1
|
Zhang H, Yang K, Tao Y, Yang Q, Xu L, Liu C, Ma L, Xiao R. Biomass directional pyrolysis based on element economy to produce high-quality fuels, chemicals, carbon materials - A review. Biotechnol Adv 2023; 69:108262. [PMID: 37758024 DOI: 10.1016/j.biotechadv.2023.108262] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Revised: 09/01/2023] [Accepted: 09/23/2023] [Indexed: 10/03/2023]
Abstract
Biomass is regarded as the only carbon-containing renewable energy source and has performed an increasingly important role in the gradual substitution of conventional fossil energy, which also contributes to the goals of carbon neutrality. In the past decade, the academic field has paid much greater attention to the development of biomass pyrolysis technologies. However, most biomass conversion technologies mainly derive from the fossil fuel industry, and it must be noticed that the large element component difference between biomass and traditional fossil fuels. Thus, it's necessary to develop biomass directional pyrolysis technology based on the unique element distribution of biomass for realizing enrichment target element (i.e., element economy). This article provides a broad review of biomass directional pyrolysis to produce high-quality fuels, chemicals, and carbon materials based on element economy. The C (carbon) element economy of biomass pyrolysis is realized by the production of high-performance carbon materials from different carbon sources. For efficient H (hydrogen) element utilization, high-value hydrocarbons could be obtained by the co-pyrolysis or catalytic pyrolysis of biomass and cheap hydrogen source. For improving the O (oxygen) element economy, different from the traditional hydrodeoxygenation (HDO) process, the high content of O in biomass would also become an advantage because biomass is an appropriate raw material for producing oxygenated liquid additives. Based on the N (nitrogen) element economy, the recent studies on preparing N-containing chemicals (or N-rich carbon materials) are reviewed. Moreover, the feasibility of the biomass poly-generation industrialization and the suitable process for different types of target products are also mentioned. Moreover, the enviro-economic assessment of representative biomass pyrolysis technologies is analyzed. Finally, the brief challenges and perspectives of biomass pyrolysis are provided.
Collapse
Affiliation(s)
- Huiyan Zhang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| | - Ke Yang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Yujie Tao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Qing Yang
- Department of New Energy Science and Technology, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, PR China
| | - Lujiang Xu
- College of Engineering, Nanjing Agricultural University, Nanjing 210031, PR China
| | - Chao Liu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Longlong Ma
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China
| | - Rui Xiao
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, School of Energy and Environment, Southeast University, Nanjing 210096, PR China.
| |
Collapse
|
2
|
Wang X, Zuo L, Wang Y, Zhen M, Xu L, Kong W, Shen B. Electrochemical Performance of Nitrogen Self-Doping Carbon Materials Prepared by Pyrolysis and Activation of Defatted Microalgae. Molecules 2023; 28:7280. [PMID: 37959701 PMCID: PMC10648935 DOI: 10.3390/molecules28217280] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2023] [Revised: 10/21/2023] [Accepted: 10/23/2023] [Indexed: 11/15/2023] Open
Abstract
Pyrolysis and activation processes are important pathways to utilize residues after lipid extraction from microalgae in a high-value way. The obtained microalgae-based nitrogen-doped activated carbon has excellent electrochemical performance. It has the advantage of nitrogen self-doping using high elemental nitrogen in microalgae. In this study, two kinds of microalgae, Nanochloropsis and Chlorella, were used as feedstock for lipid extraction. The microalgae residue was firstly pyrolyzed at 500 °C to obtain biochar. Then, nitrogen-doped activated carbons were synthesized at an activation temperature of 700-900 °C with different ratios of biochar and KOH (1:1, 1:2, and 1:4). The obtained carbon materials presented rich nitrogen functional groups, including quaternary-N, pyridine-N-oxide, pyrrolic-N, and pyridinic-N. The nitrogen content of microalgae-based activated carbon material was up to 2.62%. The obtained materials had a specific surface area of up to 3186 m2/g and a pore volume in the range of 0.78-1.54 cm3/g. The microporous pore sizes of these materials were distributed at around 0.4 nm. Through electrochemical testing such as cyclic voltammetry and galvanostatic charge-discharge of materials, the materials exhibited good reversibility and high charge-discharge efficiency. The sample, sourced from microalgae Chlorella residue at activation conditions of 700 °C and biochar/KOH = 1:4, exhibited excellent endurance of 94.1% over 5000 cycles at 2 A/g. Its high specific capacitance was 432 F/g at 1 A/g.
