1
|
Afrand M, Sourinejad I, Homaei A, Hemmati R. Immobilization of recombinant serine protease from Virgobacillus natechei FarD T on amino graphene-chitosan biocompatible nanohybrid for enhancing pH and thermal stability. Int J Biol Macromol 2024; 279:135254. [PMID: 39233152 DOI: 10.1016/j.ijbiomac.2024.135254] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/17/2024] [Revised: 08/30/2024] [Accepted: 08/30/2024] [Indexed: 09/06/2024]
Abstract
The serine protease gene was heterologously expressed in Escherichia coli BL21 (DE3) using the PET 28a vector. The purified enzyme was immobilized on a nanohybrid of amino graphene and chitosan. The characterization of synthesized nanohybrids and immobilized enzymes was confirmed by Fourier transform infrared (FTIR), X-ray diffraction (XRD), dynamic light scattering (DLS), and field emission scanning electron microscopy (FE-SEM). Immobilization increased the temperature optimum from 60 to 70 °C for both free and immobilized enzymes, while the optimal pH of the enzymes did not change post-immobilization (pH 8). The immobilized biocatalyst significantly enhanced thermal stability, as well as enzyme stability at significant pH ranges. After 30 days of storage, the immobilized enzymes exhibited approximately 83 % of their relative activity, while the free protease retained only 56 % of its initial activity. Stabilization also altered the kinetic parameters (increasing Km, decreasing Kcat/Km, and Vmax) and thermodynamic parameters (increasing enzyme half-life and activation energy). The study's outcomes represent a significant advancement in the realm of enzyme synthesis and its stabilization using several combined technologies, including enzyme production with recombinant DNA technology based on gene synthesis, and its stabilization using a hybrid substrate synthesized from nanomaterials. Based on these findings, the immobilized recombinant enzyme has high potential for industrial use as an efficient and stable biocatalyst.
Collapse
Affiliation(s)
- Mahboobeh Afrand
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran
| | - Iman Sourinejad
- Department of Fisheries, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Ahmad Homaei
- Department of Marine Biology, Faculty of Marine Science and Technology, University of Hormozgan, Bandar Abbas, Iran.
| | - Roohullah Hemmati
- Department of Biology, Faculty of Basic Sciences, Shahrekord University, Shahrekord, Iran
| |
Collapse
|
2
|
Abedi E, Mohammad Bagher Hashemi S, Ghiasi F. Effective mitigation in the amount of acrylamide through enzymatic approaches. Food Res Int 2023; 172:113177. [PMID: 37689930 DOI: 10.1016/j.foodres.2023.113177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/01/2023] [Revised: 06/18/2023] [Accepted: 06/19/2023] [Indexed: 09/11/2023]
Abstract
Acrylamide (AA), as a food-borne toxicant, is created at some stages of thermal processing in the starchy food through Maillard reaction, fatty food via acrolein route, and proteinous food using free amino acids pathway. Maillard reaction obviously takes place in thermal-based products, being responsible for specific sensory attributes; AA formation, thereby, is unavoidable during the thermal processing. Additionally, AA can naturally occur in soil and water supply. In order to reduce the levels of acrylamide in cooked foods, mitigation techniques can be separated into three different types. Firstly, starting materials low in acrylamide precursors can be used to reduce the acrylamide in the final product. Secondly, process conditions may be modified in order to decrease the amount of acrylamide formation. Thirdly, post-process intervention could be used to reduce acrylamide. Conventional or emerging mitigation techniques might negatively influence the pleasant features of heated foods. The current study summarizes the effect of enzymatic reaction induced by asparaginase, glucose oxidase, acrylamidase, phytase, amylase, and protease to possibly inhibit AA formation or progressively hydrolyze formed AA. Not only enzyme-assisted AA reduction could dramatically maintain bio-active compounds, but also no damaging impact has been reported on the sensorial and rheological properties of the final heated products. The enzyme engineering can be applied to ameliorate enzyme functionality through altering the amino acid sequence like site-specific mutagenesis and directed evolution, chemical modifications by covalent conjugation of L-asparaginase onto soluble/insoluble biocompatible polymers and immobilization. Moreover, it would be possible to improve the enzyme's physical, chemical, and thermal stability, recyclability and prevent enzyme overuse by applying engineered ones. In spite of enzymes' cost-effective and eco-friendly, promoting their large-scale usages for AA reduction in food application and AA bioremediation in wastewater and soil resources.
