1
|
Shang W, Zhang YM, Ding MZ, Sun HZ, He JX, Cheng JS. Improved engineered fungal-bacterial commensal consortia simultaneously degrade multiantibiotics and biotransform food waste into lipopeptides. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 371:123177. [PMID: 39500163 DOI: 10.1016/j.jenvman.2024.123177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2024] [Revised: 10/14/2024] [Accepted: 10/31/2024] [Indexed: 11/28/2024]
Abstract
Resource utilization of food waste is necessary to reduce environmental pollution. However, antibiotics can enter the environment through food waste, resulting in antibiotic residues, which pose potential risks to human health. In this study, commensal artificial consortia were constructed through intercellular adaptation to simultaneously degrade antibiotics and bioconvert food waste into lipopeptides. The biodegradation efficiency of oxytetracycline in the three-strain consortium, which contained lipopeptide-producing Bacillus amyloliquefaciens HM618, high-level proline-producing Corynebacterium glutamate, and laccase-producing Pichia pastoris, was around 100% in the food waste medium at 72 h; this was higher than that in the pure culture of P. pastoris-Lac. Sulfamethoxazole could be removed at 48 h. However, the lipopeptide level in the three-strain consortium was only 77 mg/L. The four-strain consortium containing free fatty acid-producing Yarrowia lipolytica improved the lipopeptide level to around 218 mg/L. The degradation efficiency of oxytetracycline in the four-strain consortium was 100% at 48 h; however, only 56% of the sulfamethoxazole was removed over 96 h. Three five-strain consortia were formed by introducing recombinant manganese peroxidase-producing P. pastoris, recombinant HM618 with high-level amylase, and serine-producing C. glutamicum. In low starch food waste, the highest degradation efficiency of sulfamethoxazole was 71%, while oxytetracycline could be completely removed at 48 h. However, oxytetracycline inhibited starch degradation and lipopeptide production. The high level of starch improved lipopeptide synthesis to 1280 mg/L. The results of this study provide a feasible strategy for the resource utilization of inferior biomass food waste.
Collapse
Affiliation(s)
- Wei Shang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Yu-Miao Zhang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Ming-Zhu Ding
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Hui-Zhong Sun
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Jia-Xuan He
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, PR China.
| |
Collapse
|
2
|
Antonopoulou G, Kamilari M, Georgopoulou D, Ntaikou I. Using Extracted Sugars from Spoiled Date Fruits as a Sustainable Feedstock for Ethanol Production by New Yeast Isolates. Molecules 2024; 29:3816. [PMID: 39202895 PMCID: PMC11357582 DOI: 10.3390/molecules29163816] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 07/27/2024] [Accepted: 08/06/2024] [Indexed: 09/03/2024] Open
Abstract
This study focuses on investigating sugar recovery from spoiled date fruits (SDF) for sustainable ethanol production using newly isolated yeasts. Upon their isolation from different food products, yeast strains were identified through PCR amplification of the D1/D2 region and subsequent comparison with the GenBank database, confirming isolates KKU30, KKU32, and KKU33 as Saccharomyces cerevisiae; KKU21 as Zygosaccharomyces rouxii; and KKU35m as Meyerozyma guilliermondii. Optimization of sugar extraction from SDF pulp employed response surface methodology (RSM), varying solid loading (20-40%), temperature (20-40 °C), and extraction time (10-30 min). Linear models for sugar concentration (R1) and extraction efficiency (R2) showed relatively high R2 values, indicating a good model fit. Statistical analysis revealed significant effects of temperature and extraction time on extraction efficiency. The results of batch ethanol production from SDF extracts using mono-cultures indicated varying consumption rates of sugars, biomass production, and ethanol yields among strains. Notably, S. cerevisiae strains exhibited rapid sugar consumption and high ethanol productivity, outperforming Z. rouxii and M. guilliermondii, and they were selected for scaling up the process at fed-batch mode in a co-culture. Co-cultivation resulted in complete sugar consumption and higher ethanol yields compared to mono-cultures, whereas the ethanol titer reached 46.8 ± 0.2 g/L.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Department of Sustainable Agriculture, University of Patras, 2 Georgiou Seferi St., GR-30100 Agrinio, Greece;
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, GR-26504 Patra, Greece
| | - Maria Kamilari
- Department of Plant Protection Patras, Institute of Industrial and Forage Crops, Hellenic Agricultural Organization ‘DIMITRA’, GR-26442 Patras, Greece
- Health Faculty, Metropolitan College, Campus of Patras, 50 Ermou St., GR-26221 Patra, Greece;
| | - Dimitra Georgopoulou
- Department of Chemical Engineering, University of Patras, GR-26500 Patra, Greece;
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, GR-26504 Patra, Greece
- Department of Civil Engineering, University of Patras, GR-26500 Patra, Greece
| |
Collapse
|
3
|
Zhang Y, He W, Wang L, Su W, Chen H, Li A, Chen J. Penetrating the ultra-tough yeast cell wall with finite element analysis model-aided design of microtools. iScience 2024; 27:109503. [PMID: 38591007 PMCID: PMC11000014 DOI: 10.1016/j.isci.2024.109503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2023] [Revised: 02/27/2024] [Accepted: 03/13/2024] [Indexed: 04/10/2024] Open
Abstract
Microinjecting yeast cells has been challenging for decades with no significant breakthrough due to the ultra-tough cell wall and low stiffness of the traditional injector tip at the micro-scale. Penetrating this protection wall is the key step for artificially bringing foreign substance into the yeast. In this paper, a yeast cell model was built by using finite element analysis (FEA) method to analyze the penetrating process. The key parameters of the yeast cell wall in the model (the Young's modulus, the shear modulus, and the Lame constant) were calibrated according to a general nanoindentation experiment. Then by employing the calibrated model, the injection parameters were optimized to minimize the cell damage (the maximum cell deformation at the critical stress of the cell wall). Key guidelines were suggested for penetrating the cell wall during microinjection.