Collapse
Affiliation(s)
- Xin Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Lu Zuo
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Yi Wang
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Mengmeng Zhen
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Lianfei Xu
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Wenwen Kong
- Tianjin Key Laboratory of Clean Energy and Pollution Control, School of Energy and Environmental Engineering, Hebei University of Technology, Tianjin 300401, China; (L.Z.); (Y.W.); (M.Z.); (L.X.); (W.K.)
| | - Boxiong Shen
- School of Chemical Engineering, Hebei University of Technology, Tianjin 300401, China;
- Hebei Engineering Research Center of Pollution Control in Power System, Tianjin 300401, China
| |
Collapse
|
3
|
Chen S, Hao HC, Zhang SZ, Jiang H. Selectively retaining nutrients in biochar in magnesium added two-zone staged copyrolysis of blue algae and corn gluten wastes. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 335:117583. [PMID: 36848804 DOI: 10.1016/j.jenvman.2023.117583] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/09/2023] [Revised: 02/18/2023] [Accepted: 02/23/2023] [Indexed: 06/18/2023]
Abstract
The disposal of blue algae (BA) and corn gluten (CG) wastes and the simultaneous recovery of abundant phosphorus (P) and nitrogen (N) by pyrolysis to obtain biochars with high fertility is a promising strategy. However, pyrolysis of BA or CG alone by a conventional reactor cannot reach the target. Herein, we propose a novel MgO-enhanced N and P recovery method by designing a two-zone staged pyrolysis reactor to highly efficiently recover N and P with easily available plant forms in BA and CG. The results show that a 94.58% total phosphorus (TP) retention rate was achieved by means of the special two-zone staged pyrolysis method, in which the effective P (Mg2PO4(OH) and R-NH-P) accounted for 52.9% of TP, while the total nitrogen (TN) reached 4.1 wt%. In this process, stable P was formed first at 400 °C to avoid rapid volatilization and then to form hydroxyl P at 800 °C. Meanwhile, Mg-BA char in the lower zone can efficiently absorb N-containing gas generated by the upper CG, forming dispersible N. This work is of great significance for improving the green utilization value of P and N in BA and CG.
Collapse
Affiliation(s)
- Shuo Chen
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong-Chao Hao
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Shu-Zhe Zhang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China
| | - Hong Jiang
- CAS Key Laboratory of Urban Pollutant Conversion, Department of Applied Chemistry, University of Science and Technology of China, Hefei, 230026, China.
| |
Collapse
|
4
|
Pahlavan F, Ghasemi H, Yazdani H, Fini EH. Soil amended with Algal Biochar Reduces Mobility of deicing salt contaminants in the environment: An atomistic insight. CHEMOSPHERE 2023; 323:138172. [PMID: 36804634 DOI: 10.1016/j.chemosphere.2023.138172] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2022] [Revised: 02/15/2023] [Accepted: 02/16/2023] [Indexed: 06/18/2023]
Abstract
Soil-based filter media in green infrastructure buffers only a minor portion of deicing salt in surface water, allowing most of that to infiltrate into groundwater, thus negatively impacting drinking water and the aquatic ecosystem. The capacity of the filter medium to adsorb and fixate sodium (Na+) and chloride (Cl-) ions has been shown to improve by biochar amendment. The extent of improvement, however, depends on the type and density of functional groups on the biochar surface. Here, we use density functional theory (DFT) and molecular dynamics (MD) simulations to show the merits of biochar grafted by nitrogenous functional groups to adsorb Cl-. Our group has shown that such functional groups are abundant in biochar made from protein-rich algae feedstock. DFT is used to model algal biochar surface and its possible interactions with Cl- through two possible mechanisms: direct adsorption and cation (Na+)-bridging. Our DFT calculations reveal strong adsorption of Cl- to the biochar surface through hydrogen bonding and electrostatic attractions between the ions and active sites on biochar. MD results indicate the efficacy of algal biochar in delaying chloride diffusion. This study demonstrates the potential of amending soils with algal biochar as a dual-targeting strategy to sequestrate carbon and prevent deicing salt contaminants from leaching into water bodies.
