1
|
Rodrigues CV, Camargo FP, Lourenço VA, Sakamoto IK, Maintinguer SI, Silva EL, Amâncio Varesche MB. Towards a circular bioeconomy to produce methane by co-digestion of coffee and brewery waste using a mixture of anaerobic granular sludge and cattle manure as inoculum. CHEMOSPHERE 2024; 357:142062. [PMID: 38636915 DOI: 10.1016/j.chemosphere.2024.142062] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 04/07/2024] [Accepted: 04/15/2024] [Indexed: 04/20/2024]
Abstract
Coffee processing wastes, such as solid (pulp and husk) and wastewater, co-digested with industrial brewery wastewater, serve as excellent substrates for generating methane in the anaerobic digestion process. This study compared methane production using different compositions of cattle manure (CM) and granular sludge from an Upflow Anaerobic Sludge Blanket (UASB) reactor used in poultry wastewater treatment (GS). Four anaerobic batch reactors (500 mL) were assembled, A (50% CM and 50% GS), B (60% CM and 40% GS), C (70% CM and 30% of GS) and D (60% CM and 40% GS). Equal concentrations of substrates were added to all reactors: pulp and husk pretreated by hydrothermolysis (1 g L-1), coffee (10 g COD L-1) and brewery (1.5 g COD L-1) wastewaters. Assays A, B and C were supplemented with 2 g L-1 of yeast extract, except for assay D. The reactors were operated at 37 °C and pH 7.0. In assay B, the highest CH4 production of 759.15 ± 19.20 mL CH4 g-1 TS was observed, possibly favored by the synergistic interactions between cellulolytic bacteria Christensenellaceae_R-7_group and Methanosaeta archaea, as inferred by genes encoding enzymes related to acetoclastic methanogenesis (acetyl-CoA synthetase). Consequently, the electricity production potential of assay B (45614.08 kWh-1 year-1) could meet the energy demand of a farm producing coffee and beer, contributing to a positive energy balance concerning methane generation.
Collapse
Affiliation(s)
- Caroline Varella Rodrigues
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| | - Franciele Pereira Camargo
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Vitor Alves Lourenço
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Isabel Kimiko Sakamoto
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil
| | - Sandra Imaculada Maintinguer
- Bioenergy Research Institute (IPBEN), São Paulo State University (UNESP), 2527 10 Street, Rio Claro, SP, 13500230, Brazil
| | - Edson Luiz Silva
- Center of Exact Sciences and Technology, Department of Chemical Engineering, Federal University of São Carlos (UFSCar), São Carlos, SP CEP, 13565905, Brazil
| | - Maria Bernadete Amâncio Varesche
- Department of Hydraulics and Sanitation, São Carlos School of Engineering, University of São Paulo (USP), 1100 João Dagnone Avenue, São Carlos, SP, 13563120, Brazil.
| |
Collapse
|
2
|
Tschoeke ICP, Fraga TJM, da Silva MP, Costa e Souza TP, Chinelate GCB. Biogas production from malt bagasse from craft beer industry: kinetic modeling and process simulation. JOURNAL OF MATERIAL CYCLES AND WASTE MANAGEMENT 2023; 25:1-13. [PMID: 37360949 PMCID: PMC10250849 DOI: 10.1007/s10163-023-01715-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/16/2022] [Accepted: 05/14/2023] [Indexed: 06/28/2023]
Abstract
In this work, biogas was synthesized from malt enriched-craft beer bagasse with the objective to generate clean energy. Thus, a kinetic model based on thermodynamic parameters was proposed to represent the process with coefficient determination (R2) of 0.82. A bench-top biodigester of 2.0 × 10-3 m3 was built in glass, and equipped with sensors to measure pressure, temperature, and methane concentration. The inoculum selected for the anaerobic digestion was the granular sludge, and malt bagasse was used as substrate. Data were fitted to a pseudo-first-order model for the formation of methane gas using the Arrehnius equation as basis. For the simulations of biogas production, the Aspen Plus™ software was used. Results from 23 factorial design experiments evidenced that equipment was efficient, and the craft beer bagasse showed great biogas production, with nearly 95% of methane yield. The temperature was the variable that showed most influence in the process. Moreover, the system has a potential for the generation of 10.1 kWh of clean energy. Kinetic constant rate for methane production was 5.42 × 10-7 s-1 and activation energy 8.25 kJ mol-1. A statistical analysis using a math software was performed and evidenced that the temperature played a major role in the biomethane conversion. Supplementary Information The online version contains supplementary material available at 10.1007/s10163-023-01715-7.