Collapse
Affiliation(s)
- Yanfei Zhang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Wende He
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Li Wang
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Weiguang Su
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Hao Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Anqing Li
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| | - Jun Chen
- School of Mechanical Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250353, China
- Shandong Institute of Mechanical Design and Research, Jinan 250353, China
| |
Collapse
|
4
|
Bishnoi S, Sharma S, Agrawal H. Exploration of the Potential Application of Banana Peel for Its Effective Valorization: A Review. Indian J Microbiol 2023; 63:398-409. [PMID: 38031613 PMCID: PMC10681972 DOI: 10.1007/s12088-023-01100-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Accepted: 08/22/2023] [Indexed: 12/01/2023] Open
Abstract
The production of banana peel by the food-processing industry is substantial and the disposal of this waste material has become a matter of concern. However, recent studies have demonstrated that banana peel is a rich source of biologically active compounds that can be transformed into valuable products. This review aims to explore the potential of converting banana peel into valuable products and provides a comprehensive analysis of the physical and chemical composition of banana peel. Additionally, the utilization of banana peel as a substrate to produce animal feed, bio fertilizer, dietary fibers, renewable energy, industrial enzymes, and nanomaterials has been extensively studied. According to the researches that has been done so far, it is clear that banana peel has a broad range of applications and its effective utilization through biorefinery strategies can maximize its economic benefits. Based on previous studies, A plan for feasibility of a banana peel biorefinery has been put up which suggest its potential as a valuable source of renewable energy and high-value products. The utilization of banana peel through biorefinery strategies can provide a sustainable solution for waste management and contribute to the development of a circular economy.
Collapse
Affiliation(s)
- Shreya Bishnoi
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar, Punjab India
| | - Shweta Sharma
- Department of Food Technology and Nutrition, School of Agriculture, Lovely Professional University, Jalandhar, Punjab India
| | - Himani Agrawal
- Institute of Bioorganic Chemistry, Polish Academy of Sciences, Noskowskiego 12/14, 61-704, Poznan, Poland
| |
Collapse
|
5
|
Troiano DT, Hofmann T, Brethauer S, Studer MHP. Toward optimal use of biomass as carbon source for chemical bioproduction. Curr Opin Biotechnol 2023; 81:102942. [PMID: 37062153 DOI: 10.1016/j.copbio.2023.102942] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2022] [Revised: 03/04/2023] [Accepted: 03/17/2023] [Indexed: 04/18/2023]
Abstract
Biomass is widely identified as a promising, renewable replacement for fossil feedstocks in the production of energy, fuels, and chemicals. However, the sustainable supply of biomass is limited. Economic and ecological criteria support prioritization of biomass as a carbon source for organic chemicals; however, utilization for energy currently dominates. Therefore, to optimize the use of available biomass feedstock, biorefining development must focus on high carbon efficiencies and enabling the conversion of all biomass fractions, including lignin and fermentation-derived CO2. Additionally, novel technological platforms should allow the incorporation of nontraditional, currently underutilized carbon feedstocks (e.g. manure) into biorefining processes. To this end, funneling of waste feedstocks to a single product (e.g. methane) and subsequent conversion to chemicals is a promising approach.
Collapse
Affiliation(s)
- Derek T Troiano
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Tobias Hofmann
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Simone Brethauer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland
| | - Michael H-P Studer
- School of Agricultural, Forest, and Food Sciences, Bern University of Applied Sciences, CH-3052 Zollikofen, Switzerland.
| |
Collapse
|
6
|
Potential and Restrictions of Food-Waste Valorization through Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030274] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/15/2023]
Abstract
Food losses (FL) and waste (FW) occur throughout the food supply chain. These residues are disposed of on landfills producing environmental issues due to pollutants released into the air, water, and soil. Several research efforts have focused on upgrading FL and FW in a portfolio of added-value products and energy vectors. Among the most relevant research advances, biotechnological upgrading of these residues via fermentation has been demonstrated to be a potential valorization alternative. Despite the multiple investigations performed on the conversion of FL and FW, a lack of comprehensive and systematic literature reviews evaluating the potential of fermentative processes to upgrade different food residues has been identified. Therefore, this article reviews the use of FL and FW in fermentative processes considering the composition, operating conditions, platforms, fermentation product application, and restrictions. This review provides the framework of food residue fermentation based on reported applications, experimental, and theoretical data. Moreover, this review provides future research ideas based on the analyzed information. Thus, potential applications and restrictions of the FL and FW used for fermentative processes are highlighted. In the end, food residues fermentation must be considered a mandatory step toward waste minimization, a circular economy, and the development of more sustainable production and consumption patterns.
Collapse
|
7
|
Food and fruit waste valorisation for pectin recovery: Recent process technologies and future prospects. Int J Biol Macromol 2023; 235:123929. [PMID: 36882142 DOI: 10.1016/j.ijbiomac.2023.123929] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2022] [Revised: 01/17/2023] [Accepted: 03/01/2023] [Indexed: 03/09/2023]
Abstract
Pectin possesses a dual property of resistance and flexibility and thus has diverse commercial value which has generated research interest on this versatile biopolymer. Formulated products using pectin could be useful in food, pharma, foam, plasticiser and paper substitute industries. Pectin is structurally tailor-made for greater bioactivity and diverse applications. Sustainable biorefinery leaves greener footprints while producing high-value bioproducts like pectin. The essential oils and polyphenols obtained as byproducts from a pectin-based biorefinery are useful in cosmetics, toiletries and fragrance industries. Pectin can be extracted from organic sources following eco-friendly strategies, and the extraction techniques, structural alterations and the applications are continually being upgraded and standardized. Pectin has great applications in diverse areas, and its green synthesis is a welcome development. In future, growing industrial application of pectin is anticipated as research orients on biopolymers, biotechnologies and renewable source-based processes. As the world is gradually adopting greener strategies in sync with the global sustainable development goal, active involvement of policy makers and public participation are prime. Governance and policy framing are essential in the transition of the world economy towards circularity since green circular bioeconomy is ill-understood among the public in general and within the administrative circles in particular. Concerted efforts by researchers, investors, innovators, and policy and decision makers to integrate biorefinery technologies as loops within loop of biological structures and bioprocesses is suggested. The review focusses on generation of the different nature of food wastes including fruits and vegetables with cauterization of their components. It discusses the innovative extraction and biotransformation approaches for these waste conversions into value-added products at cost-effective and eco-friendly way. This article compiles numerous effective and efficient and green way pectin extraction techniques with their advantages with varying success in an integrated manner.