Collapse
Affiliation(s)
- Farideh Pahlavan
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Hamid Ghasemi
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA
| | - Hessam Yazdani
- Department of Civil and Environmental Engineering, University of Missouri , W1024 Lafferre Hall, MO 65211, Columbia
| | - Elham H Fini
- School of Sustainable Engineering and the Built Environment, Ira A. Fulton Schools of Engineering, Arizona State University, 660 S. College Avenue, Tempe, AZ 85287-3005, USA.
| |
Collapse
|
5
|
Zhou S, Zhou Z, Zhu D, Jiang H, Qi Y, Wang S, Jia Y, Wang W. Preparation of covalent triazine-based framework for efficient Cr(VI) removal from water. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2021.127757] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/24/2022]
|
6
|
Wang P, Yan J, Wang S, Xu P, Shen L, Song T. Synergistic effects of lanthanum ferrite perovskite and hydrogen to promote ammonia production during microalgae catalytic pyrolysis process. BIORESOURCE TECHNOLOGY 2021; 340:125641. [PMID: 34364085 DOI: 10.1016/j.biortech.2021.125641] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 07/18/2021] [Accepted: 07/19/2021] [Indexed: 06/13/2023]
Abstract
Ammonia (NH3) production from nitrogen-enriched renewable resources pyrolysis is a green, clean, and sustainable technology. In this paper, lanthanum ferrite perovskite (LaFeO3) and hydrogen (H2) atmosphere were combined to enhance NH3 production during microalgae pyrolysis. The catalytic pyrolysis of microalgae pyrolysis was carried out in a fixed bed reactor. The results show that the synergistic effects between H2 and LaFeO3 promote the fuel-nitrogen transfer into gas phase, while nitrogen in biochar and bio-oil significantly decreases. H2 and LaFeO3 not only favor the conversion of protein-N to pyridinic-N, pyrrolic-N, and quaternary-N in char, but also accelerate the deamination of amides, pyrroles, and pyridines, thus facilitating the formation of NH3. Pyrolysis temperature plays a considerable role in distribution and conversion of N-species. Increasing temperature increases NH3 and HCN yields, the maximum NH3 yield reaches 47.40 wt% at 800 °C. Moreover, LaFeO3 shows considerable stability during 10 cyclic operations.
Collapse
Affiliation(s)
- Peng Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Jingchun Yan
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Shuyuan Wang
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Peng Xu
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China
| | - Laihong Shen
- Key Laboratory of Energy Thermal Conversion and Control of Ministry of Education, Southeast University, Nanjing 210096, China.
| | - Tao Song
- School of Energy and Mechanical Engineering, Nanjing Normal University, Nanjing 210042, China.
| |
Collapse
|
7
|
Başer B, Yousaf B, Yetis U, Abbas Q, Kwon EE, Wang S, Bolan NS, Rinklebe J. Formation of nitrogen functionalities in biochar materials and their role in the mitigation of hazardous emerging organic pollutants from wastewater. JOURNAL OF HAZARDOUS MATERIALS 2021; 416:126131. [PMID: 34492923 DOI: 10.1016/j.jhazmat.2021.126131] [Citation(s) in RCA: 26] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/08/2021] [Revised: 05/03/2021] [Accepted: 05/12/2021] [Indexed: 06/13/2023]
Abstract
Emerging organic pollutants (EOPs) are serious environmental concerns known for their prominent adverse and hazardous ecological effects, and persistence in nature. Their detrimental impacts have inspired researchers to develop the strategic tools that reduce and overcome the challenges caused by EOPs' rising concentration. As such, biochar becomes as a promising class of biomass-derived functional materials that can be used as low-cost and environmentally-friendly emerging catalysts to remove EOPs. Herein, in-depth synthetic strategies and formation mechanisms of biochar-based nitrogen functionalities during thermochemical conversion are presented. Most prominently, the factors affecting N-surface functionalities in biochar are discussed, emphasizing the most effective N-doping approach, including intrinsic N-doping from biomass feedstock and extrinsic N-doping from exogenous sources. Moreover, biochar-assisted EOPs removal in line with interactions of nitrogen functionalities and contaminants are discussed. The possible reaction mechanisms, i.e., radical and non-radical degradation, physical adsorption, Lewis acid-base interaction, and chemisorption, driven by N-functionalities, are addressed. The unresolved challenges of the potential applications of biochar-mediated functionalities for EOPs removal are emphasized and the outlooks of future research directions are proposed at the end.