Collapse
Affiliation(s)
- Isabelle Cristine Prohmann Tschoeke
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE 55292-270 Brazil
| | - Tiago José Marques Fraga
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE 55292-270 Brazil
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE 50670-901 Brazil
| | - Maryne Patrícia da Silva
- Department of Chemical Engineering, Federal University of Pernambuco (UFPE), 1235 Prof. Moraes Rego Av, Cidade Universitária, Recife, PE 50670-901 Brazil
| | - Thibério Pinho Costa e Souza
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE 55292-270 Brazil
| | - Gerla Castello Branco Chinelate
- Department of Food Science, Federal University of Pernambuco Agreste (UFAPE), Bom Pastor Avenue, W/N, Boa Vista, Garanhuns, PE 55292-270 Brazil
| |
Collapse
|
3
|
Fu J, Yan B, Gui S, Fu Y, Xia S. Anaerobic co-digestion of thermo-alkaline pretreated microalgae and sewage sludge: Methane potential and microbial community. J Environ Sci (China) 2023; 127:133-142. [PMID: 36522047 DOI: 10.1016/j.jes.2022.04.020] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Revised: 04/14/2022] [Accepted: 04/18/2022] [Indexed: 06/17/2023]
Abstract
To improve methane production from sewage sludge (SS), co-digestion of SS and microalgae (MA) was studied and the application of thermo-alkaline pretreatment to MA was evaluated. The results showed that thermo-alkaline pretreatment at 90°C for 120 min on MA was the optimum pretreatment condition. Furthermore, when the volatile solids (VS) ratio of SS and MA was 1:2, the methane yield reached maximum (368.94 mL/g VS). Fourier transform infrared (FT-IR) and thermogravimetric analysis confirmed the synergetic effects of thermo-alkaline pretreated MA on its co-digestion with SS. The analyses of microbial community indicated that Methanobacterium and Methanosarcina were the dominant methanogens during the co-digestion process. However, the relative abundance of Methanosarcina in thermo-alkaline pretreated groups was higher compared to unpretreated groups. The microbial community structure might be affected by thermo-alkaline pretreatment rather than by the MA dosage in the co-digestion.
Collapse
Affiliation(s)
- Jiaqi Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Bing Yan
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Shuanglin Gui
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Yinxuan Fu
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China
| | - Song Xia
- Institute of Energy Research, Jiangxi Academy of Sciences, Nanchang 330096, China.
| |
Collapse
|
4
|
Singh A, Rana MS, Tiwari H, Kumar M, Saxena S, Anand V, Prajapati SK. Anaerobic digestion as a tool to manage eutrophication and associated greenhouse gas emission. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 861:160722. [PMID: 36493813 DOI: 10.1016/j.scitotenv.2022.160722] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2022] [Revised: 11/10/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Eutrophicated inland water bodies are noticed to be one of the contributing factors to greenhouse gas (GHGs) emissions. Direct discharge of untreated or partially treated water is a major concern. Microalgae-based technology and management are regarded as one of the potential nature-based approaches to combat eutrophication. In turn, the microalgae facilitate the recovery of GHGs contributing compounds in the form of organic biomass. The recovered algal biomass can be harnessed for the production of biofuels and other bio-products, like biofertilizer, using anaerobic digestion. By virtue, circular bio-economy can be achieved alongside mitigating GHGs emissions. Before implementing, it is vital to thoroughly explore the links between the process and potential alternatives for wastewater treatment, waste valorization, biofuel production, and land usage. Thus, the present review discusses the impact of eutrophication on ecology and environment, current technologies for mitigating eutrophication and GHGs, and energy recovery through the anaerobic digestion of algal biomass. Further, the processes at the intercept of wastewater treatment and biogas production were reviewed to leverage the potential of anaerobic digestion for making a circular bioeconomy framework.
