1
|
Lee MG, Kandambeth S, Li XY, Shekhah O, Ozden A, Wicks J, Ou P, Wang S, Dorakhan R, Park S, Bhatt PM, Kale VS, Sinton D, Eddaoudi M, Sargent EH. Bimetallic Metal Sites in Metal-Organic Frameworks Facilitate the Production of 1-Butene from Electrosynthesized Ethylene. J Am Chem Soc 2024; 146:14267-14277. [PMID: 38717595 DOI: 10.1021/jacs.4c03806] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/23/2024]
Abstract
Converting CO2 to synthetic hydrocarbon fuels is of increasing interest. In light of progress in electrified CO2 to ethylene, we explored routes to dimerize to 1-butene, an olefin that can serve as a building block to ethylene longer-chain alkanes. With goal of selective and active dimerization, we investigate a series of metal-organic frameworks having bimetallic catalytic sites. We find that the tunable pore structure enables optimization of selectivity and that periodic pore channels enhance activity. In a tandem system for the conversion of CO2 to 1-C4H8, wherein the outlet cathodic gas from a CO2-to-C2H4 electrolyzer is fed directly (via a dehumidification stage) into the C2H4 dimerizer, we study the highest-performing MOF found herein: M' = Ru and M″ = Ni in the bimetallic two-dimensional M'2(OAc)4M″(CN)4 MOF. We report a 1-C4H8 production rate of 1.3 mol gcat-1 h-1 and a C2H4 conversion of 97%. From these experimental data, we project an estimated cradle-to-gate carbon intensity of -2.1 kg-CO2e/kg-1-C4H8 when CO2 is supplied from direct air capture and when the required energy is supplied by electricity having the carbon intensity of wind.
Collapse
Affiliation(s)
- Mi Gyoung Lee
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Materials Science and Engineering, Incheon National University, Incheon 22012, Republic of Korea
| | - Sharath Kandambeth
- Functional Materials Design, Discovery, and Development (FMD3) research group, Advanced Membranes and Porous Materials (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Xiao-Yan Li
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Osama Shekhah
- Functional Materials Design, Discovery, and Development (FMD3) research group, Advanced Membranes and Porous Materials (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Adnan Ozden
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Joshua Wicks
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Pengfei Ou
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
| | - Sasa Wang
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Roham Dorakhan
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Sungjin Park
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
| | - Prashant M Bhatt
- Functional Materials Design, Discovery, and Development (FMD3) research group, Advanced Membranes and Porous Materials (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Vinayak S Kale
- Functional Materials Design, Discovery, and Development (FMD3) research group, Advanced Membranes and Porous Materials (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - David Sinton
- Department of Mechanical and Industrial Engineering, University of Toronto, Toronto, ON M5S 3G8, Canada
| | - Mohamed Eddaoudi
- Functional Materials Design, Discovery, and Development (FMD3) research group, Advanced Membranes and Porous Materials (AMPM), Division of Physical Sciences and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal 23955-6900, Kingdom of Saudi Arabia
| | - Edward H Sargent
- Department of Electrical and Computer Engineering, University of Toronto, Toronto, ON M5S 1A4, Canada
- Department of Chemistry, Northwestern University, Evanston, Illinois 60208, United States
- Department of Electrical and Computer Engineering, Northwestern University, Evanston, Illinois 60208, United States
| |
Collapse
|
2
|
Prasad Reddy Kannapu H, Pyo S, Shiung Lam S, Jae J, Hoon Rhee G, Ali Khan M, Jeon BH, Park YK. MgO-modified activated biochar for biojet fuels from pyrolysis of sawdust on a simple tandem micro-pyrolyzer. BIORESOURCE TECHNOLOGY 2022; 359:127500. [PMID: 35724913 DOI: 10.1016/j.biortech.2022.127500] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/23/2022] [Revised: 06/13/2022] [Accepted: 06/15/2022] [Indexed: 06/15/2023]
Abstract
The aim of this work was to study on MgO-modified KOH activated biochar (AC) catalysts, in the pyrolysis of sawdust for the direct production of bio-jet fuels using a tandem micro-pyrolyzer. AC catalysts with various MgO contents (5 to 20 wt%) were synthesized using an impregnation method. The mesopores generated (4 to 18 nm) in the carbon has a great potential in the conversion of oxygenated to jet fuel. The importance of basic nature in the catalysts is demonstrated with the maximum bio-jet fuel yield of 29 % at 10 % MgO. Further, the temperature of 600 °C and a catalyst/sawdust ratio of 10 are identified as the optimal conditions. The nanosize of MgO and the synergism of acid and base sites seemed to enhance deoxygenation, via decarboxylation and decarbonylation, and oligomerization, which are required for jet fuel formation in high amounts from sawdust pyrolysis.