Collapse
Affiliation(s)
- Elahe Abedi
- Department of Food Science and Technology, Faculty of Agriculture, Fasa University, Fasa, Iran.
| | | | - Fatemeh Ghiasi
- Department of Food Science and Technology, School of Agriculture, Shiraz University, Shiraz, Iran.
| |
Collapse
|
3
|
Ni S, Li C, Yu Y, Niu D, Zhu J, Yin D, Wang C, Zhang W, Jiang X, Ren J. Immobilization of EreB on Acid-Modified Palygorskite for Highly Efficient Degradation of Erythromycin. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:11064. [PMID: 36078780 PMCID: PMC9518184 DOI: 10.3390/ijerph191711064] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 08/31/2022] [Accepted: 09/02/2022] [Indexed: 06/15/2023]
Abstract
Erythromycin is one of the most commonly used macrolide antibiotics. However, its pollution of the ecosystem is a significant risk to human health worldwide. Currently, there are no effective and environmentally friendly methods to resolve this issue. Although erythromycin esterase B (EreB) specifically degrades erythromycin, its non-recyclability and fragility limit the large-scale application of this enzyme. In this work, palygorskite was selected as a carrier for enzyme immobilization. The enzyme was attached to palygorskite via a crosslinking reaction to construct an effective erythromycin-degradation material (i.e., EreB@modified palygorskite), which was characterized using FT-IR, SEM, XRD, and Brunauer-Emmett-Teller techniques. The results suggested the successful modification of the material and the loading of the enzyme. The immobilized enzyme had a higher stability over varying temperatures (25-65 °C) and pH values (6.5-10.0) than the free enzyme, and the maximum rate of reaction (Vmax) and the turnover number (kcat) of the enzyme increased to 0.01 mM min-1 and 169 min-1, respectively, according to the enzyme-kinetics measurements. The EreB@modified palygorskite maintained about 45% of its activity after 10 cycles, and degraded erythromycin in polluted water to 20 mg L-1 within 300 min. These results indicate that EreB could serve as an effective immobilizing carrier for erythromycin degradation at the industrial scale.
Collapse
Affiliation(s)
- Shensheng Ni
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Chunyu Li
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Yicheng Yu
- Jiangsu Key Laboratory of Phylogenomics and Comparative Genomics, School of Life Sciences, Jiangsu Normal University, No. 101 Shanghai Road, Tongshan District, Xuzhou 221116, China
| | - Dongze Niu
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Jie Zhu
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Dongmin Yin
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Chongqing Wang
- Beijing General Station of Animal Husbandry, No. 21 Chaoqian Road, Changping District, Beijing 100101, China
| | - Wenfan Zhang
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| | - Xingmei Jiang
- Bijie Institute of Animal Husbandry and Veterinary Sciences, De Gou Ma Jia Yuan, Qixingguan District, Bijie 551700, China
| | - Jianjun Ren
- Institute of Urban and Rural Mining, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
- National-Local Joint Engineering Research Center for Biomass Refining and High-Quality Utilization, Changzhou University, No. 21 Gehu Road, Wujin District, Changzhou 213164, China
| |
Collapse
|
4
|
Khatik AG, Jain AK, Muley AB. Preparation, characterization and stability of cross linked nitrilase aggregates (nitrilase-CLEAs) for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Bioprocess Biosyst Eng 2022; 45:1559-1579. [PMID: 35962826 DOI: 10.1007/s00449-022-02766-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Accepted: 07/28/2022] [Indexed: 11/28/2022]
Abstract
Nitrilases capable of performing hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid were screened, and ES-NIT-102 was the best nitrilase for said biotransformation. Nitrilase was immobilized as cross linked enzyme aggregates (nitrilase-CLEAs) by fractional precipitation with iso-propanol, and cross linked with glutaraldehyde. The nitrilase-CLEAs prepared with optimized 35 mM glutaraldehyde for 120 min cross linking time had 82.36 ± 4.45% residual activity, and displayed type-II structural CLEAs formation as confirmed by particle size, SEM, FTIR, and SDS-PAGE analysis. Nitrilase-CLEAs had superior pH and temperature stability, showed a shift in optimal temperature by 5 °C, and retained nearly 1.5 to 1.7 folds activity over free nitrilase at 50 °C and 55 °C after more than 9 h incubation. Nitrilase-CLEAs showed reduced affinity and decreased conversion of substrate as indicated by slightly higher Km values by 5.19% and reduced Vmax by 17%. Furthermore, these nitrilase-CLEAs showed 98% conversion, 94.72 g/L product formation, and 83.30% recovery after 24 h when used for hydroxylation of 2-chloroisonicotinonitrile to 2-chloroisonicotinic acid. Nitrilase-CLEAs were catalytically active for 3 cycles showcasing 81% conversion, 75.53 g/L product formation and 66.42% yield. The recovered product was confirmed by HPLC, FTIR, LC-MS, and 1H NMR, and displayed > 99% purity.
