1
|
Zhao H, Pu H, Yang Z. Study on the effect of different additives on the anaerobic digestion of hybrid Pennisetum: Comparison of nano-ZnO, nano-Fe 2O 3 and nano-Al 2O 3. Heliyon 2023; 9:e16313. [PMID: 37260894 PMCID: PMC10227347 DOI: 10.1016/j.heliyon.2023.e16313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/23/2022] [Revised: 05/10/2023] [Accepted: 05/12/2023] [Indexed: 06/02/2023] Open
Abstract
The effects of three nanomaterials (ZnO, Al2O3, and Fe2O3) on the wet and dry anaerobic digestion (AD) processes of hybrid Pennisetum were assessed over 33 days, and the microbial communities of dry AD systems were studied. The results demonstrated that biogas production improved by 72.2% and 33.6% when nanoporous Al2O3 (nano-Al2O3) and nano-Fe2O3 were added during dry AD, respectively. However, biogas production decreased by 39.4% with nano-ZnO. Kinetic analysis showed that the three nanomaterials could shorten the lag phase of the AD sludge, while the 16S rRNA gene amplicon sequencing results demonstrated that microbes such as Longilinea and Methanosarcina were enriched in the nano-Al2O3 reactors and methanogenic communities community such as Methanobacterium sp., Methanobrevibacter sp., and Methanothrix sp., which were enriched in the nano-Al2O3 and nano-Fe2O3 reactors. However, the microbial community and some methanogenic communities diversity and richness were inhibited by the addition of nano-ZnO.
Collapse
Affiliation(s)
- Hongmei Zhao
- Key Laboratory of Medicinal Chemistry for Natural Resource, Ministry of Education, Yunnan Research & Development Center for Natural Products, School of Chemical Science and Technology, Yunnan University, Kunming, 650091, PR China
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Haiping Pu
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| | - Zhaorong Yang
- School of Science, Yunnan Agricultural University, Kunming, 650201, China
| |
Collapse
|
2
|
Dai B, Yang Y, Wang Z, Wang J, Yang L, Cai X, Wang Z, Xia S. Enhancement and mechanisms of iron-assisted anammox process. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 858:159931. [PMID: 36343824 DOI: 10.1016/j.scitotenv.2022.159931] [Citation(s) in RCA: 12] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2022] [Revised: 10/29/2022] [Accepted: 10/30/2022] [Indexed: 06/16/2023]
Abstract
Anaerobic ammonium oxidation (anammox) is a sustainable biological nitrogen removal technology that has limited large-scale applications owing to the low cell yield and high sensitivity of anammox bacteria (AnAOB). Fortunately, iron-assisted anammox, being a highly practical method could be an effective solution. This review focused on the iron-assisted anammox process, especially on its performance and mechanisms. In this review, the effects of iron in three different forms (ionic iron, zero-valent iron and iron-containing minerals) on the performance of the anammox process were systematically reviewed and summarized, and the strengthening effects of Fe (II) seem to be more prominent. Moreover, the detailed mechanisms of iron-assisted anammox in previous researches were discussed from macro to micro perspectives. Additionally, applicable iron-assisted methods and unified strengthening mechanisms for improving the stability of nitrogen removal and shortening the start-up time of the system in anammox processes were suggested to explore in future studies. This review was intended to provide helpful information for scientific research and engineering applications of iron-assisted anammox.
Collapse
Affiliation(s)
- Ben Dai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yifeng Yang
- Shanghai Municipal Engineering Design and Research Institute, Shanghai 200092, China
| | - Zuobing Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Jiangming Wang
- School of Chemical Science and Engineering, Tongji University, Shanghai 200092, China
| | - Lin Yang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiang Cai
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Zhenyu Wang
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Siqing Xia
- State Key Laboratory of Pollution Control and Resource Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China.