Collapse
Affiliation(s)
| | - Sumin Pyo
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Su Shiung Lam
- Higher Institution Centre of Excellence (HICoE), Institute of Tropical Aquaculture and Fisheries (AKUATROP), Universiti Malaysia Terengganu, 21030 Kuala Nerus, Terengganu, Malaysia
| | - Jungho Jae
- School of Chemical Engineering, Pusan National University, Busan 46241, Republic of Korea
| | - Gwang Hoon Rhee
- Department of Mechanical and Information Engineering, University of Seoul, Seoul 02504, Republic of Korea
| | - Moonis Ali Khan
- Chemistry Department, College of Science, King Saud University, Riyadh 11451, Saudi Arabia
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, Republic of Korea
| | - Young-Kwon Park
- School of Environmental Engineering, University of Seoul, Seoul 02504, Republic of Korea.
| |
Collapse
|
3
|
Auzani AS, Clements AG, Hughes KJ, Ingham DB, Pourkashanian M. Assessment of ethanol autoxidation as a drop-in kerosene and surrogates blend with a new modelling approach. Heliyon 2021; 7:e07295. [PMID: 34179539 PMCID: PMC8213907 DOI: 10.1016/j.heliyon.2021.e07295] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 05/25/2021] [Accepted: 06/09/2021] [Indexed: 11/17/2022] Open
Abstract
Bioethanol has been considered as a more sustainable alternative for fossil fuels, and it has been used as a drop-in fuel mixture. In this paper, the autoxidation properties of real kerosene as well as single, binary and ternary surrogates with the presence of ethanol are investigated for the first time. A simplified python code is proposed to predict the pressure drop of the PetroOXY method that was used for assessing the fuel autoxidation properties. The experimental results show that the addition of an ethanol concentration reduces the induction period of real kerosene while increasing that of surrogate mixtures. Also, the maximum pressure during the PetroOXY test increases with the increase of ethanol concentration. The model is able to predict the induction period of ethanol accurately by employing an automated reaction mechanism generator. A strategy to increase the autoxidation stability of ethanol by adding 1 g/L antioxidant has been evaluated. The efficiency of the antioxidants for ethanol is in the following order: PY > Decalin > DTBP > Tetralin > BHT > MTBP > BHA > TBHQ > PG. Autoxidation of real and surrogates kerosene was evaluated using PetroOXY method. Ethanol addition decreases the induction period of real kerosene while increases that of surrogates. Nine antioxidants were assessed to improve the thermal stability of ethanol. A new method for modelling PetroOXY test is proposed.
Collapse
Affiliation(s)
- Ahmad Syihan Auzani
- Energy 2050, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
- Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia
- Corresponding author at: Department of Mechanical Engineering, Faculty of Engineering, Universitas Indonesia, Indonesia.
| | - Alastair G. Clements
- Energy 2050, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Kevin J. Hughes
- Energy 2050, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Derek B. Ingham
- Energy 2050, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| | - Mohamed Pourkashanian
- Energy 2050, Faculty of Engineering, University of Sheffield, Sheffield S10 2TN, United Kingdom
| |
Collapse
|
4
|
Penín L, López M, Santos V, Alonso JL, Parajó JC. Technologies for Eucalyptus wood processing in the scope of biorefineries: A comprehensive review. BIORESOURCE TECHNOLOGY 2020; 311:123528. [PMID: 32444114 DOI: 10.1016/j.biortech.2020.123528] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/06/2020] [Revised: 05/06/2020] [Accepted: 05/11/2020] [Indexed: 05/12/2023]
Abstract
Eucalyptus is the most widely planted type of hardwoods, and represents an important biomass source for the production of fuels, chemicals, and materials. Its industrial benefit can be achieved by processes following the biorefinery concept, which is based on the selective separation ("fractionation") of the major components (hemicelluloses, cellulose and lignin), and on the generation of added-value from the resulting fractions. This article provides a in-depth assessment on the composition of Eucalyptus wood and a critical evaluation of selected technologies allowing its overall exploitation. These latter include treatments with organosolvents and with emerging fractionation agents (ionic liquids and deep eutectic solvents). The comparative evaluation of the diverse processing technologies is carried out in terms of degree of fractionation, yields and selectivities. The weak and strong points, challenges, and opportunities of the diverse fractionation methods are identified, focusing on the integral utilization of the feedstocks.
Collapse
Affiliation(s)
- Lucía Penín
- Faculty of Science, Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnical Building. As Lagoas, 32004 Ourense, Spain
| | - Mar López
- Faculty of Science, Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnical Building. As Lagoas, 32004 Ourense, Spain
| | - Valentín Santos
- Faculty of Science, Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnical Building. As Lagoas, 32004 Ourense, Spain
| | - José Luis Alonso
- Faculty of Science, Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnical Building. As Lagoas, 32004 Ourense, Spain
| | - Juan Carlos Parajó
- Faculty of Science, Department of Chemical Engineering, University of Vigo (Ourense Campus), Polytechnical Building. As Lagoas, 32004 Ourense, Spain.