Collapse
Affiliation(s)
- Amit Singh
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Mohit Singh Rana
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Harshit Tiwari
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Manoj Kumar
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India
| | - Sarthak Saxena
- IITB-Monash Research Academy, Indian Institute of Technology, Bombay, Mumbai 400076, India
| | - Vishal Anand
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| | - Sanjeev Kumar Prajapati
- Environment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand 247667, India.
| |
Collapse
|
5
|
Aditya L, Mahlia TMI, Nguyen LN, Vu HP, Nghiem LD. Microalgae-bacteria consortium for wastewater treatment and biomass production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 838:155871. [PMID: 35568165 DOI: 10.1016/j.scitotenv.2022.155871] [Citation(s) in RCA: 43] [Impact Index Per Article: 21.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2022] [Revised: 05/07/2022] [Accepted: 05/08/2022] [Indexed: 06/15/2023]
Abstract
The diversity of microalgae and bacteria allows them to form a complementary consortium for efficient wastewater treatment and nutrient recovery. This review highlights the potential of wastewater-derived microalgal biomass as a renewable feedstock for producing animal feed, biofertilisers, biofuel, and many valuable biochemicals. Data corroborated from this review shows that microalgae and bacteria can thrive in many environments. Microalgae are especially effective at utilising nutrients from the water as they grow. This review also consolidates the current understanding of microalgae characteristics and their interactions with bacteria in a consortium system. Recent studies on the performance of only microalgae and microalgae-bacteria wastewater treatment are compared and discussed to establish a research roadmap for practical implementation of the consortium systems for various wastewaters (domestic, industrial, agro-industrial, and landfill leachate wastewater). In comparison to the pure microalgae system, the consortium system has a higher removal efficiency of up to 15% and shorter treatment time. Additionally, this review addresses a variety of possibilities for biomass application after wastewater treatment.
Collapse
Affiliation(s)
- Lisa Aditya
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - T M Indra Mahlia
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Luong N Nguyen
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Hang P Vu
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Center for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| |
Collapse
|
6
|
Dziki D, Gawlik-Dziki U, Tarasiuk W, Różyło R. Fiber Preparation from Micronized Oat By-Products: Antioxidant Properties and Interactions between Bioactive Compounds. Molecules 2022; 27:molecules27092621. [PMID: 35565971 PMCID: PMC9099853 DOI: 10.3390/molecules27092621] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/23/2022] [Revised: 04/16/2022] [Accepted: 04/18/2022] [Indexed: 12/05/2022] Open
Abstract
This study aimed to investigate the possibility of utilizing oat by-products for fiber preparation. Oat husk (OH) and oat bran (OB) were micronized and used to prepare a novel product rich in fiber and with enhanced antioxidant properties. The basic chemical composition and phenolic acid profile were determined in OH and OB. The antioxidant properties of OH and OB were also analyzed. The type and strength of interactions between the biologically active compounds from their mixtures were characterized by an isobolographic analysis. The analyses showed that the sum of phenolic acids was higher in OH than in OB. Ferulic acid was dominant in both OH and OB; however, its content in OH was over sixfold higher than that in OB. The results also suggested that both OH and OB can be used for preparing fiber with enhanced antioxidant properties. The optimal composition of the preparation, with 60–70% of OH and 30–40% of OB, allows for obtaining a product with 60–70% fiber and enhanced antioxidant activity due to bioactive substances and their synergistic effect. The resulting product can be a valuable additive to various food and dietary supplements.