Collapse
Affiliation(s)
- Amol Gulab Khatik
- School of Basic & Applied Sciences, Galgotias University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India.
| | - Arvind Kumar Jain
- School of Basic & Applied Sciences, Galgotias University, Gautam Buddh Nagar, Greater Noida, Uttar Pradesh, 201310, India
| | | |
Collapse
|
5
|
Redesigning Robust Biocatalysts by Engineering Enzyme Microenvironment and Enzyme Immobilization. Catal Letters 2022. [DOI: 10.1007/s10562-022-04137-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
|
6
|
Preparation and characterization of sugilite glass from basalt for α -amylase immobilization, statistical optimization of the immobilization process and description of free and immobilized enzyme. Heliyon 2022; 8:e09960. [PMID: 35874060 PMCID: PMC9305367 DOI: 10.1016/j.heliyon.2022.e09960] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 05/31/2022] [Accepted: 07/12/2022] [Indexed: 11/23/2022] Open
Abstract
Bacterial α-amylase was immobilized on sugilite from modified basalt rock as a new carrier. A set of glass compositions based on sugilite formula KNa2M2Li3Si12O30 (M = Al or Mn or Fe) were prepared. The glasses were prepared through melting–quenching technique and samples of glass were converted to glass ceramic. Among the tested glasses and glass ceramic only sugilite glass based on M = Fe (BSF) give promising results. The sugilite BSF glass was characterized using DSC analysis, FTIR absorption, and SEM. The sugilite glass revealed high thermal resistant till ∼770 °C. Under optimized conditions of the Central composite design, the immobilization yield improved by 4.7-fold. The affinity to starch increased after enzyme immobilization by 4.3-fold. The lower rate of deactivation constant and the increase of t½ and D-value confirm the suitability of BSF and immobilization method in enhancing enzyme stability. The improvement in thermostability of immobilized α-amylase was judged by the change in thermodynamic parameters. In conclusion, the prepared sugilite BSF glass can be utilized as a new carrier suitable for stabilization of α-amylase enzyme by immobilization. Lemon peels induced α-amylase production by isolated Rhizobium sp. strain A1. Using basalt as raw material for sugilite glass synthesis as new immobilization carriers. Sugilite BSF glass the suitable carrier was characterized by DSC, FTIR and SEM. Central composite design increased immobilization yield by 4.7–fold. Thermal and thermodynamic properties emphasize increased stability upon immobilization.
Collapse
|
7
|
Ortega N, Sáez L, Palacios D, Busto MD. Kinetic Modeling, Thermodynamic Approach and Molecular Dynamics Simulation of Thermal Inactivation of Lipases from Burkholderia cepacia and Rhizomucor miehei. Int J Mol Sci 2022; 23:ijms23126828. [PMID: 35743268 PMCID: PMC9224459 DOI: 10.3390/ijms23126828] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Revised: 06/15/2022] [Accepted: 06/17/2022] [Indexed: 12/04/2022] Open
Abstract
The behavior against temperature and thermal stability of enzymes is a topic of importance for industrial biocatalysis. This study focuses on the kinetics and thermodynamics of the thermal inactivation of Lipase PS from B. cepacia and Palatase from R. miehei. Thermal inactivation was investigated using eight inactivation models at a temperature range of 40–70 °C. Kinetic modeling showed that the first-order model and Weibull distribution were the best equations to describe the residual activity of Lipase PS and Palatase, respectively. The results obtained from the kinetic parameters, decimal reduction time (D and tR), and temperature required (z and z’) indicated a higher thermal stability of Lipase PS compared to Palatase. The activation energy values (Ea) also indicated that higher energy was required to denature bacterial (34.8 kJ mol−1) than fungal (23.3 kJ mol−1) lipase. The thermodynamic inactivation parameters, Gibbs free energy (ΔG#), entropy (ΔS#), and enthalpy (ΔH#) were also determined. The results showed a ΔG# for Palatase (86.0–92.1 kJ mol−1) lower than for Lipase PS (98.6–104.9 kJ mol−1), and a negative entropic and positive enthalpic contribution for both lipases. A comparative molecular dynamics simulation and structural analysis at 40 °C and 70 °C were also performed.