Collapse
|
8
|
Succinic Production from Source-Separated Kitchen Biowaste in a Biorefinery Concept: Focusing on Alternative Carbon Dioxide Source for Fermentation Processes. FERMENTATION-BASEL 2023. [DOI: 10.3390/fermentation9030259] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/08/2023]
Abstract
This study presents sustainable succinic acid production from the organic fraction of household kitchen wastes, i.e., the organic fraction of household kitchen waste (OFHKW), pretreated with enzymatic hydrolysis (100% cocktail dosage: 62.5% Cellic® CTec2, 31%% β-Glucanase and 6.5% Cellic ® HTec2, cellulase activity of 12.5 FPU/g-glucan). For fermentation, A. succinogenes was used, which consumes CO2 during the process. OFHKW at biomass loading > 20% (dry matter) resulted in a final concentration of fermentable sugars 81–85 g/L and can be treated as a promising feedstock for succinic production. Obtained results state that simultaneous addition of gaseous CO2 and MgCO3 (>20 g/dm3) resulted in the highest sugar conversion (79–81%) and succinic yields (74–75%). Additionally, CH4 content in biogas, used as a CO2 source, increased by 21–22% and reached 91–92% vol. Liquid fraction of source-separated kitchen biowaste and the residue after succinic fermentation were successfully converted into biogas. Results obtained in this study clearly document the possibility of integrated valuable compounds (succinic acid) and energy (biogas) production from the organic fraction of household kitchen wastes (OFHKW).
Collapse
|
9
|
Miao CH, Wang XF, Qiao B, Xu QM, Cao CY, Cheng JS. Artificial consortia of Bacillus amyloliquefaciens HM618 and Bacillus subtilis for utilizing food waste to synthetize iturin A. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:72628-72638. [PMID: 35612705 DOI: 10.1007/s11356-022-21029-9] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Accepted: 05/19/2022] [Indexed: 06/15/2023]
Abstract
Food waste is a cheap and abundant organic resource that can be used as a substrate for the production of the broad-spectrum antifungal compound iturin A. To increase the efficiency of food waste biotransformation, different artificial consortia incorporating the iturin A producer Bacillus amyloliquefaciens HM618 together with engineered Bacillus subtilis WB800N producing lipase or amylase were constructed. The results showed that recombinant B. subtilis WB-A13 had the highest amylase activity of 23406.4 U/mL, and that the lipase activity of recombinant B. subtilis WB-L01 was 57.5 U/mL. When strain HM618 was co-cultured with strain WB-A14, the higher yield of iturin A reached to 7.66 mg/L, representing a 32.9% increase compared to the pure culture of strain HM618. In the three-strain consortium comprising strains HM618, WB-L02, and WB-A14 with initial OD600 values of 0.2, 0.15, and 0.15, respectively, the yield of iturin A reached 8.12 mg/L, which was 38.6% higher than the control. Taken together, artificial consortia of B. amyloliquefaciens and recombinant B. subtilis can produce an increased yield of iturin A, which provides a new strategy for the valorization of food waste.
Collapse
Affiliation(s)
- Chang-Hao Miao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Xiao-Feng Wang
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Bin Qiao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Qiu-Man Xu
- Tianjin Key Laboratory of Animal and Plant Resistance, College of Life Science, Tianjin Normal University, Binshuixi Road 393, Xiqing District, Tianjin, 300387, People's Republic of China
| | - Chun-Yang Cao
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China
| | - Jing-Sheng Cheng
- Frontiers Science Center for Synthetic Biology and Key Laboratory of Systems Bioengineering (Ministry of Education), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
- SynBio Research Platform, Collaborative Innovation Centre of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Yaguan Road 135, Jinnan District, Tianjin, 300350, People's Republic of China.
| |
Collapse
|
10
|
Esteban-Lustres R, Torres MD, Piñeiro B, Enjamio C, Domínguez H. Intensification and biorefinery approaches for the valorization of kitchen wastes - A review. BIORESOURCE TECHNOLOGY 2022; 360:127652. [PMID: 35872274 DOI: 10.1016/j.biortech.2022.127652] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/14/2022] [Accepted: 07/15/2022] [Indexed: 06/15/2023]
Abstract
Kitchen wastes (KW) are post-consumption residues from household and food service sector, heterogenous in composition and highly variable depending on the particular origin, which are often treated as municipal. There is a need to improve the management of these continuously produced and worldwidely available resources and their valorization into novel and commercially interesting products will aid in the development of bioeconomy. The successful implementation of such approach requires cooperation between academia, industrial stakeholders, public and private institutions, based on the different dimensions, including social, economic, ecologic and technological involved. This review aims at presenting a survey of technological aspects, regarding current and potential management strategies of KW, following either a single or multiproduct processing according to the biorefineries scheme. Emphasis is given to intensification tools, designed to enhance process efficiency.
Collapse
Affiliation(s)
- Rebeca Esteban-Lustres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| | - María Dolores Torres
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain.
| | - Beatriz Piñeiro
- Economic Resources, CHOU, SERGAS, Ramon Puga Noguerol, 54, 32005 Ourense, Spain
| | - Cristina Enjamio
- Galaria, SERGAS, Edificio Administrativo San Lázaro s/n, 15701 Santiago de Compostela, A Coruña, Spain
| | - Herminia Domínguez
- CINBIO, Departament of Chemical Engineering, Faculty of Sciences, Campus Ourense, University of Vigo, Edificio Politécnico, As Lagoas, 32004 Ourense, Spain
| |
Collapse
|
11
|
Effect of Food Waste Condensate Concentration on the Performance of Microbial Fuel Cells with Different Cathode Assemblies. SUSTAINABILITY 2022. [DOI: 10.3390/su14052625] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/04/2023]
Abstract
The aim of this study is to examine the effect of food waste condensate concentration (400–4000 mg COD/L) on the performance of two microbial fuel cells (MFCs). Food waste condensate is produced after condensing the vapors that result from drying and shredding of household food waste (HFW). Two identical single-chamber MFCs were constructed with different cathodic assemblies based on GoreTex cloth (Cell 1) and mullite (Cell 2) materials. Linear sweep voltammetry (LSV) and electrochemical impedance spectroscopy (EIS) measurements were carried out to measure the maximum power output and the internal resistances of the cells. High COD removal efficiencies (>86%) were observed in all cases. Both cells performed better at low initial condensate concentrations (400–600 mg COD/L). Cell 1 achieved maximum electricity yield (1.51 mJ/g COD/L) at 500 mg COD/L and maximum coulombic efficiency (6.9%) at 400 mg COD/L. Cell 2 achieved maximum coulombic efficiency (51%) as well as maximum electricity yield (25.9 mJ/g COD/L) at 400 mg COD/L. Maximum power was observed at 600 mg COD/L for Cell 1 (14.2 mW/m2) and Cell 2 (14.4 mW/m2). Impedance measurements revealed that the charge transfer resistance and the solution resistance increased significantly with increasing condensate concentration in both cells.