| |
Collapse
|
3
|
Sari T, Akgul D, Mertoglu B. Accumulation of TiO2 nanoparticles in the anammox bioreactor: Their effects on treatment performance and microbial dynamics. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
4
|
Vishnyakova A, Popova N, Artemiev G, Botchkova E, Litti Y, Safonov A. Effect of Mineral Carriers on Biofilm Formation and Nitrogen Removal Activity by an Indigenous Anammox Community from Cold Groundwater Ecosystem Alone and Bioaugmented with Biomass from a “Warm” Anammox Reactor. BIOLOGY 2022; 11:biology11101421. [PMID: 36290325 PMCID: PMC9598201 DOI: 10.3390/biology11101421] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 09/24/2022] [Accepted: 09/26/2022] [Indexed: 11/16/2022]
Abstract
Simple Summary During more than 50 years of exploitation of the sludge repositories near Chepetsky Mechanical Plant (Glazov, Udmurtia, Russia) containing solid wastes of uranium and processed polymetallic concentrate, the soluble compounds entered the upper aquifer due to infiltration. Nowadays, this has resulted in a high level of pollution of the groundwater with reduced and oxidized nitrogen compounds. In this work, quartz, kaolin, and bentonite clays from various deposits were shown to induce biofilm formation and enhance nitrogen removal by an indigenous microbial community capable of anaerobic ammonium oxidation with nitrite (anammox) at low temperatures. The addition of a “warm” anammox community was also effective in further improving nitrogen removal and expanding the list of mineral carriers most suitable for creating a permeable reactive barrier. It has been suggested that the anammox activity is determined by the presence of essential trace elements in the carrier, the morphology of its surface, and most importantly, competition from rapidly growing microbial groups. Future work was discussed to adapt the “warm” anammox community to cold and provide the anammox community with nitrite through a partial denitrification route within the scope of sustainable anammox-based bioremediation of a nitrogen-polluted cold aquifer. In this unique habitat, novel species of anammox bacteria that are adapted to cold and heavy nitrogen pollution can be discovered. Abstract The complex pollution of aquifers by reduced and oxidized nitrogen compounds is currently considered one of the urgent environmental problems that require non-standard solutions. This work was a laboratory-scale trial to show the feasibility of using various mineral carriers to create a permeable in situ barrier in cold (10 °C) aquifers with extremely high nitrogen pollution and inhabited by the Candidatus Scalindua-dominated indigenous anammox community. It has been established that for the removal of ammonium and nitrite in situ due to the predominant contribution of the anammox process, quartz, kaolin clays of the Kantatsky and Kamalinsky deposits, bentonite clay of the Berezovsky deposit, and zeolite of the Kholinsky deposit can be used as components of the permeable barrier. Biofouling of natural loams from a contaminated aquifer can also occur under favorable conditions. It has been suggested that the anammox activity is determined by a number of factors, including the presence of the essential trace elements in the carrier and the surface morphology. However, one of the most important factors is competition with other microbial groups that can develop on the surface of the carrier at a faster rate. For this reason, carriers with a high specific surface area and containing the necessary microelements were overgrown with the most rapidly growing microorganisms. Bioaugmentation with a “warm” anammox community from a laboratory reactor dominated by Ca. Kuenenia improved nitrogen removal rates and biofilm formation on most of the mineral carriers, including bentonite clay of the Dinozavrovoye deposit, as well as loamy rock and zeolite-containing tripoli, in addition to carriers that perform best with the indigenous anammox community. The feasibility of coupled partial denitrification–anammox and the adaptation of a “warm” anammox community to low temperatures and hazardous components contained in polluted groundwater prior to bioaugmentation should be the scope of future research to enhance the anammox process in cold, nitrate-rich aquifers.