Collapse
|
8
|
Bin Z, Ting F, Yan Y, Feng L, Adesanya Idowu O, Hongbo S. Magnetic cross-linked enzyme aggregate based on ionic liquid modification as a novel immobilized biocatalyst for phytosterol esterification. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00882c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Novel immobilized enzyme CRL-FIL-CLEAs@Fe3O4 with enhanced activities and stabilities was successfully prepared by a cross-linked lipase aggregate method for phytosterol esterification.
Collapse
Affiliation(s)
- Zou Bin
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Feng Ting
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Yan Yan
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Liu Feng
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Onyinye Adesanya Idowu
- School of Food and Biological Engineering, Jiangsu University, No. 301 Xuefu Road, Zhenjiang 212013, China
| | - Suo Hongbo
- School of Pharmaceutical Sciences, Liaocheng University, Liaocheng, 252059, China
| |
Collapse
|
9
|
Wei B, Liu F, Liu X, Cheng L, Yuan Q, Gao H, Liang H. Enhancing stability and by-product tolerance of β-glucuronidase based on magnetic cross-linked enzyme aggregates. Colloids Surf B Biointerfaces 2021; 210:112241. [PMID: 34847520 DOI: 10.1016/j.colsurfb.2021.112241] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/04/2021] [Revised: 11/12/2021] [Accepted: 11/19/2021] [Indexed: 01/15/2023]
Abstract
β-glucuronidase is an important catalyst which is highly specific for β-glucuronides. Here, we constructed magnetic cross-linking β-glucuronidase aggregates (MCLEAs) to for the production of glycyrrhetinic acid (GA). Before crosslinking via glutaraldehyde, we used carbodiimide to enhance the interaction between enzymes and carboxyl-functionalized Fe3O4, efficiently improving the activity recovery. Compared to free enzymes, both kcat and kcat/Km enhanced, indicating that crosslinking and aggregation brought higher catalytic efficiency to enzymes. MCLEAs enhanced pH and thermal stabilities and retained 63.3% of catalytic activity after 6 cycles. More importantly, it was first found that the glucuronic acid tolerance of β-glucuronidase after the formation of MCLEAs enhanced 221.5% in 10 mM of glucuronic acid. According to the Raman spectroscopy, the ordered structure of β-glucuronidase increased from 43.9% to 50.6% after immobilization, which explained the increased stability and tolerance. To sum up, MCLEAs provided an efficient strategy for immobilization of enzymes, which enhanced stability and glucuronic acid tolerance of enzymes. It might be an effective solution to the serious inhibition caused by by-products during the preparation of aglycone from natural glycosides, having a significant applied prospect in industry.
Collapse
Affiliation(s)
- Bin Wei
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Fang Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Xiaojie Liu
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Leiyu Cheng
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Qipeng Yuan
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China
| | - Huiling Gao
- College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| | - Hao Liang
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, PR China; College of Life Science and Technology, Beijing University of Chemical Technology, Beijing 100029, PR China.
| |
Collapse
|
10
|
Acosta J, Nguyen K, Spitale RC, Fernández-Lucas J. Taylor-made production of pyrimidine nucleoside-5'-monophosphate analogues by highly stabilized mutant uracil phosphoribosyltransferase from Toxoplasma gondii. BIORESOURCE TECHNOLOGY 2021; 339:125649. [PMID: 34329899 DOI: 10.1016/j.biortech.2021.125649] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
Nowadays, enzymatic synthesis of nucleotides is an efficient and sustainable alternative to chemical methodologies. In this regard, after the biochemical characterization of wild-type and mutant uracil phosphoribosyltransferases from Toxoplasma gondii (TgUPRT, TgUPRT2, and TgUPRT3), TgUPRT2 was selected as the optimal candidate (69.5 IU mg-1, UMP synthesis) for structure-guided immobilization onto Ni2+ chelate (MNiUPRT2) and onto glutaraldehyde-activated microparticles (MGlUPRT2). Among resulting derivatives, MNiUPRT23 (6127 IU g-1biocat; 92% retained activity; 3-5 fold enhanced stability at 50-60 °C) and MGlUPRT2N (3711 IU g-1biocat; 27% retained activity; 8-20 fold enhanced stability at 50-60 °C) displayed the best operability. Moreover, the enzymatic synthesis of different pyrimidine NMPs was performed. Finally, the reusability of both derivatives in 5-FUMP synthesis (MNiUPRT23, 80% retained activity after 7 cycles, 5 min; MGlUPRT2N, 70% retained activity after 10 cycles, 20 min) was carried out at short times.