Collapse
Affiliation(s)
- Begüm Başer
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Balal Yousaf
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey; CAS-Key Laboratory of Crust-Mantle Materials and the Environments, School of Earth and Space Sciences, University of Science and Technology of China, Hefei 230026, PR China.
| | - Ulku Yetis
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Qumber Abbas
- Department of Environmental Engineering, Middle East Technical University, 06800 Ankara, Turkey
| | - Eilhann E Kwon
- Department of Environment and Energy, Sejong University, 98 Gunja-Dong, Guangjin-Gu, Seoul, South Korea
| | - Shengsen Wang
- College of Environmental Science and Engineering, Yangzhou University, 196W Huayang Rd, Yangzhou, Jiangsu, PR China
| | - Nanthi S Bolan
- College of Engineering, Science and Environment, The University of Newcastle, Callaghan, NSW - 2308, Australia
| | - Jörg Rinklebe
- University of Wuppertal, School of Architecture and Civil Engineering, Institute of Foundation Engineering, Water, and Waste-Management, Soil, and Groundwater-Management, Pauluskirchstraße 7, 42285 Wuppertal, Germany; Department of Environment, Energy and Geoinformatics, Sejong University, 98 Gunja-Dong, Seoul, South Korea
| |
Collapse
|
8
|
Leng L, Yang L, Chen J, Leng S, Li H, Li H, Yuan X, Zhou W, Huang H. A review on pyrolysis of protein-rich biomass: Nitrogen transformation. BIORESOURCE TECHNOLOGY 2020; 315:123801. [PMID: 32673983 DOI: 10.1016/j.biortech.2020.123801] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2020] [Revised: 07/01/2020] [Accepted: 07/04/2020] [Indexed: 06/11/2023]
Abstract
Pyrolysis of protein-rich biomass, such as microalgae, macroalgae, sewage sludge, energy crops, and some lignocellulosic biomass, produces bio-oil with high nitrogen (N) content, sometimes as high as 10 wt% or even higher. Major nitrogenous compounds in bio-oil include amines/amides, N-containing heterocycles, and nitriles. Such bio-oil cannot be used as fuel directly since the high N content will induce massive emission of nitrogen oxides during combustion. The present review comprehensively summarized the effects of biomass compositions (i.e., elemental, biochemical, and mineral compositions) and pyrolysis parameters (i.e., temperature, heating rate, atmosphere, bio-oil collection/fractionation methods, and catalysts) on the contents of N and the N-containing chemical components in bio-oil. The migration and transformation mechanisms of N during the pyrolysis of biomass were then discussed in detail. Finally, the research gaps were identified, followed by the proposals for future investigations to achieve the denitrogenation of bio-oil.
Collapse
Affiliation(s)
- Lijian Leng
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Lihong Yang
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Jiefeng Chen
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Songqi Leng
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Hailong Li
- School of Energy Science and Engineering, Central South University, Changsha, Hunan 410083, China
| | - Hui Li
- State Key Laboratory of the Utilization of Woody Oil Resource, Hunan Academy of Forestry, Changsha 410004, China
| | - Xingzhong Yuan
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, China
| | - Wenguang Zhou
- School of Resources, Environmental & Chemical Engineering, Nanchang University, Nanchang 330031, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
9
|
N Evolution and Physiochemical Structure Changes in Chars during Co-Pyrolysis: Effects of Abundance of Glucose in Fiberboard. ENERGIES 2020. [DOI: 10.3390/en13195105] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Abstract
The simple incineration of wood-based panels (WBPs) waste generates a significant amount of NOx, which has led to urgency in developing a new method for treating the N-containing biomass residues. This work aims to examine the N evolution and physiochemical structural changes during the co-pyrolysis of fiberboard and glucose, where the percentage of glucose in the feedstock was varied from 0% to 70%. It was found that N retention in chars was monotonically increased with increasing use of glucose, achieving ~60% N fixation when the glucose accounted for 70% in the mixture. Pyrrole-N (N-5) and Pyridine-N (N-6) were preferentially formed at high ratios of glucose to fiberboard. While the relevant importance of volatile–char interactions to N retention and transformation could be observed, the volatile–volatile reactions from the two feedstocks played a vital role in the increase in abundance of glucose. With the introduction of glucose, the porous structure and porosity in chars from the co-pyrolysis were dramatically altered, whereas the devolatilization of glucose tended to generate larger pores than the fiberboard. The insignificant changes in carbon structure of all chars revealed by Raman spectroscopy would practically allow us to apply the monosaccharides to the WBPs for regulating N evolution without concerns about its side effects for char carbon structures.