Collapse
|
12
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Soto Beobide A, Dracopoulos V, Mechichi T, Lyberatos G. A Comparative Study of Various Pretreatment Approaches for Bio-Ethanol Production from Willow Sawdust, Using Co-Cultures and Mono-Cultures of Different Yeast Strains. Molecules 2022; 27:molecules27041344. [PMID: 35209130 PMCID: PMC8875012 DOI: 10.3390/molecules27041344] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/14/2022] [Revised: 02/10/2022] [Accepted: 02/14/2022] [Indexed: 11/16/2022] Open
Abstract
The effect of different pretreatment approaches based on alkali (NaOH)/hydrogen peroxide (H2O2) on willow sawdust (WS) biomass, in terms of delignification efficiency, structural changes of lignocellulose and subsequent fermentation toward ethanol, was investigated. Bioethanol production was carried out using the conventional yeast Saccharomyces cerevisiae, as well as three non-conventional yeasts strains, i.e., Pichia stipitis, Pachysolen tannophilus, Wickerhamomyces anomalus X19, separately and in co-cultures. The experimental results showed that a two-stage pretreatment approach (NaOH (0.5% w/v) for 24 h and H2O2 (0.5% v/v) for 24 h) led to higher delignification (38.3 ± 0.1%) and saccharification efficiency (31.7 ± 0.3%) and higher ethanol concentration and yield. Monocultures of S. cerevisiae or W. anomalus X19 and co-cultures with P. stipitis exhibited ethanol yields in the range of 11.67 ± 0.21 to 13.81 ± 0.20 g/100 g total solids (TS). When WS was subjected to H2O2 (0.5% v/v) alone for 24 h, the lowest ethanol yields were observed for all yeast strains, due to the minor impact of this treatment on the main chemical and structural WS characteristics. In order to decide which is the best pretreatment approach, a detailed techno-economical assessment is needed, which will take into account the ethanol yields and the minimum processing cost.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- Correspondence: ; Tel.: +30-261-096-5318
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Amaia Soto Beobide
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Vassilios Dracopoulos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzyme Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, BP 1173, Sfax 3038, Tunisia; (I.B.A.); (T.M.)
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences (FORTH/ICE-HT), Stadiou, Platani, GR 26504 Patras, Greece; (I.N.); (A.S.B.); (V.D.); (G.L.)
- School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
13
|
Raj T, Chandrasekhar K, Naresh Kumar A, Rajesh Banu J, Yoon JJ, Kant Bhatia S, Yang YH, Varjani S, Kim SH. Recent advances in commercial biorefineries for lignocellulosic ethanol production: Current status, challenges and future perspectives. BIORESOURCE TECHNOLOGY 2022; 344:126292. [PMID: 34748984 DOI: 10.1016/j.biortech.2021.126292] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/29/2021] [Accepted: 11/01/2021] [Indexed: 05/26/2023]
Abstract
Cellulosic ethanol production has received global attention to use as transportation fuels with gasoline blending virtue of carbon benefits and decarbonization. However, due to changing feedstock composition, natural resistance, and a lack of cost-effective pretreatment and downstream processing, contemporary cellulosic ethanol biorefineries are facing major sustainability issues. As a result, we've outlined the global status of present cellulosic ethanol facilities, as well as main roadblocks and technical challenges for sustainable and commercial cellulosic ethanol production. Additionally, the article highlights the technical and non-technical barriers, various R&D advancements in biomass pretreatment, enzymatic hydrolysis, fermentation strategies that have been deliberated for low-cost sustainable fuel ethanol. Moreover, selection of a low-cost efficient pretreatment method, process simulation, unit integration, state-of-the-art in one pot saccharification and fermentation, system microbiology/ genetic engineering for robust strain development, and comprehensive techno-economic analysis are all major bottlenecks that must be considered for long-term ethanol production in the transportation sector.
Collapse
Affiliation(s)
- Tirath Raj
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - K Chandrasekhar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - A Naresh Kumar
- Department of Environmental Science and Technology, University of Maryland, College Park, MD 20742, USA
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Thiruvarur 610 005, India
| | - Jeong-Jun Yoon
- Green and Sustainable Materials R&D Department, Korea Institute of Industrial Technology (KITECH), Cheonan-si, Chungcheongnam-do 31056, Republic of Korea
| | - Shashi Kant Bhatia
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Yung-Hun Yang
- Department of Biological Engineering, College of Engineering, Konkuk University, Seoul 05029, Republic of Korea
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382 010, India
| | - Sang-Hyoun Kim
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea.
| |
Collapse
|
14
|
Li H, Gao M, Wang P, Ma H, Liu T, Ni J, Wang Q, Chang TC. Cathode catalyst prepared from bacterial cellulose for ethanol fermentation stillage treatment in microbial fuel cell. Chin J Chem Eng 2021. [DOI: 10.1016/j.cjche.2020.11.001] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/18/2023]
|
15
|
Bioconversion of kitchen waste to surfactin via simultaneous enzymolysis and fermentation using mixed-culture of enzyme- producing fungi and Bacillus amyloliquefaciens HM618. Biochem Eng J 2021. [DOI: 10.1016/j.bej.2021.108036] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
16
|
Bertacchi S, Jayaprakash P, Morrissey JP, Branduardi P. Interdependence between lignocellulosic biomasses, enzymatic hydrolysis and yeast cell factories in biorefineries. Microb Biotechnol 2021; 15:985-995. [PMID: 34289233 PMCID: PMC8913906 DOI: 10.1111/1751-7915.13886] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/09/2021] [Revised: 06/23/2021] [Accepted: 06/23/2021] [Indexed: 11/30/2022] Open
Abstract
Biorefineries have a pivotal role in the bioeconomy scenario for the transition from fossil‐based processes towards more sustainable ones relying on renewable resources. Lignocellulose is a prominent feedstock since its abundance and relatively low cost. Microorganisms are often protagonists of biorefineries, as they contribute both to the enzymatic degradation of lignocellulose complex polymers and to the fermentative conversion of the hydrolyzed biomasses into fine and bulk chemicals. Enzymes have therefore become crucial for the development of sustainable biorefineries, being able to provide nutrients to cells from lignocellulose. Enzymatic hydrolysis can be performed by a portfolio of natural enzymes that degrade lignocellulose, often combined into cocktails. As enzymes can be deployed in different operative settings, such as separate hydrolysis and fermentation (SHF) or simultaneous saccharification and fermentation (SSF), their characteristics need to be combined with microbial ones to maximize the process. We therefore reviewed how the optimization of lignocellulose enzymatic hydrolysis can ameliorate bioethanol production when Saccharomyces cerevisiae is used as cell factory. Expanding beyond biofuels, enzymatic cocktail optimization can also be pivotal to unlock the potential of non‐Saccharomyces yeasts, which, thanks to broader substrate utilization, inhibitor resistance and peculiar metabolism, can widen the array of feedstocks and products of biorefineries.