Collapse
Affiliation(s)
- Anastasia Vishnyakova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Nadezhda Popova
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Grigoriy Artemiev
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| | - Ekaterina Botchkova
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
| | - Yuriy Litti
- Winogradsky Institute of Microbiology, «Fundamentals of Biotechnology» Federal Research Center, Russian Academy of Sciences, 117312 Moscow, Russia
- Correspondence: ; Tel.: +7-(926)-369-92-43
| | - Alexey Safonov
- Frumkin Institute of Physical Chemistry and Electrochemistry, Russian Academy of Sciences, 119071 Moscow, Russia
| |
Collapse
|
5
|
Zhang R, Xu X, Lyu Y, Zhou Y, Chen Q, Sun W. Impacts of engineered nanoparticles and antibiotics on denitrification: Element cycling functional genes and antibiotic resistance genes. ECOTOXICOLOGY AND ENVIRONMENTAL SAFETY 2022; 241:113787. [PMID: 35738104 DOI: 10.1016/j.ecoenv.2022.113787] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2022] [Revised: 06/14/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
The wide presence of antibiotics and minerals warrants their combined effects on the denitrification in natural aquatic environment. Herein, we investigated the effects of two antibiotics, sulfamethazine (SMZ) and chlortetracycline (CTC), on the reduction of NO3--N and accumulation of NO2--N in the absence and presence of engineered nanoparticles (NPs) (Al2O3, SiO2, and geothite) using 16 S rRNA sequencing and high-throughput quantitative PCR. The results showed that the addition of antibiotics inhibited the reduction of NO3--N by changing the bacterial community structure and reducing the abundance of denitrification genes, while engineered NPs promoted the denitrification by increasing the abundance of denitrification genes. In the binary systems, engineered NPs alleviated the inhibitory effect of antibiotics through enriching the denitrification genes and adsorbing antibiotics. Antibiotics and its combination with engineered NPs changed the composition of functional genes related to C, N, P, S metabolisms (p < 0.01). The addition of antibiotics and/or engineered NPs altered the bacterial community structure, which is dominated by the genera of Enterobacter (40.7-90.5%), Bacillus (4.9-58.5%), and Pseudomonas (0.21-12.7%). The significant relationship between denitrification, carbon metabolism genes, and antibiotic resistance genes revealed that the heterotrophic denitrifying bacteria may host the antibiotic resistance genes and denitrification genes simultaneously. The findings underscore the significance of engineered NPs in the toxicity assessment of pollutants, and provide a more realistic insight into the toxicity of antibiotics in the natural aquatic environment.
Collapse
Affiliation(s)
- Ruijie Zhang
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Xuming Xu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China
| | - Yitao Lyu
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Ying Zhou
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Qian Chen
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China
| | - Weiling Sun
- College of Environmental Sciences and Engineering, Peking University, Beijing 100871, China; International Joint Laboratory for Regional Pollution Control, Ministry of Education, Beijing 100871, China; State Environmental Protection Key Laboratory of All Material Fluxes in River Ecosystems, Beijing 100871, China; The Key Laboratory of Water and Sediment Sciences, Ministry of Education, Beijing 100871, China.
| |
Collapse
|
6
|
Ren Q, Gao J, Wang C. Effects of Heavy Metals on the Performance and Mechanism of Anaerobic Ammonium Oxidation for Treating Wastewater. FRONTIERS IN CHEMICAL ENGINEERING 2022. [DOI: 10.3389/fceng.2022.851822] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
Abstract
Persistence of ammonium nitrogen and heavy metals in wastewater still remains a challenge, and many wastewater treatment plants face the challenge of removing nitrogen under heavy metal stresses. There is no preferred method for the biological treatment of wastewater containing nitrogen and heavy metals with the possible exception of the anaerobic ammonium oxidation (anammox), since it has shown promise for removing nitrogen under heavy metal stresses. This article reviews the recent research results of the nitrogen-removal performance and mechanism by the anammox process under heavy metal stresses, mainly discussing the enhancing and inhibition effects of heavy metals on the performance of the Anammox reactor. The influencing mechanism of heavy metals on the microbial community and extracellular polymeric substances is also presented, and examples are given for explanation. The main problems of the present research are pointed out, and it is proposed that unifying the metal ion concentrations of inhibiting or promoting anammox activity is necessary for the development and industrial application of the anammox process. The information of this review can offer a great possibility for achieving desired nitrogen removal in wastewater treatment under heavy metal stresses and with significant energy savings.