Collapse
|
10
|
Rocha KC, Alonso CG, Leal WGO, Schultz EL, Andrade LA, Ostroski IC. Slow pyrolysis of Spirulina platensis for the production of nitrogenous compounds and potential routes for their separation. BIORESOURCE TECHNOLOGY 2020; 313:123709. [PMID: 32593145 DOI: 10.1016/j.biortech.2020.123709] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/05/2020] [Revised: 06/15/2020] [Accepted: 06/16/2020] [Indexed: 06/11/2023]
Abstract
The potential of microalgae Spirulina platensis to the production of nitrogenous compounds in liquid fraction via slow pyrolysis was evaluated. Aiming to identify the best condition which maximized liquid yield, the effects of operational conditions mass load, temperature, and heating rate were evaluated using Experimental Design and Response Surface Methodology techniques and optimized with Differential Evolution methodology. The composition of liquid fraction was analyzed by GC-MS and the effect of the same operational conditions in nitrogenous compounds formation was analyzed. The separation of nitrogenous compounds was evaluated by extraction and adsorption techniques. The results indicated that the heating rate significantly impacted both the liquid yield and the formation of the nitrogenous compounds. At optimal conditions, a maximum liquid yield of 64.59% was obtained. The extraction and adsorption processes showed to be promising routes for the purification of nitrogenous compounds, however, extraction was more selective to separate them.
Collapse
Affiliation(s)
- K C Rocha
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| | - C G Alonso
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| | - W G O Leal
- Embrapa Agroenergia, CEP 70770 901 Brasília, DF, Brazil
| | - E L Schultz
- Embrapa Agroenergia, CEP 70770 901 Brasília, DF, Brazil
| | - L A Andrade
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil.
| | - I C Ostroski
- Institute of Chemistry, Federal University of Goiás, CEP 74690-900 Goiânia, GO, Brazil
| |
Collapse
|
11
|
Li Y, Xing B, Ding Y, Han X, Wang S. A critical review of the production and advanced utilization of biochar via selective pyrolysis of lignocellulosic biomass. BIORESOURCE TECHNOLOGY 2020; 312:123614. [PMID: 32517889 DOI: 10.1016/j.biortech.2020.123614] [Citation(s) in RCA: 129] [Impact Index Per Article: 32.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/15/2020] [Revised: 05/29/2020] [Accepted: 05/29/2020] [Indexed: 05/10/2023]
Abstract
Biochar is a carbon-rich product obtained from the thermo-chemical conversion of biomass. Studying the evolution properties of biochar by in-situ modification or post-modification is of great significance for improving the utilisation value of lignocellulosic biomass. In this paper, the production methods of biochar are reviewed. The effects of the biomass feedstock characteristics, production processes, reaction conditions (temperature, heating rate, etc.) as well as in-situ activation, heteroatomic doping, and functional group modification on the physical and chemical properties of biochar are compared. Based on its unique physicochemical properties, recent research advances with respect to the use of biochar in pollutant adsorbents, catalysts, and energy storage are reviewed. The relationship between biochar structure and its application are also revealed. It is suggested that a more effective control of biochar structure and its corresponding properties should be further investigated to develop a variety of biochar for targeted applications.
Collapse
Affiliation(s)
- Yunchao Li
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Bo Xing
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yan Ding
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Xinhong Han
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Shurong Wang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
12
|
Leng L, Xu S, Liu R, Yu T, Zhuo X, Leng S, Xiong Q, Huang H. Nitrogen containing functional groups of biochar: An overview. BIORESOURCE TECHNOLOGY 2020; 298:122286. [PMID: 31690478 DOI: 10.1016/j.biortech.2019.122286] [Citation(s) in RCA: 121] [Impact Index Per Article: 30.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/16/2019] [Revised: 10/15/2019] [Accepted: 10/16/2019] [Indexed: 05/22/2023]
Abstract
Biochar is a carbonaceous material produced by thermal treatment, e.g., pyrolysis, of biomass in oxygen-deficient or oxygen-free environment. Nitrogen containing functional groups of biochar have a wide range of applications, such as adsorption of pollutants, catalysis, and energy storage. To date, many methods have been developed and used to strengthen the function of N-containing biochar to promote its application and commercialization. However, there is no review available specifically on the development of biochar technologies concerning nitrogen-containing functional groups. This paper aims to present a review on fractionation, analysis, formation, engineering, and application of N-functional groups of biochar. The effect of influencing factors on biochar N-functional groups, including biomass feedstock, pyrolysis parameters (e.g., temperature), and additional treatment (e.g., N-doping) were discussed in detail to reveal the formation mechanisms and performance of the N-functional groups. Future prospective investigation directions on the analysis and engineering of biochar N-functional groups were also proposed.