Collapse
Affiliation(s)
- Stefano Bertacchi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| | - Pooja Jayaprakash
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy.,School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - John P Morrissey
- School of Microbiology, Environmental Research Institute, APC Microbiome Institute, University College Cork, Cork, T12 K8AF, Ireland
| | - Paola Branduardi
- Department of Biotechnology and Biosciences, University of Milano-Bicocca, Piazza della Scienza 2, Milano, 20126, Italy
| |
Collapse
|
17
|
Efficient bioethanol production from date palm (Phoenix dactylifera L.) sap by a newly isolated Saccharomyces cerevisiae X19G2. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.03.019] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
18
|
Ntaikou I, Siankevich S, Lyberatos G. Effect of thermo-chemical pretreatment on the saccharification and enzymatic digestibility of olive mill stones and their bioconversion towards alcohols. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:24570-24579. [PMID: 32557020 DOI: 10.1007/s11356-020-09625-z] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/30/2019] [Accepted: 06/04/2020] [Indexed: 06/11/2023]
Abstract
The present study investigated the effect of thermo-chemical pretreatment on the enhancement of enzymatic digestibility of olive mill stones (OMS), as well as its possible valorisation via bioconversion of the generated free sugars to alcohols. Specifically, the influence of parameters such as reaction time, temperature, type and concentration of dilute acids and/or bases, was assessed during the thermo-chemical pretreatment. The hydrolysates and the solids remaining after pretreatment, as well as the whole pretreated slurries, were further evaluated as potential substrates for the simultaneous production of ethanol and xylitol via fermentation with the yeast Pachysolen tannophilus. The digestibility and overall saccharification of OMS were considerably enhanced in all cases, with the maximum enzymatic digestibility observed for dilute sodium hydroxide (almost 4-fold) which also yielded the highest total saccharification yield (91% of the total OMS carbohydrates). Ethanol and xylitol yields from the untreated OMS were 28 g/kg OMS and 25 g/kg OMS, respectively, and were both significantly enhanced by pretreatment. The highest ethanol yield was 79 g/kg OMS and was achieved by the alkali pretreatment and separate fermentation of hydrolysates and solids, whereas the highest xylitol yield was 49 g/kg OMS and was obtained by pretreatment with sulphuric acid and separate fermentation of hydrolysates and solids.
Collapse
Affiliation(s)
- Ioanna Ntaikou
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece.
| | - Sviatlana Siankevich
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- Embion Technologies SA, Chemin de la Dent-d'Oche 1 A, Ecublens VD, 1024, Vaud, Switzerland
| | - Gerasimos Lyberatos
- Foundation for Research and Technology, Institute of Chemical Engineering Sciences, Stadiou 10, Platani, GR 50600, Patras, Greece
- School of Chemical Engineering Sciences, National Technical University of Athens, GR 15780, Athens, Greece
| |
Collapse
|
19
|
Sydney EB, Carvalho JCD, Letti LAJ, Magalhães AI, Karp SG, Martinez-Burgos WJ, Candeo EDS, Rodrigues C, Vandenberghe LPDS, Neto CJD, Torres LAZ, Medeiros ABP, Woiciechowski AL, Soccol CR. Current developments and challenges of green technologies for the valorization of liquid, solid, and gaseous wastes from sugarcane ethanol production. JOURNAL OF HAZARDOUS MATERIALS 2021; 404:124059. [PMID: 33027733 DOI: 10.1016/j.jhazmat.2020.124059] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2020] [Revised: 09/04/2020] [Accepted: 09/19/2020] [Indexed: 06/11/2023]
Abstract
The sugarcane industry is one of the largest in the world and processes huge volumes of biomass, especially for ethanol and sugar production. These processes also generate several environmentally harmful solid, liquid, and gaseous wastes. Part of these wastes is reused, but with low-added value technologies, while a large unused fraction continues to impact the environment. In this review, the classic waste reuse routes are outlined, and promising green and circular technologies that can positively impact this sector are discussed. To remain competitive and reduce its environmental impact, the sugarcane industry must embrace technologies for bagasse fractionation and pyrolysis, microalgae cultivation for both CO2 recovery and vinasse treatment, CO2 chemical fixation, energy generation through the anaerobic digestion of vinasse, and genetically improved fermentation yeast strains. Considering the technological maturity, the anaerobic digestion of vinasse emerges as an important solution in the short term. However, the greatest environmental opportunity is to use the pure CO2 from fermentation. The other opportunities still require continued research to reach technological maturity. Intensifying the processes, the exploration of driving-change technologies, and the integration of wastes through biorefinery processes can lead to a more sustainable sugarcane processing industry.
Collapse
Affiliation(s)
- Eduardo Bittencourt Sydney
- Universidade Tecnológica Federal do Paraná, Câmpus Ponta Grossa, Bioprocess Engineering and Biotechnology Department, Ponta Grossa, Paraná, Brazil
| | - Julio César de Carvalho
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luiz Alberto Junior Letti
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Antonio Irineudo Magalhães
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Susan Grace Karp
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Walter José Martinez-Burgos
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Esteffany de Souza Candeo
- Universidade Tecnológica Federal do Paraná, Câmpus Ponta Grossa, Bioprocess Engineering and Biotechnology Department, Ponta Grossa, Paraná, Brazil
| | - Cristine Rodrigues
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luciana Porto de Souza Vandenberghe
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos José Dalmas Neto
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Luis Alberto Zevallos Torres
- Universidade Tecnológica Federal do Paraná, Câmpus Ponta Grossa, Bioprocess Engineering and Biotechnology Department, Ponta Grossa, Paraná, Brazil
| | - Adriane Bianchi Pedroni Medeiros
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Adenise Lorenci Woiciechowski
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil
| | - Carlos Ricardo Soccol
- Federal University of Paraná, Department of Bioprocess Engineering and Biotechnology, Centro Politécnico, 81531-990 Curitiba, Paraná, Brazil.
| |
Collapse
|
20
|
On the Optimization of Fermentation Conditions for Enhanced Bioethanol Yields from Starchy Biowaste via Yeast Co-Cultures. SUSTAINABILITY 2021. [DOI: 10.3390/su13041890] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
Abstract
The present study aims to assess the impact of the type of yeast consortium used during bioethanol production from starchy biowastes and to determine the optimal fermentation conditions for enhanced bioethanol production. Three different yeast strains, Saccharomyces cerevisiae, Pichia barkeri, and Candida intermedia were used in mono- and co-cultures with pretreated waste-rice as substrate. The optimization of fermentation conditions i.e., fermentation time, temperature, pH, and inoculum size, was investigated in small-scale batch cultures and subsequently, the optimal conditions were applied for scaling-up and validation of the process in a 7-L fermenter. It was shown that co-culturing of yeasts either in couples or triples significantly enhanced the fermentation efficiency of the process, with ethanol yield reaching 167.80 ± 0.49 g/kg of biowaste during experiments in the fermenter.