Collapse
|
7
|
Li W, Zhang P, Qiu H, Van Gestel CAM, Peijnenburg WJGM, Cao X, Zhao L, Xu X, He E. Commonwealth of Soil Health: How Do Earthworms Modify the Soil Microbial Responses to CeO 2 Nanoparticles? ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:1138-1148. [PMID: 34964610 DOI: 10.1021/acs.est.1c06592] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Soil ecotoxicological assays on nanoparticles (NPs) have mainly investigated single components (e.g., plants, fauna, and microbes) within the ecosystem, neglecting possible effects resulting from the disturbance of the interactions between these components. Here, we investigated soil microbial responses to CeO2 NPs in the presence and absence of earthworms from the perspectives of microbial functions (i.e., enzyme activities), the community structure, and soil metabolite profiles. Exposure to CeO2 NPs (50, 500 mg/kg) alone decreased the activities of enzymes (i.e., acid protease and acid phosphatase) participating in soil N and P cycles, while the presence of earthworms ameliorated these inhibitory effects. After the CeO2 NP exposure, the earthworms significantly altered the relative abundance of some microbes associated with the soil N and P cycles (Flavobacterium, Pedobacter, Streptomyces, Bacillus, Bacteroidota, Actinobacteria, and Firmicutes). This was consistent with the pattern found in the significantly changed metabolites which were also involved in the microbial N and P metabolism. Both CeO2 NPs and earthworms changed the soil bacterial community and soil metabolite profiles. Larger alterations of soil bacteria and metabolites were found under CeO2 NP exposure with earthworms. Overall, our study indicates that the top-down control of earthworms can drastically modify the microbial responses to CeO2 NPs from all studied biological aspects. This clearly shows the importance of the holistic consideration of all soil ecological components to assess the environmental risks of NPs to soil health.
Collapse
Affiliation(s)
- Wenxing Li
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Peihua Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Hao Qiu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Cornelis A M Van Gestel
- Department of Ecological Science, Faculty of Science, Vrije Universiteit, Amsterdam 1081 HV, The Netherlands
| | - Willie J G M Peijnenburg
- Institute of Environmental Sciences, Leiden University, Leiden 2333 CC, The Netherlands
- National Institute of Public Health and the Environment, Center for the Safety of Substances and Products, Bilthoven 3720 BA, The Netherlands
| | - Xinde Cao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Ling Zhao
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Xiaoyun Xu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Erkai He
- School of Geographic Sciences, East China Normal University, Shanghai 200241, China
| |
Collapse
|
8
|
Chen Y, Zhang X, Liu W. Effect of metal and metal oxide engineered nano particles on nitrogen bio-conversion and its mechanism: A review. CHEMOSPHERE 2022; 287:132097. [PMID: 34523458 DOI: 10.1016/j.chemosphere.2021.132097] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2021] [Revised: 08/26/2021] [Accepted: 08/28/2021] [Indexed: 06/13/2023]
Abstract
Metal and metal oxide engineered nano particles (MMO-ENPs) are widely applied in various industries due to their unique properties. Thus, many researches focused on the influence on nitrogen transformation processes by MMO-ENPs. This review focuses on the effect of MMO-ENPs on nitrogen fixation, nitrification, denitrification and Anammox. Firstly, based on most of the researches, it can be concluded MMO-ENPs have negative effect on nitrogen fixation, nitrification and denitrification while the MMO-ENPs have no promotion effect on Anammox. Then, the influence factors are discussed in detail, including MMO-ENPs dosage, MMO-ENPs kind and exposure time. Both the microbial morphology and population structure were altered by MMO-ENPs. Also, the mechanisms of MMO-ENPs affecting the nitrogen transformation are reviewed. The inhibition of key enzymes and functional genes, the promotion of reactive oxygen species (ROS) production, MMO-ENPs themselves and the suppression of electron transfer all contribute to the negative effect. Finally, the key points for future investigation are proposed that more attention should be attached to the effect on Anammox and the further mechanism in the future studies.
