed for 2-naphthol. The surface charges, enzyme adsorption, and cellulose accessibility of dilute acid pretreated substrates with or without naphthol derivatives were examined. The improved enzymatic hydrolysis by adding 2-naphthol-7-sulfonate was ascribed to the higher negative surface charges, the lower enzyme non-productive binding, and the higher cellulose accessibility of pretreated substrates. Additionally, the HSQC NMR and 31P NMR analysis were carried out on both decomposed lignins and residual bulk lignins. It indicated that the addition of the naphthol derivatives during pretreatment could suppress the lignin repolymerization, which further mitigated the inhibition of residual lignins on enzymatic hydrolysis.
Collapse
Affiliation(s)
- Chenhuan Lai
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Bo Yang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Juan He
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xin Li
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xiangyang Song
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
26
|
Wu X, Huang C, Tang W, Huang C, Lai C, Yong Q. Use of metal chlorides during waste wheat straw autohydrolysis to overcome the self-buffering effect. BIORESOURCE TECHNOLOGY 2018; 268:259-265. [PMID: 30081285 DOI: 10.1016/j.biortech.2018.07.132] [Citation(s) in RCA: 5] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2018] [Revised: 07/25/2018] [Accepted: 07/26/2018] [Indexed: 05/24/2023]
Abstract
High ash content of waste wheat straw (WWS) is resistant to biorefinery autohydrolysis pretreatment due to its self-buffering effects. In this work, minor addition FeCl3 and AlCl3 were applied to overcome the self-buffering effects of WWS by cationic occupation of the negatively charged sites present on particulate ash's surface. The results showed that with the increasing concentrations (0-20 mM) of AlCl3 and FeCl3, the enzymatic efficiencies of autohydrolyzed WWS were enhanced from 49.7% to 62.1% and 66.6%, respectively. Acid buffer and cation exchange capacity of pretreated WWS were decreased by adding metal chlorides and the reducing results were mainly attributed to cation exchange. Meanwhile, a maximum monosaccharide production (185.3 mg/g-WWS) was achieved with 62.0 mg/g-WWS xylooligosaccharide by using 20 mM FeCl3 during WWS autohydrolysis. The results demonstrated that the implications of FeCl3 and AlCl3 in WWS autohydrolysis were an effective strategy to enhance autohydrolysis efficiency by overcoming self-buffering effects.
Collapse
Affiliation(s)
- Xinxing Wu
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wei Tang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chenhuan Lai
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
27
|
Huang C, Ma J, Liang C, Li X, Yong Q. Influence of sulfur dioxide-ethanol-water pretreatment on the physicochemical properties and enzymatic digestibility of bamboo residues. BIORESOURCE TECHNOLOGY 2018; 263:17-24. [PMID: 29723845 DOI: 10.1016/j.biortech.2018.04.104] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/19/2018] [Revised: 04/26/2018] [Accepted: 04/27/2018] [Indexed: 06/08/2023]
Abstract
SO2-ethanol-water (SEW) is a promising pretreatment for improving enzymatic digestibility of biomass through simultaneously removing hemicellulose and lignin. In this work, SEW pretreatment was performed at different cooking times (10 min-60 min) and different SO2 concentrations (0.5%-2%) to produce pretreated bamboo residues for enzymatic hydrolysis. Meanwhile, physicochemical features of the residual cellulose and lignin were analyzed to better understand how SEW improves enzymatic digestibility. Under optimized SEW pretreatment condition (1% SO2 concentration, 150 °C, 60 min), 81.7% of xylan and 80.3% of lignin were solubilized, along with 89.1% of cellulose preserved in pretreated solid. A good enzymatic digestibility (80.4%) was achieved at optimum SEW condition. Several compelling correlations (R2 > 0.7) were observable between enzymatic digestibility and physicochemical features, demonstrating the importance of SEW pretreatment abilities of hemicellulose and lignin removal, reducing cellulose's degree of polymerization, and improving the amount of sulfonyl groups imparted to the original lignin structure.
Collapse
Affiliation(s)
- Caoxing Huang
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Junmei Ma
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Liang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, Nanning 530004, China
| | - Xi Li
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Co-Innovation Center for Efficient Processing and Utilization of Forest Products, Nanjing Forestry University, Nanjing 210037, China; College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
28
|
Zhao Z, Chen X, Ali MF, Abdeltawab AA, Yakout SM, Yu G. Pretreatment of wheat straw using basic ethanolamine-based deep eutectic solvents for improving enzymatic hydrolysis. BIORESOURCE TECHNOLOGY 2018; 263:325-333. [PMID: 29758482 DOI: 10.1016/j.biortech.2018.05.016] [Citation(s) in RCA: 67] [Impact Index Per Article: 11.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/06/2018] [Revised: 05/02/2018] [Accepted: 05/03/2018] [Indexed: 06/08/2023]
Abstract
A series of ethanolamine based deep eutectic solvents (DESs), which have strong basicity, were firstly applied in wheat straw pretreatment. Typically, choline chloride: monoethanolamine (C:M) as the best solvent among these DESs can remove 71.4% lignin and reserve 93.7% cellulose (70 °C, L/S mass ratio of 20:1, 9 h), and improve the enzymatic hydrolysis of residue, i.e., 89.8% cellulose and 62.0% xylan conversion. The pretreatment capacity of C:M is comparable to other solvents while C:M has several advantages, e.g., lower cost with cheap materials and simpler preparation process, mild conditions and lower polysaccharide loss. The XRD, SEM and FT-IR results verified that the polysaccharide conversion and sugars yield were enhanced by the removal of lignin in the pretreatment process. The basic ethanolamine based DESs are promising solvents for industrial application of wheat straw pretreatment.
Collapse
Affiliation(s)
- Zheng Zhao
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Xiaochun Chen
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Muhammad Furqan Ali
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Ahmed A Abdeltawab
- Department of Chemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Sobhy M Yakout
- Department of Biochemistry, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Guangren Yu
- Beijing Key Laboratory of Membrane Science and Technology & College of Chemical Engineering, Beijing University of Chemical Technology, Beijing 100029, China.
| |
Collapse
|