Collapse
Affiliation(s)
- Dariusz Dziki
- Poland Department of Thermal Technology and Food Process Engineering, University of Life Sciences in Lublin, Głęboka 31, 20-612 Lublin, Poland;
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
| | - Urszula Gawlik-Dziki
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Department of Biochemistry and Food Chemistry, University of Life Sciences in Lublin, Skromna 8, 20-704 Lublin, Poland
- Correspondence:
| | - Wojciech Tarasiuk
- Fibrecare Sp. z o.o., Słowackiego 16, 40-094 Katowice, Poland;
- Faculty of Mechanical Engineering Bialystok, Bialystok University of Technology, Wiejska 45A, 15-351 Białystok, Poland
| | - Renata Różyło
- Department of Food Engineering and Machines, University of Life Sciences in Lublin, Głęboka St. 28, 20-950 Lublin, Poland;
| |
Collapse
|
7
|
Elalami D, Oukarroum A, Barakat A. Anaerobic digestion and agronomic applications of microalgae for its sustainable valorization. RSC Adv 2021; 11:26444-26462. [PMID: 35480019 PMCID: PMC9037636 DOI: 10.1039/d1ra04845g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2021] [Accepted: 07/20/2021] [Indexed: 11/21/2022] Open
Abstract
Microalgae are considered potential candidates in biorefinery processes, and due to their biochemical properties, they can be used in the production of biofuels such as biogas, as well as for bioremediation of liquid effluents. The objective of this review is to study the current status of microalgae anaerobic digestion and agricultural uses (as bio-stimulants and biofertilizers), starting from microalgae cultivation. Indeed, the efficiency of these processes necessarily depends on the evaluation of different biotic and abiotic factors that affect the growth of microalgae. However, the adaptation and the optimization of process parameters on a large scale is also limited by energy and economic constraints. Moreover, the integration of biogas production processes with microalgae cultivation allows a nutrients and CO2 virtuous loop, thus promoting the sustainability of the process. Finally, this paper provides a general overview of biogas and biofertilizers production combination, as well as the related challenges and recommended future research perspectives to complement the gap in the literature.
Collapse
Affiliation(s)
- Doha Elalami
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdallah Oukarroum
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
| | - Abdellatif Barakat
- AgroBioSciences, Mohammed VI Polytechnic University (UM6P) Ben Guérir Morocco
- IATE, University of Montpellier, INRAE, Agro Institut Montpellier 34060 France
| |
Collapse
|
8
|
Zhuang H, Lee PH, Wu Z, Jing H, Guan J, Tang X, Tan GYA, Leu SY. Genomic driven factors enhance biocatalyst-related cellulolysis potential in anaerobic digestion. BIORESOURCE TECHNOLOGY 2021; 333:125148. [PMID: 33878497 DOI: 10.1016/j.biortech.2021.125148] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 04/01/2021] [Accepted: 04/04/2021] [Indexed: 06/12/2023]
Abstract
Anaerobic digestion (AD) is a promising technology to recover bioenergy from biodegradable biomass, including cellulosic wastes. Through a few fractionation/separation techniques, cellulose has demonstrated its potential in AD, but the performance of the process is rather substrate-specific, as cellulolysis bacteria are sensitive to the enzyme-substrate interactions. Cellulosome is a self-assembled enzyme complex with many functionalized modules in the bacteria which has been gradually studied, however the genomic fingerprints of the culture-specific cellulosome in AD are relatively unclear especially under processing conditions. To clarify the key factors affecting the cellulosome induced cellulolysis, this review summarized the most recent publications of AD regarding the fates of cellulose, sources and functional genes of cellulosome, and omics methods for functional analyses. Different processes for organic treatment including applying food grinds in sewer, biomass valorization, cellulose fractionation, microaeration, and enzymatic hydrolysis enhanced fermentation, were highlighted to support the sustainable development of AD technology.