Collapse
Affiliation(s)
- Yinguang Chen
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China; Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China
| | - Xiaoyang Zhang
- Coll Environm Sci & Engn, Tongji Univ, 1239 Siping Rd, Shanghai, PR China.
| | - Weiguo Liu
- Coll Resource & Environm Sci, Xinjiang Univ, 666 Shengli Rd, Urumqi, PR China
| |
Collapse
|
9
|
Can S, Sari T, Akgul D. Recovery profile of anaerobic ammonium oxidation (anammox) bacteria inhibited by ZnO nanoparticles. WATER SCIENCE AND TECHNOLOGY : A JOURNAL OF THE INTERNATIONAL ASSOCIATION ON WATER POLLUTION RESEARCH 2022; 85:342-353. [PMID: 35050887 DOI: 10.2166/wst.2021.608] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The potential effects of nanoparticles (NPs) on biological treatment processes have become significant due to their increasing industrial applications. The purpose of this research was to investigate the self-recovery ability of anammox bacteria following acute ZnO NPs toxicity. In this context, a 2-liter lab-scale anammox reactor was operated for 550 days to enrich the biomass required to the batch exposure tests. Anammox culture was firstly exposed to four different doses of ZnO NPs (50, 75, 100 and 200 mg/L) for 24 h. Then, the ZnO NPs were removed and self-recovery performance of the anammox bacteria was assessed by evaluating the nitrogen removal capacities for 72 h. Besides the nitrogen removal performance, extracellular polymeric substances (EPS) production was also detected to deeply understand the response of the enriched anammox culture against ZnO NPs exposure. The results revealed that sudden and high load of ZnO NPs (100 and 200 mg/L) resulted in persistent impairment to the nitrogen removal performance of the enriched anammox culture. However, relatively lower doses (50 and 75 mg/L) caused deceleration of the nitrogen removal performance during the recovery period. In addition, EPS content in the reactor decreased along with escalating load of ZnO NPs.
Collapse
Affiliation(s)
- Safiye Can
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| | - Tugba Sari
- Department of Bioengineering, Marmara University, Goztepe 34722, Istanbul, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, Goztepe 34722, Istanbul, Turkey E-mail:
| |
Collapse
|
10
|
Madeira CL, de Araújo JC. Inhibition of anammox activity by municipal and industrial wastewater pollutants: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 799:149449. [PMID: 34371406 DOI: 10.1016/j.scitotenv.2021.149449] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2021] [Revised: 07/29/2021] [Accepted: 07/30/2021] [Indexed: 06/13/2023]
Abstract
The use of the anammox process for nitrogen removal has gained popularity across the world due to its low energy consumption and waste generation. Anammox reactors have been used to treat ammonium-rich effluents such as chemical, pharmaceutical, semiconductor, livestock, and coke oven wastewater. Recently, full-scale installations have been implemented for municipal wastewater treatment. The efficiency of biological processes is susceptible to inhibitory effects of pollutants present in wastewater. Considering the increasing number of emerging contaminants detected in wastewater, the impacts of the different types of pollutants on anammox bacteria must be understood. This review presents a compilation of the studies assessing the inhibitory effects of different wastewater pollutants towards anammox activity. The pollutants were classified as antibiotics, aromatics, azoles, surfactants, microplastics, organic solvents, humic substances, biodegradable organic matter, or metals and metallic nanoparticles. The interactions between the pollutants and anammox bacteria have been described, as well as the interactions between different pollutants leading to synergistic effects. We also reviewed the effects of pollutants on distinct species of anammox bacteria, and the main toxicity mechanisms leading to irreversible loss of anammox activity have been identified. Finally, we provided an analysis of strategies to overcome the inhibitory effects of wastewater pollutants on the nitrogen removal performance. We believe this review will contribute with essential information to assist the operation and design of anammox reactors treating different types of wastewaters.