Collapse
Affiliation(s)
- Lijian Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Siyu Xu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Renfeng Liu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Ting Yu
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Ximeng Zhuo
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Songqi Leng
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Qin Xiong
- School of Resources, Environmental & Chemical Engineering and Key Laboratory of Poyang Lake Environment and Resource Utilization, Nanchang University, Nanchang 330031, China
| | - Huajun Huang
- School of Land Resources and Environment, Jiangxi Agricultural University, Nanchang 330045, China.
| |
Collapse
|
13
|
Chen L, Yu Z, Xu H, Wan K, Liao Y, Ma X. Microwave-assisted co-pyrolysis of Chlorella vulgaris and wood sawdust using different additives. BIORESOURCE TECHNOLOGY 2019; 273:34-39. [PMID: 30399608 DOI: 10.1016/j.biortech.2018.10.086] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2018] [Revised: 10/29/2018] [Accepted: 10/30/2018] [Indexed: 06/08/2023]
Abstract
The microwave-assisted co-pyrolysis of Chlorella vulgaris (CV), wood sawdust (WS) and their blends with additives were investigated. There was a higher liquid and solid yield with silicon carbide (SiC) than activated carbon (AC) in most of samples. Microwave-assisted pyrolysis with additives behaved a positive effect on deoxygenation and aromatization, but not apparent denitrification. With the increase of CV proportion, aromatic hydrocarbons decreased, but aliphatic hydrocarbons increased using AC. High selectivity of phenols was reached at the sample of WS (relative content as 43.6%) using SiC; High selectivity of alkenes was reached at the sample of CV (relative content as 31.2%) and alkanes at the blend sample of 70% CV and 30% WS (relative content as 9.45%). Bio-oil and biochar from microwave-assisted pyrolysis of WS had higher calorific value than that of CV both with AC and SiC. Calorific value of bio-oil decreased by 33.3% after mixing CV with WS.
Collapse
Affiliation(s)
- Lin Chen
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Zhaosheng Yu
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China.
| | - Hao Xu
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Kuangyu Wan
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Yanfen Liao
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| | - Xiaoqian Ma
- School of Electric Power, South China University of Technology, 510640 Guangzhou, China; Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, 510640 Guangzhou, China
| |
Collapse
|
14
|
Yu J, Maliutina K, Tahmasebi A. A review on the production of nitrogen-containing compounds from microalgal biomass via pyrolysis. BIORESOURCE TECHNOLOGY 2018; 270:689-701. [PMID: 30206030 DOI: 10.1016/j.biortech.2018.08.127] [Citation(s) in RCA: 28] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2018] [Revised: 08/29/2018] [Accepted: 08/30/2018] [Indexed: 06/08/2023]
Abstract
Nitrogen-containing compounds (NCCs) which may be produced from nitrogen-rich biomass such as microalgae, may find important biochemical and biomedical applications. This review summarizes the recent knowledge about the formation mechanism of NCCs during pyrolysis of microalgae. The key technical and biological aspects of microalgae and pyrolysis process parameters, which influence the formation of NCCs, have been analyzed. The mechanism of formation of NCCs such as indole, pyridine, amides, and nitriles during primary and secondary pyrolysis reactions are elaborated. It has been emphasized that the pyrolysis conditions and the use of catalysts had significant impacts on the yields and compositions of NCCs. The available information shows that the transformation of nitrogen and nitrogen functionalities during pyrolysis are strongly associated with the formation process of NCCs. The challenges in the development of pyrolysis technologies for the production of NCCs from microalgae are identified with future research needs identified.
Collapse
Affiliation(s)
- Jianglong Yu
- Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia.
| | - Kristina Maliutina
- Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China
| | - Arash Tahmasebi
- Key Laboratory of Advanced Coal and Coking Technology of Liaoning Province, School of Chemical Engineering, University of Science and Technology Liaoning, Anshan 114051, China; Chemical Engineering, University of Newcastle, Callaghan, NSW 2308, Australia
| |
Collapse
|