Collapse
Affiliation(s)
- Huichuan Zhuang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong; Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Po-Heng Lee
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Zhuoying Wu
- Dept. of Civil and Environmental Engineering, Imperial College London, South Kensington Campus, London SW7 2AZ, UK
| | - Houde Jing
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Jianyu Guan
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Xiaojing Tang
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong
| | - Giin-Yu Amy Tan
- Department of Civil Engineering, The University of Hong Kong, Pokfulam Road, Hong Kong
| | - Shao-Yuan Leu
- Dept. of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong.
| |
Collapse
|
9
|
Du N, Li M, Zhang Q, Ulsido MD, Xu R, Huang W. Study on the biogas potential of anaerobic digestion of coffee husks wastes in Ethiopia. WASTE MANAGEMENT & RESEARCH : THE JOURNAL OF THE INTERNATIONAL SOLID WASTES AND PUBLIC CLEANSING ASSOCIATION, ISWA 2021; 39:291-301. [PMID: 32662340 DOI: 10.1177/0734242x20939619] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2023]
Abstract
The poorly controlled discharge of coffee husks in Ethiopia causes severe environmental pollution and is a waste of resources. The volatile solid and carbon content in coffee husks waste indicates that it is rich in organic matter and has huge potential to produce biogas. This study investigated the feasibility of coffee husks to produce biomass through anaerobic digestion, based on temperature, initial pH, inoculum/substrate (I/S) ratio and carbon/nitrogen (C/N) ratio. The study demonstrated that the maximum production of biogas and methane reached 3359.6 ml and 2127.30 ml, respectively, under the conditions of mesophilic temperature (35±1°C), an initial pH of 7, an I/S ratio of 0.75 and a C/N ratio of 30. Based on this result, the effects of trace elements (Fe2+, Ni2+, Co2+) on biogas production and methane content were also explored. Compared with the group with no addition of trace elements, the experiment adding trace elements had significant enhancement effects on the production of biogas and methane, in which Fe2+ played a leading role (p<0.05). Fe2+ promoted the hydrolysis and acidification of coffee husks, resulting in the production of a series of intermediates such as volatile fatty acids and the other kinds of dissolved organic matter. Furthermore, the cooperation of Ni2+, Co2+ and Fe2+ enhanced the activity of the enzyme system in methanogens, promoting methane production. The results in this paper show that coffee husks have clear biogas potential through anaerobic digestion, and its effective utilization could fulfill the dual purpose of solid waste reclamation and local environmental protection in Ethiopia.
Collapse
Affiliation(s)
- Ning Du
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China
| | - Meng Li
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China
| | - Qian Zhang
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China
| | - Mihret Dananto Ulsido
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China
| | - Ruyi Xu
- School of Civil Engineering and Architecture, Wuhan University of Technology, Wuhan, P.R. China
| | - Wansong Huang
- Hubei Jianke International Construction Ltd.co, Wuhan, P.R. China
| |
Collapse
|
10
|
Veerabadhran M, Gnanasekaran D, Wei J, Yang F. Anaerobic digestion of microalgal biomass for bioenergy production, removal of nutrients and microcystin: current status. J Appl Microbiol 2021; 131:1639-1651. [PMID: 33421297 DOI: 10.1111/jam.15000] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/20/2020] [Revised: 01/03/2021] [Accepted: 01/06/2021] [Indexed: 12/16/2022]
Abstract
Using renewable microalgal biomass as active feedstocks for biofuels and bioproducts is explored to substitute petroleum-based fuels and chemicals. In the last few years, the importance of microalgae biomass has been realized as a renewable feedstock due to several positive attributes associated with it. Biorefinery via anaerobic digestion (AD) of microalgal biomass is a promising and sustainable method to produce value-added chemicals, edible products and biofuels. Microalgal biomass pretreatment is a significant process to enhance methane production by AD. Findings on the AD microbial community's variety and organization can give novel in turn on digester steadiness and presentation. This review presents a vital study of the existing facts on the AD microbial community and AD production. Co-digestion of microalgal biomass with different co-substrates was used in AD to enhance biogas production, and the process was economically viable with improved biodegradability. Microcystins, which are produced by toxic cyanobacterial blooms, create a severe hazard to environmental health. Anaerobic biodegradation is an effective method to degrade the microcystins and convert into nontoxic products. However, for the cost-effective conversion of biomass to energy and other beneficial byproducts, additional highly developed research is still required for large-scale AD of microalgal biomass.