Collapse
Affiliation(s)
- Camila Leite Madeira
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| | - Juliana Calábria de Araújo
- Department of Sanitary and Environmental Engineering, Federal University of Minas Gerais, Av. Antonio Carlos 6627, 31270-901 Belo Horizonte, MG, Brazil.
| |
Collapse
|
11
|
Wang Y, Ji XM, Jin RC. How anammox responds to the emerging contaminants: Status and mechanisms. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 293:112906. [PMID: 34087646 DOI: 10.1016/j.jenvman.2021.112906] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/20/2021] [Revised: 05/11/2021] [Accepted: 05/26/2021] [Indexed: 06/12/2023]
Abstract
Numerous researches have been carried out to study the effects of emerging contaminants in wastewater, such as antibiotics, nanomaterials, heavy metals, and microplastics, on the anammox process. However, they are fragmented and difficult to provide a comprehensive understanding of their effects on reactor performance and the metabolic mechanisms in anammox bacteria. Therefore, this paper overviews the effects on anammox processes by the introduced emerging contaminants in the past years to fulfill such knowledge gaps that affect our perception of the inhibitory mechanisms and limit the optimization of the anammox process. In detail, their effects on anammox processes from the aspects of reactor performance, microbial community, antibiotic resistance genes (ARGs), and functional genes related to anammox and nitrogen transformation in anammox consortia are summarized. Furthermore, the metabolic mechanisms causing the cell death of anammox bacteria, such as induction of reactive oxygen species, limitation of substrates diffusion, and membrane binding are proposed. By offering this review, the remaining research gaps are identified, and the potential metabolic mechanisms in anammox consortia are highlighted.
Collapse
Affiliation(s)
- Ye Wang
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China
| | - Xiao-Ming Ji
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| | - Ren-Cun Jin
- School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 311121, China.
| |
Collapse
|
12
|
Xu JJ, Cheng YF, Jin RC. Long-term effects of Fe 3O 4 NPs on the granule-based anaerobic ammonium oxidation process: Performance, sludge characteristics and microbial community. JOURNAL OF HAZARDOUS MATERIALS 2020; 398:122965. [PMID: 32474323 DOI: 10.1016/j.jhazmat.2020.122965] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2020] [Revised: 05/13/2020] [Accepted: 05/14/2020] [Indexed: 06/11/2023]
Abstract
The performance of anaerobic ammonium oxidation (anammox) granules were studied under long-term exposure to Fe3O4 NPs. The Fe3O4 NPs had no negative impacts on nitrogen removal performance with the addition of 2-200 mg L-1. The specific anammox activity (SAA) slightly decreased from 287.0 ± 13.2 to -253.0 ± 9.2 mg TN g-1VSS d-1 with the increase in Fe3O4 NPs level from 2 to 60 mg L-1, and then significantly enhanced to 381.8 ± 15.7 mg TN g-1VSS d-1 at 200 mg L-1 Fe3O4 NPs. And the change trends of the heme c content, extracellular polymeric substance amount and settling velocity were consistent with that of SAA. The Candidatus_Kuenenia was the dominant species during the entire experiment and its relative abundance was up to 33.4 % at the end the experiment. The results provide some useful information for comprehending the impact of Fe3O4 NPs on the performance of wastewater biological treatment systems.