Collapse
|
21
|
Sustainable Second-Generation Bioethanol Production from Enzymatically Hydrolyzed Domestic Food Waste Using Pichia anomala as Biocatalyst. SUSTAINABILITY 2020. [DOI: 10.3390/su13010259] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/14/2023]
Abstract
In the current study, a domestic food waste containing more than 50% of carbohydrates was assessed as feedstock to produce second-generation bioethanol. Aiming to the maximum exploitation of the carbohydrate fraction of the waste, its hydrolysis via cellulolytic and amylolytic enzymatic blends was investigated and the saccharification efficiency was assessed in each case. Fermentation experiments were performed using the non-conventional yeast Pichia anomala (Wickerhamomyces anomalus) under both separate hydrolysis and fermentation (SHF) and simultaneous saccharification and fermentation (SSF) modes to evaluate the conversion efficiencies and ethanol yields for different enzymatic loadings. It was shown that the fermentation efficiency of the yeast was not affected by the fermentation mode and was high for all handlings, reaching 83%, whereas the enzymatic blend containing the highest amount of both cellulolytic and amylolytic enzymes led to almost complete liquefaction of the waste, resulting also in ethanol yields reaching 141.06 ± 6.81 g ethanol/kg waste (0.40 ± 0.03 g ethanol/g consumed carbohydrates). In the sequel, a scale-up fermentation experiment was performed with the highest loading of enzymes in SHF mode, from which the maximum specific growth rate, μmax, and the biomass yield, Yx/s, of the yeast from the hydrolyzed waste were estimated. The ethanol yields that were achieved were similar to those of the respective small scale experiments reaching 138.67 ± 5.69 g ethanol/kg waste (0.40 ± 0.01 g ethanol/g consumed carbohydrates).
Collapse
|
22
|
Antonopoulou G, Alexandropoulou M, Ntaikou I, Lyberatos G. From waste to fuel: Energy recovery from household food waste via its bioconversion to energy carriers based on microbiological processes. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 732:139230. [PMID: 32438165 DOI: 10.1016/j.scitotenv.2020.139230] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2020] [Revised: 04/23/2020] [Accepted: 05/03/2020] [Indexed: 06/11/2023]
Abstract
In the present study the bioconversion of dried household food waste (FORBI) to energy carriers was investigated aiming to its sustainable management and valorization. FORBI was either directly fermented towards ethanol and hydrogen or was previously subjected to extraction with water resulting to a liquid fraction (extract) rich in sugars and a solid residue, which were then fermented separately. Subsequently, the effluents were assessed as substrates for methane production via anaerobic digestion (AD). Mono-cultures and co-cultures of C5 and C6 yeasts were used for the alcoholic fermentation whereas for the production of hydrogen, mixed acidogenic consortia were used. Taking into account the optimum yields of biofuels, the amount of recoverable energy was estimated based for each different approach. The maximum ethanol yield was 0.16 g ethanol per kg of FORBI and it was achieved for separate fermentation of liquid and solid fractions of the waste. The highest hydrogen yield that was observed was 210.44 L ± 4.02 H2/kg TS FORBI for 1% solids loading and supplementation with cellulolytic enzymes. Direct AD of either the whole FORBI or its individual fractions led to lower overall energy recovery, compared to that obtained when fermentation and subsequent AD were applied. The recoverable energy was estimated for the different exploitation approaches of the waste. The maximum achieved recoverable energy was 21.49 ± 0.57 MJ/kg.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patras, Greece
| | - Maria Alexandropoulou
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patras, Greece
| | - Ioanna Ntaikou
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patras, Greece.
| | - Gerasimos Lyberatos
- School of Chemical Engineering, National Technical University of Athens, Zografou Campus, GR 15780 Athens, Greece; Institute of Chemical Engineering Sciences, Foundation for Research and Technology, GR 26504 Patras, Greece
| |
Collapse
|
23
|
Yang J, Xu H, Jiang J, Zhang N, Xie J, Zhao J, Bu Q, Wei M. Itaconic acid production from undetoxified enzymatic hydrolysate of bamboo residues using Aspergillus terreus. BIORESOURCE TECHNOLOGY 2020; 307:123208. [PMID: 32208342 DOI: 10.1016/j.biortech.2020.123208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/08/2020] [Revised: 03/16/2020] [Accepted: 03/16/2020] [Indexed: 05/12/2023]
Abstract
Itaconic acid (IA) production by fermentation of undetoxified hydrolysate of bamboo residues by Aspergillus terreus was demonstrated. Monosaccharides were obtained by pretreatment and enzymatic hydrolysis of bamboo residues. A. terreus could not grow and synthesize IA in the hydrolysate. The buffer was confirmed to be an inhibitor, and was successfully replaced by deionized water as the suspension, to release equivalent sugar and eliminate the inhibition. Corn steep liquor significantly improved the adaptability of A. terreus to the hydrolysate at 2.0 g/L. The IA titer obtained (19.35 g/L IA) was the highest to be reported for IA production from lignocellulose without detoxification. Simultaneous saccharification and fermentation and fed-batch fermentation increased the titer to 22.43 g/L and 41.54 g/L, respectively. Meanwhile, economic assessment proved that bamboo residues were potential substrates for IA production with economic effectiveness.