Collapse
Affiliation(s)
- M Veerabadhran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - D Gnanasekaran
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - J Wei
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China
| | - F Yang
- Hunan Provincial Key Laboratory of Clinical Epidemiology, Xiangya School of Public Health, Central South University, Changsha, Hunan, China.,Hunan Province Key Laboratory of Typical Environmental Pollution and Health Hazards, School of Public Health, University of South China, Hengyang, China
| |
Collapse
|
11
|
Awasthi MK, Sarsaiya S, Patel A, Juneja A, Singh RP, Yan B, Awasthi SK, Jain A, Liu T, Duan Y, Pandey A, Zhang Z, Taherzadeh MJ. Refining biomass residues for sustainable energy and bio-products: An assessment of technology, its importance, and strategic applications in circular bio-economy. RENEWABLE AND SUSTAINABLE ENERGY REVIEWS 2020; 127:109876. [DOI: 10.1016/j.rser.2020.109876] [Citation(s) in RCA: 74] [Impact Index Per Article: 18.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
12
|
Zhang L, Li F, Kuroki A, Loh KC, Wang CH, Dai Y, Tong YW. Methane yield enhancement of mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste using algal biochar: Semi-continuous operation and microbial community analysis. BIORESOURCE TECHNOLOGY 2020; 302:122892. [PMID: 32028149 DOI: 10.1016/j.biortech.2020.122892] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2019] [Revised: 01/21/2020] [Accepted: 01/22/2020] [Indexed: 06/10/2023]
Abstract
The impact of algal biochar addition on mesophilic and thermophilic anaerobic co-digestion of algal biomass and food waste was investigated with a focus on semi-continuous operations and functional microbial communities. Under batch co-digestion, the highest co-digestion synergy was observed for a mixture of 25% food waste and 75% algal biomass. During semi-continuous co-digestion of 25% food waste-75% algal biomass mixture, biochar amended digesters exhibited a 12-54% increase in average methane yield (275.8-394.6 mL/gVS) compared to the controls. Elevated temperature induced narrow distributions of volatile fatty acids (VFAs) by inhibiting the production of branched VFAs. Genus Proteiniphilum was selectively enriched by 3.2 folds in mesophilic digesters with biochar amendment while genus Defluviitoga was selectively enriched in thermophilic digesters due to elevated temperature. Methanogenic communities were significantly different in mesophilic and thermophilic digesters. Biochar amendment contributed to shifts in the predominant methanogens leading to a more balanced state of two methanogenic pathways.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Fanghua Li
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Agnès Kuroki
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Chi-Hwa Wang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore
| | - Yanjun Dai
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, 117585, Singapore.
| |
Collapse
|
13
|
Solé-Bundó M, Garfí M, Ferrer I. Pretreatment and co-digestion of microalgae, sludge and fat oil and grease (FOG) from microalgae-based wastewater treatment plants. BIORESOURCE TECHNOLOGY 2020; 298:122563. [PMID: 31841823 DOI: 10.1016/j.biortech.2019.122563] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2019] [Revised: 12/02/2019] [Accepted: 12/03/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to assess the co-digestion of residual biomass flows generated in microalgae-based wastewater treatment plants: microalgae, primary sludge and fat, oil and grease (FOG), with and without microalgae thermal pretreatment. The results evidenced the high methane yield of FOG (563 mL CH4/g VS) as compared to microalgae (140 mL CH4/gVS) and sludge (299 mL CH4/g VS). The methane yield of microalgae and sludge co-digestion (50-50% VS) was increased by 25 and 42% by adding 10 and 20% VS of FOG, respectively. Moreover, co-digestion trials improved the anaerobic digestion first-order kinetics by up to 67%. Regarding the thermal pretreatment, it increased the methane yield of microalgae by 60%, and 15% upon co-digestion with sludge and FOG. Therefore, co-digestion of microalgae, primary sludge and FOG appears as a promising strategy to enhance the biogas production, hence bioenergy recovery from wastewater, even without pretreatment.