Collapse
Affiliation(s)
- Jia-Jia Xu
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ya-Fei Cheng
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Ren-Cun Jin
- Laboratory of Water Pollution Remediation, School of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
13
|
Sari T, Can S, Akgul D. Assessment of Anammox process against acute and long-term exposure of ZnO nanoparticles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 727:138603. [PMID: 32498210 DOI: 10.1016/j.scitotenv.2020.138603] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/26/2019] [Revised: 04/07/2020] [Accepted: 04/08/2020] [Indexed: 06/11/2023]
Abstract
The impacts of nanoparticles (NPs) on wastewater treatment have become a great concern because of their widespread applications. Although the acute responses of anammox bacteria to NPs have enhanced the knowledge about the potential risks of them, deep understanding of the cumulative impacts of NPs must be assessed. The purpose of this research was therefore to further extend the current knowledge by evaluating both acute and long-term effects of Zinc oxide (ZnO) NPs on Anammox process based on nitrogen removal performance, self-recovery ability and microbial community structure. The acute exposure tests indicated that, the median inhibition concentration (IC50) of ZnO NPs on Anammox process was 84.7 mg/L (54.82 mg ZnO NPs/g VSS). Acute exposure of 200 mg/L ZnO NPs (117.54 mg Zn/g VSS) caused 80% inhibition in batch assays while the long-term inhibition dosage was 100 mg/L ZnO NPs (187.50 mg ZnO NPs/g VSS) corresponding to 1022 mg/L total Zn (1916.27 mg Zn/g VSS) in the reactor due to the accumulation of NPs. Total, soluble and biomass-associated Zn concentrations were measured throughout the long-term exposure to observe the behavior of ZnO NPs in the reactor. Total Zn in the reactor was cumulatively increased and mostly originated from biomass-associated Zn. Following the long-term inhibition tests, self-recovery of Anammox process within 120 days demonstrated that, the ZnO NPs inhibition is reversible for the applied dose. Furthermore, next generation sequencing results indicated a symbiotic relationship between the microbial groups in the anammox bioreactor while relative abundance of Candidatus (Ca.) Brocadiaceae family showed a decrease parallel to the deterioration in nitrogen removal performance of bioreactor. At the end of the long-term exposure studies, 48.76% decline on anammox quantity was detected.
Collapse
Affiliation(s)
- Tugba Sari
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Safiye Can
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey
| | - Deniz Akgul
- Department of Environmental Engineering, Marmara University, 34722 Goztepe, Istanbul, Turkey.
| |
Collapse
|
14
|
Chen S, Li N, Chang S, Chen D, Xie S, Guo Q. Evaluating the response of anaerobic ammonium-oxidizing bacteria to heavy metal spill in freshwater sediment. ECOTOXICOLOGY (LONDON, ENGLAND) 2019; 28:1003-1008. [PMID: 31471821 DOI: 10.1007/s10646-019-02099-x] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 08/12/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic ammonium-oxidizing (anammox) bacteria can play an important role in nitrogen elimination in the environment. However, the effect of heavy metals on anammox bacteria in aquatic ecosystem remains largely unknown. The present study investigated the variability of anammox bacterial community in a freshwater reservoir after a severe heavy metal spill. The richness (Chao1 richness estimator = 2-18), diversity (Shannon index = 0.26-2.04) and community structure of anammox bacteria changed considerably with sampling date, while anammox bacterial abundance (from 1.38 × 105 to 3.09 × 105 anammox bacterial 16S rRNA gene copies per gram dry sediment) was less responsive to metal spill. Anammox bacterial communities were mainly composed of Brocadia- and Anammoxoglobus-like bacteria as well as novel phylotype, however, there relative abundance varied among sampling dates. This work could add the knowledge of the response of anammox bacteria to heavy metal contamination.
Collapse
Affiliation(s)
- Sili Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Ningning Li
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China
| | - Sha Chang
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Dinghao Chen
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou, 510655, China
| | - Shuguang Xie
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, College of Environmental Sciences and Engineering, Peking University, Beijing, 100871, China.
| | - Qingwei Guo
- South China Institute of Environmental Sciences (SCIES), Ministry of Ecology and Environment, Guangzhou, 510655, China.