Collapse
Affiliation(s)
- Jing Yang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Hao Xu
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jianchun Jiang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China.
| | - Ning Zhang
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jingcong Xie
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Jian Zhao
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| | - Quan Bu
- School of Agricultural Equipment Engineering, Jiangsu University, Zhenjiang 212013, PR China
| | - Min Wei
- Institute of Chemical Industry of Forest Products, CAF; National Engineering Laboratory for Biomass Chemical Utilization; Key and Open Laboratory of Forest Chemical Engineering, SFA; Key Laboratory of Biomass Energy and Material, Jiangsu Province, Nanjing 210042, PR China; Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, PR China
| |
Collapse
|
24
|
Antonopoulou G. Designing Efficient Processes for Sustainable Bioethanol and Bio-Hydrogen Production from Grass Lawn Waste. Molecules 2020; 25:molecules25122889. [PMID: 32586042 PMCID: PMC7355486 DOI: 10.3390/molecules25122889] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/30/2020] [Revised: 06/20/2020] [Accepted: 06/21/2020] [Indexed: 12/04/2022] Open
Abstract
The effect of thermal, acid and alkali pretreatment methods on biological hydrogen (BHP) and bioethanol production (BP) from grass lawn (GL) waste was investigated, under different process schemes. BHP from the whole pretreatment slurry of GL was performed through mixed microbial cultures in simultaneous saccharification and fermentation (SSF) mode, while BP was carried out through the C5yeast Pichia stipitis, in SSF mode. From these experiments, the best pretreatment conditions were determined and the efficiencies for each process were assessed and compared, when using either the whole pretreatment slurry or the separated fractions (solid and liquid), the separate hydrolysis and fermentation (SHF) or SSF mode, and especially for BP, the use of other yeasts such as Pachysolen tannophilus or Saccharomyces cerevisiae. The experimental results showed that pretreatment with 10 gH2SO4/100 g total solids (TS) was the optimum for both BHP and BP. Separation of solid and liquid pretreated fractions led to the highest BHP (270.1 mL H2/g TS, corresponding to 3.4 MJ/kg TS) and also BP (108.8 mg ethanol/g TS, corresponding to 2.9 MJ/kg TS) yields. The latter was achieved by using P. stipitis for the fermentation of the hydrolysate and S. serevisiae for the solid fraction fermentation, at SSF.
Collapse
Affiliation(s)
- Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, 26504 Patras, Greece
| |
Collapse
|
25
|
Solid-state fermentation for single-cell protein enrichment of guava and cashew by-products and inclusion on cereal bars. BIOCATALYSIS AND AGRICULTURAL BIOTECHNOLOGY 2020. [DOI: 10.1016/j.bcab.2020.101576] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
|
26
|
|
27
|
Rojas-Chamorro JA, Romero-García JM, Cara C, Romero I, Castro E. Improved ethanol production from the slurry of pretreated brewers' spent grain through different co-fermentation strategies. BIORESOURCE TECHNOLOGY 2020; 296:122367. [PMID: 31727558 DOI: 10.1016/j.biortech.2019.122367] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2019] [Revised: 10/31/2019] [Accepted: 11/01/2019] [Indexed: 06/10/2023]
Abstract
The aim of this work was to bioconvert all sugars in BSG into ethanol using a process scheme that includes the enzymatic hydrolysis of the whole slurry resulting from the pretreatment of BSG with phosphoric and sulfuric acid using previously optimised conditions, followed by the co-fermentation of the mixed sugars. More than 90% of the sugars in raw BSG were recovered in the pretreatment and the subsequent enzymatic hydrolysis of the whole slurry. The co-fermentation of the enzymatic hydrolysates with Escherichia coli was then compared with that the co-culture of Scheffersomyces stipitis and Saccharomyces cerevisiae, which resulted in lower ethanol production. The co-fermentation strategy with a single microorganism (E. coli) when BSG was pretreated with phosphoric acid resulted into the highest ethanol concentration, 39 g/L, which means that 222 L of ethanol can be obtained from a ton of BSG without detoxification requirements.
Collapse
Affiliation(s)
- J A Rojas-Chamorro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain
| | - J M Romero-García
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - C Cara
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| | - I Romero
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain.
| | - E Castro
- Dpt. Chemical, Environmental and Materials Engineering, Universidad de Jaén, Spain; Center for Advanced Studies in Energy and Environment, Universidad de Jaén, Campus las Lagunillas, 23071 Jaén, Spain
| |
Collapse
|
28
|
Myburgh MW, Cripwell RA, Favaro L, van Zyl WH. Application of industrial amylolytic yeast strains for the production of bioethanol from broken rice. BIORESOURCE TECHNOLOGY 2019; 294:122222. [PMID: 31683453 DOI: 10.1016/j.biortech.2019.122222] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/21/2019] [Revised: 09/27/2019] [Accepted: 09/28/2019] [Indexed: 06/10/2023]
Abstract
Amylolytic Saccharomyces cerevisiae derivatives of Ethanol Red™ Version 1 (ER T12) and M2n (M2n T1) were assessed through enzyme assays, hydrolysis trials, electron microscopy and fermentation studies using broken rice. The heterologous enzymes hydrolysed broken rice at a similar rate compared to commercial granular starch-hydrolysing enzyme cocktail. During the fermentation of 20% dw/v broken rice, the amylolytic strains converted rice starch to ethanol in a single step and yielded high ethanol titers. The best-performing strain (ER T12) produced 93% of the theoretical ethanol yield after 96 h of consolidated bioprocessing (CBP) fermentation at 32 °C. Furthermore, the addition of commercial enzyme cocktail (10% of the recommended dosage) in combination with ER T12 did not significantly improve the maximum ethanol concentration, confirming the superior ability of ER T12 to hydrolyse raw starch. The ER T12 strain was therefore identified as an ideal candidate for the CBP of starch-rich waste streams.
Collapse
Affiliation(s)
- Marthinus W Myburgh
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Rosemary A Cripwell
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| | - Lorenzo Favaro
- Department of Agronomy Food Natural Resources Animals and Environment (DAFNAE), Padova University, Agripolis, Viale dell'Università 16, 35020 Legnaro, Padova, Italy.
| | - Willem H van Zyl
- Department of Microbiology, Stellenbosch University, Private Bag X1, Matieland 7602, South Africa
| |
Collapse
|
29
|
Ben Atitallah I, Antonopoulou G, Ntaikou I, Alexandropoulou M, Nasri M, Mechichi T, Lyberatos G. On the evaluation of different saccharification schemes for enhanced bioethanol production from potato peels waste via a newly isolated yeast strain of Wickerhamomyces anomalus. BIORESOURCE TECHNOLOGY 2019; 289:121614. [PMID: 31203181 DOI: 10.1016/j.biortech.2019.121614] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2019] [Revised: 06/03/2019] [Accepted: 06/06/2019] [Indexed: 06/09/2023]
Abstract
The present study focuses on the exploration of the potential use of potato peels waste (PPW) as feedstock for bioethanol production, using a newly isolated yeast strain, Wickerhamomyces anomalus, via different saccharification and fermentation schemes. The saccharification of PPW was performed via thermal and chemical (acid, alkali) pretreatment, as well as via enzymatic hydrolysis through the use of commercial enzymes (cellulase and amylase) or enzymes produced at lab scale (alpha-amylase from Bacillus sp. Gb67), either separately or in mixtures. The results indicated that the enzymatic treatment by commercial enzymes led to a higher saccharification efficiency (72.38%) and ethanol yield (0.49 g/gconsumed sugars) corresponding to 96% of the maximum theoretical. In addition, acid pretreatment was found to be beneficial for the process, leading also to high hydrolysis and ethanol yields, indicating that PPW is a very promising feedstock for bio-ethanol production by W. anomalus under different process schemes.