| |
Collapse
|
5
|
Ashani PN, Shafiei M, Karimi K. Biobutanol production from municipal solid waste: Technical and economic analysis. BIORESOURCE TECHNOLOGY 2020; 308:123267. [PMID: 32251861 DOI: 10.1016/j.biortech.2020.123267] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/19/2020] [Revised: 03/26/2020] [Accepted: 03/27/2020] [Indexed: 06/11/2023]
Abstract
Novel processes for the production of acetone-butanol-ethanol (ABE) from municipal solid waste (MSW) were developed and simulated using Aspen Plus®. In scenario 1, a conventional distillation system was used, while a gas stripping system was coupled with a fermenter in scenario 2. In scenario 3, pervaporation (PV) and gas stripping systems right after the fermentation reactor were applied. Gas stripping increased the total ABE produced while the addition of the PV module decreased the number of distillation columns from 6 to 2 as well as created 6.4% increments in the amount of butanol in comparison with scenario 1. Economical evaluation resulted in having payout periods of 15.9, 4.4, and 2.9 years for scenarios 1 to 3, respectively. These results show that using MSW as an inexpensive sugar-rich feedstock together with gas stripping PV system is a promising solution to overcome the major obstacles in the way of the ABE production.
Collapse
Affiliation(s)
- Parisa Nazemi Ashani
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Department of Food, Agricultural and Biological Engineering, The Ohio State University, Wooster, OH, USA
| | | | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan 84156-83111, Iran; Industrial Biotechnology Group, Research Institute for Biotechnology and Bioengineering, Isfahan University of Technology, Isfahan 84156-83111, Iran.
| |
Collapse
|
6
|
Ferreira JA, Taherzadeh MJ. Improving the economy of lignocellulose-based biorefineries with organosolv pretreatment. BIORESOURCE TECHNOLOGY 2020; 299:122695. [PMID: 31918973 DOI: 10.1016/j.biortech.2019.122695] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2019] [Revised: 12/23/2019] [Accepted: 12/24/2019] [Indexed: 06/10/2023]
Abstract
Lignocellulose-based processes for production of value-added products still face bottlenecks to attain feasibility. The key might lie on the biorefining of all lignocellulose main polymers, that is, cellulose, hemicellulose and lignin. Lignin, considered an impediment in the access of cellulose and normally considered for energy recovery purposes, can give a higher contribution towards profitability of lignocellulosic biorefineries. Organosolv pretreatment allows selective fractionation of lignocellulose into separate cellulose-, hemicellulose- and lignin-rich streams. Ethanol organosolv and wood substrates dominated the research studies, while a wide range of substrates need definition on the most suitable organosolv pretreatment systems. Techno-economic and environmental analyses of organosolv-based processes as well as proper valorization strategies of the hemicellulose-rich fraction are still scarce. In view of dominance of ethanol organosolv with high delignification yields and high-purity of the recovered cellulose-rich fractions, close R & D collaboration with 1st generation ethanol plants might boost commercialization.
Collapse
Affiliation(s)
- Jorge A Ferreira
- Swedish Centre for Resource Recovery, University of Borås, 50190 Borås, Sweden.
| | | |
Collapse
|
7
|
Efficient Catalytic Dehydration of High-Concentration 1-Butanol with Zn-Mn-Co Modified γ-Al2O3 in Jet Fuel Production. Catalysts 2019. [DOI: 10.3390/catal9010093] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
It is important to develop full-performance bio-jet fuel based on alternative feedstocks. The compound 1-butanol can be transformed into jet fuel through dehydration, oligomerization, and hydrogenation. In this study, a new catalyst consisting of Zn-Mn-Co modified γ-Al2O3 was used for the dehydration of high-concentration 1-butanol to butenes. The interactive effects of reaction temperature and butanol weight-hourly space velocity (WHSV) on butene yield were investigated with response surface methodology (RSM). Butene yield was enhanced when the temperature increased from 350 °C to 450 °C but it was reduced as WHSV increased from 1 h−1 to 4 h−1. Under the optimized conditions of 1.67 h−1 WHSV and 375 °C reaction temperature, the selectivity of butenes achieved 90%, and the conversion rate of 1-butanol reached 100%, which were 10% and 6% higher, respectively, than when using unmodified γ-Al2O3. The Zn-Mn-Co modified γ-Al2O3 exhibited high stability and a long lifetime of 180 h, while the unmodified γ-Al2O3 began to deactivate after 60 h. Characterization with X-ray diffraction (XRD), nitrogen adsorption-desorption, pyridine temperature-programmed desorption (Py-TPD), pyridine adsorption IR spectra, and inductively coupled plasma atomic emission spectrometry (ICP-AES), showed that the crystallinity and acid content of γ-Al2O3 were obviously enhanced by the modification with Zn-Mn-Co, and the loading amounts of zinc, manganese, and cobalt were 0.54%, 0.44%, and 0.23%, respectively. This study provides a new catalyst, and the results will be helpful for the further optimization of bio-jet fuel production with a high concentration of 1-butanol.
Collapse
|