| |
Collapse
|
15
|
Wu D, Zhang Q, Xia WJ, Shi ZJ, Huang BC, Fan NS, Jin RC. Effect of divalent nickel on the anammox process in a UASB reactor. CHEMOSPHERE 2019; 226:934-944. [PMID: 31509923 DOI: 10.1016/j.chemosphere.2019.03.121] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2018] [Revised: 03/05/2019] [Accepted: 03/17/2019] [Indexed: 06/10/2023]
Abstract
The anaerobic ammonium oxidation (anammox) process has the advantages of a high nitrogen removal rate, low operational cost, and small footprint and has been successfully implemented to treat high-content ammonium wastewater. However, very little is known about the toxicity of the heavy metal element Ni(II) to the anammox process. In this study, the short- and long-term effects of Ni(II) on the anammox process in an upflow anaerobic sludge blanket (UASB) reactor were revealed. The results of the short-term batch test showed that the half maximal inhibitory concentration (IC50) of Ni(II) on anammox biomass was 14.6 mg L-1. A continuous-flow experiment was performed for 150 days of operation, and the results illustrated that after domestication, the achieved nitrogen removal efficiency was up to 93±0.03% at 10 mg L-1 Ni(II). The settling velocity, specific anammox activity and EPS content decreased as the Ni(II) concentration increased. Nevertheless, the content of heme c increased as the Ni(II) increased. These results indicate that short-term exposure to Ni(II) has an adverse impact on anammox process, but the anammox system could tolerate 10 mg L-1 Ni(II) stress after acclimation during continuous-flow operation for 150 days. High-throughput sequencing results indicated that the presence of Ni(II) had an impact on the microbial community composition in the anammox reactor, especially Candidatus Kuenenia. At Ni(II) concentrations of 0-10 mg L-1, the relative abundance of Candidatus Kuenenia decreased from 36.23% to 28.46%.
Collapse
Affiliation(s)
- Dan Wu
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Quan Zhang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Wen-Jing Xia
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Zhi-Jian Shi
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Bao-Cheng Huang
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Nian-Si Fan
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China
| | - Ren-Cun Jin
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou, 310036, China; Key Laboratory of Hangzhou City for Ecosystem Protection and Restoration, Hangzhou Normal University, Hangzhou, 310036, China.
| |
Collapse
|
16
|
Xu D, Kang D, Yu T, Ding A, Lin Q, Zhang M, Hu Q, Zheng P. A secret of high-rate mass transfer in anammox granular sludge: "Lung-like breathing". WATER RESEARCH 2019; 154:189-198. [PMID: 30797127 DOI: 10.1016/j.watres.2019.01.039] [Citation(s) in RCA: 31] [Impact Index Per Article: 6.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/17/2018] [Revised: 12/22/2018] [Accepted: 01/18/2019] [Indexed: 05/12/2023]
Abstract
The granulation of anaerobic ammonium oxidation (Anammox) biomass can play a key role in developing stable and high-rate working of anammox process. It is important to know the working mechanism of anammox granular sludge (AnGS) for the optimization of reactor performance. In this study, a "lung-like breathing" determinator was invented to investigate the working behavior of AnGS in the bioreactor. The results showed that the AnGS had a regular expansion and contraction phenomenon, which was called "lung-like breathing". With the biological loading rate (BLR) at 0.114 kg-N/(kg-VSS·d), the expansion and contraction amplitude (ExCA) was 1.29 ± 0.05%, and the expansion and contraction frequency (ExCF) was 39.3 ± 1.6 times/h. The AnGS cultivated in a bioreactor with higher nitrogen removal rate (NRR) was found to have the higher ExCA and ExCF when determinated at the same BLR, and the "lung-like breathing" behavior of one type of AnGS was revealed to bear a significantly (p < 0.05) positive correlation with the specific anammox activity (SAA). The mass transfer flux from "lung-like breathing" was far greater than that from molecular diffusion, which was regarded as a vital mechanism for the AnGS to demonstrate its high activity. These findings provided theoretical basis and technical parameters for the optimization of anammox nitrogen removal process.
Collapse
Affiliation(s)
- Dongdong Xu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Da Kang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Tao Yu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Aqiang Ding
- Department of Environmental Science College of Resource and Environmental Science, Chongqing University, Chongqing, China
| | - Qiujian Lin
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Meng Zhang
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China; Advanced Environmental Biotechnology Centre, Nanyang Environment & Water Research Institute, Nanyang Technological University, Singapore
| | - Qianyi Hu
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China
| | - Ping Zheng
- Department of Environmental Engineering, College of Environmental & Resource Sciences, Zhejiang University, Hangzhou, China.
| |
Collapse
|