Collapse
Affiliation(s)
- Imen Ben Atitallah
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia; Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece.
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece
| | - Maria Alexandropoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece
| | - Moncef Nasri
- Laboratory of Enzyme Engineering and Microbiology, National School of Engineers of Sfax, University of Sfax, BP 1173, 3038 Sfax, Tunisia
| | - Tahar Mechichi
- Laboratory of Biochemistry and Enzymatic Engineering of Lipases, National School of Engineers of Sfax, University of Sfax, 3038 Sfax, Tunisia
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780 Athens, Greece
| |
Collapse
|
30
|
Liu W, Dong Z, Sun D, Chen Y, Wang S, Zhu J, Liu C. Bioconversion of kitchen wastes into bioflocculant and its pilot-scale application in treating iron mineral processing wastewater. BIORESOURCE TECHNOLOGY 2019; 288:121505. [PMID: 31128543 DOI: 10.1016/j.biortech.2019.121505] [Citation(s) in RCA: 22] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2019] [Revised: 05/14/2019] [Accepted: 05/17/2019] [Indexed: 06/09/2023]
Abstract
In this study, the feasibility of converting kitchen waste into bioflocculant using Bacillus agaradhaerens C9 was analyzed. The result showed that strain C9 could secrete various degrading enzymes, including amylase, protease, lipase, cellulase, xylanase and pectinase, promoting the hydrolysis of kitchen waste. Strong alkaline fermentation condition was able to induce the bioflocculant production, and inhibit the growth of contaminated bacteria, which avoids the sterilization process of kitchen waste. The optimum fermentation condition for enzymatic hydrolysis and bioflocculant production was 40 g/L kitchen waste, 37 °C, pH 9.5, and the highest bioflocculant yield of 6.92 g/L was achieved. Furthermore, bioflocculant was applied to treat pilot-scale (30 L) of mineral processing wastewater for the first time, and the removal rate of 92.35% was observed when 9 mg/L bioflocculant was added into wastewater. Therefore, this study could promote the resource utilization of kitchen waste and recycling of mineral processing wastewater.
Collapse
Affiliation(s)
- Weijie Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Zhen Dong
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Di Sun
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Ying Chen
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Shiwei Wang
- Key Laboratory of Resources Biology and Biotechnology in Western China, Ministry of Education, College of Life Science, Northwest University, Xian 710069, Shanxi Province, China
| | - Jingrong Zhu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China
| | - Cong Liu
- School of Life Science, Jiangsu Normal University, Xuzhou 221116, Jiangsu Province, China.
| |
Collapse
|
31
|
Kechkar M, Sayed W, Cabrol A, Aziza M, Ahmed Zaid T, Amrane A, Djelal H. ISOLATION AND IDENTIFICATION OF YEAST STRAINS FROM SUGARCANE MOLASSES, DATES AND FIGS FOR ETHANOL PRODUCTION UNDER CONDITIONS SIMULATING ALGAL HYDROLYSATE. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2019. [DOI: 10.1590/0104-6632.20190361s20180114] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Affiliation(s)
- Madina Kechkar
- Centre de Développement des Energies Renouvelables, Algeria; Ecole Nationale Polytechnique, Algeria
| | | | | | - Majda Aziza
- Centre de Développement des Energies Renouvelables, Algeria
| | | | | | - Hayet Djelal
- UniLaSalle-Ecole des Métiers de l’Environnement, France
| |
Collapse
|
32
|
di Bitonto L, Antonopoulou G, Braguglia C, Campanale C, Gallipoli A, Lyberatos G, Ntaikou I, Pastore C. Lewis-Brønsted acid catalysed ethanolysis of the organic fraction of municipal solid waste for efficient production of biofuels. BIORESOURCE TECHNOLOGY 2018; 266:297-305. [PMID: 29982051 DOI: 10.1016/j.biortech.2018.06.110] [Citation(s) in RCA: 16] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2018] [Revised: 06/28/2018] [Accepted: 06/29/2018] [Indexed: 06/08/2023]
Abstract
A combined Lewis-Brønsted acid ethanolysis of sugars was thoroughly investigated with the aim of producing ethyl levulinate (EL) in a single step. Ethanolysis carried out at 453 K for 4 h using H2SO4 (1 wt%) and AlCl3·6H2O (30 mol % with respect to sugars) produced a yield of 60 mol % of EL respect to glucose and starch. Such optimised conditions were positively applied directly on different food waste, preliminarily characterised and found to be mainly composed by simple (10-15%) and relatively complex sugars (20-60%), besides proteins (6-10%) and lipids (4-10%), even in their wet form. The catalytic system resulted robust enough to the point that the copresence of proteins, lignin, lipids and mineral salts not only did not negatively affect the overall reactivity, but resulted efficiently converted into soluble species, and specifically, into other liquid biofuels of different nature.
Collapse
Affiliation(s)
- Luigi di Bitonto
- Water Research Institute (IRSA), National Research Council (CNR), via F. de Blasio 5, 70132 Bari, Italy
| | - Georgia Antonopoulou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780, Athens, Greece
| | - Camilla Braguglia
- Water Research Institute (IRSA), National Research Council (CNR), Strada Provinciale 35d, km 0.7, 00010 Montelibretti, Rome, Italy
| | - Claudia Campanale
- Water Research Institute (IRSA), National Research Council (CNR), via F. de Blasio 5, 70132 Bari, Italy
| | - Agata Gallipoli
- Water Research Institute (IRSA), National Research Council (CNR), Strada Provinciale 35d, km 0.7, 00010 Montelibretti, Rome, Italy
| | - Gerasimos Lyberatos
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780, Athens, Greece
| | - Ioanna Ntaikou
- Institute of Chemical Engineering Sciences, Stadiou, Platani, Patras, GR 26504, Greece; School of Chemical Engineering, National Technical University of Athens, GR 15780, Athens, Greece
| | - Carlo Pastore
- Water Research Institute (IRSA), National Research Council (CNR), via F. de Blasio 5, 70132 Bari, Italy.
| |
Collapse
|