Collapse
Affiliation(s)
- Maria Solé-Bundó
- GEMMA Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·Barcelona Tech, c/Jordi Girona 1-3, Building D1, E 08034 Barcelona, Spain
| | - Marianna Garfí
- GEMMA Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·Barcelona Tech, c/Jordi Girona 1-3, Building D1, E 08034 Barcelona, Spain
| | - Ivet Ferrer
- GEMMA Group of Environmental Engineering and Microbiology, Department of Civil and Environmental Engineering, Universitat Politècnica de Catalunya·Barcelona Tech, c/Jordi Girona 1-3, Building D1, E 08034 Barcelona, Spain.
| |
Collapse
|
14
|
Wang S, Zhou Z, Li F, Ye J, Cai Y, Zhang P, Nabi M. Thermal effects. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2019; 91:1097-1102. [PMID: 31408917 DOI: 10.1002/wer.1201] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2019] [Revised: 07/04/2019] [Accepted: 08/07/2019] [Indexed: 06/10/2023]
Abstract
This review focuses on the research literature published in 2018 relating to thermal effects in wastewater and solid waste treatment. This review is divided into the following sections: treatment of wastewater and sludge, removal and recovery of nitrogen and phosphorus, reduction and recovery of heavy metals, membrane technology, and treatment and disposal of solid wastes. PRACTITIONER POINTS: Thermal effect plays an important role in the treatment of wastewater and sewage sludge. Recovery of nitrogen and phosphorus from wastewater and sewage sludge offers an excellent feedstock for soil amendment. Increase of treatment temperature facilitates removal and recovery of heavy metals from water and soil environment.
Collapse
Affiliation(s)
- Siqi Wang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Zeyan Zhou
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Fan Li
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Junpei Ye
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Yajing Cai
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Panyue Zhang
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| | - Mohammad Nabi
- College of Environmental Science and Engineering, Beijing Forestry University, Beijing, China
| |
Collapse
|
15
|
Adarme OFH, Baêta BEL, Filho JBG, Gurgel LVA, Aquino SFD. Use of anaerobic co-digestion as an alternative to add value to sugarcane biorefinery wastes. BIORESOURCE TECHNOLOGY 2019; 287:121443. [PMID: 31103937 DOI: 10.1016/j.biortech.2019.121443] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 05/04/2019] [Accepted: 05/07/2019] [Indexed: 06/09/2023]
Abstract
In this study the anaerobic co-digestion (AcD) of sugarcane biorefinery by-products, i.e. hemicelluloses hydrolysate (HH) (obtained by hydrothermal pretreatment of sugarcane bagasse), vinasse, yeast extract (YE) and sugarcane bagasse fly ashes (SBFA), was optimized by means of biochemical methane potential experiments. The best experimental conditions of AcD (25-75% HH-to-vinasse mixture ratio; 1.0 g L-1 YE; 15 g L-1 SBFA and 100-0% HH-to-Vinasse; 1.5 g L-1 YE; 45 g L-1 SBFA) led to the production of 0.279 and 0.267 Nm3 of CH4 per kg of chemical oxygen demand (COD) with an energy surplus of 0.43 and 0.34 MJ kg SB-1, respectively. Adsorption experiments using SBFA were carried out and showed this residue could adsorb up to 61.71 and 17.32 mg g-1 of 5-hydroxymethyl-2-furfuraldehyde and 2-furfuraldehyde, thereby reducing toxicity and improving biogas production.
Collapse
Affiliation(s)
- Oscar Fernando Herrera Adarme
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, 35400-000 Ouro Preto, Brazil
| | - Bruno Eduardo Lobo Baêta
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, 35400-000 Ouro Preto, Brazil
| | - Jose Balena Gabriel Filho
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, 35400-000 Ouro Preto, Brazil
| | - Leandro Vinícius Alves Gurgel
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, 35400-000 Ouro Preto, Brazil
| | - Sérgio Francisco de Aquino
- Environmental and Chemical Technology Group, Department of Chemistry, Federal University of Ouro Preto, Campus Universitário Morro do Cruzeiro, Bauxita s/n, 35400-000 Ouro Preto, Brazil.
| |
Collapse
|
16
|
|