Collapse
Affiliation(s)
- Javier Acosta
- Applied Biotechnology Group, Universidad Europea de Madrid, Calle Tajo, s/n, Villaviciosa de Odón 28670, Spain
| | - Kim Nguyen
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA
| | - Robert C Spitale
- Department of Pharmaceutical Sciences, University of California, Irvine, CA 92697, USA; Department of Chemistry, University of California, Irvine, CA 92697, USA; Department of Molecular Biology & Biochemistry, University of California, Irvine, CA 92697, USA
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Universidad Europea de Madrid, Calle Tajo, s/n, Villaviciosa de Odón 28670, Spain; Grupo Investigación Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, Calle 58 # 55-66. Barranquilla, Colombia.
| |
Collapse
|
11
|
Abstract
Cutinases (EC 3.1.1.74) are serin esterases that belong to the α/β hydrolases superfamily and present in the Ser-His-Asp catalytic triad. They show characteristics between esterases and lipases. These enzymes hydrolyze esters and triacylglycerols and catalyze esterification and transesterification reactions. Cutinases are synthesize by plant pathogenic fungi, but some bacteria and plants have been found to produce cutinases as well. In nature they facilitate a pathogen’s invasion by hydrolyzing the cuticle that protects plants, but can be also used for saprophytic fungi as a way to nourish themselves. Cutinases can hydrolyze a wide range of substrates like esters, polyesters, triacylglycerols and waxes and that makes this enzyme very attractive for industrial purposes. This work discusses techniques of industrial interest such as immobilization and purification, as well as some of the most important uses of cutinases in industries.
Collapse
|
12
|
Muley AB, Awasthi S, Bhalerao PP, Jadhav NL, Singhal RS. Preparation of cross-linked enzyme aggregates of lipase from Aspergillus niger: process optimization, characterization, stability, and application for epoxidation of lemongrass oil. Bioprocess Biosyst Eng 2021; 44:1383-1404. [PMID: 33660099 DOI: 10.1007/s00449-021-02509-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2020] [Accepted: 01/04/2021] [Indexed: 12/01/2022]
Abstract
Cross-linked enzyme aggregates (CLEAs) of lipase were prepared after fractional precipitation with 40-50% ammonium sulfate and then cross-linking with glutaraldehyde. The process variables for the preparation of lipase-CLEAs such as glutaraldehyde concentration, cross-linking period, and initial pH of medium were optimized. The optimized conditions for the preparation of lipase-CLEAs were 25 mM/80 min/pH 7.0, and 31.62 mM/90 min/pH 6.0 with one factor at a time approach and numerical optimization with central composite design, respectively. Lipase-CLEAs were characterized by particle size analysis, SEM, and FTIR. Cross-linking not only shifted the optimal pH and temperature from 7.0 to 7.5 and 40-45 to 45-50 °C, but also altered the secondary structure. Lipase-CLEAs showed an increase in Km by 7.70%, and a decrease in Vmax by 16.63%. Lipase-CLEAs presented better thermostability than free lipase as evident from thermal inactivation constants (t1/2, D and Ed value), and thermodynamic parameters (Ed, ΔH°, ΔG°, and ΔS°) in the range of 50-70 °C. Lipase-CLEAs retained more than 65% activity up to four cycles and showed good storage stability for 12 days when stored at 4 ± 2 °C. They were successfully utilized for the epoxidation of lemongrass oil which was confirmed by changes in iodine value, epoxide value, and FTIR spectra.
Collapse
Affiliation(s)
- Abhijeet Bhimrao Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| | - Sneha Awasthi
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Prasanna Prakash Bhalerao
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Nilesh Lakshaman Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha Satishchandra Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| |
Collapse
|
13
|
Suresh A, Shravan Ramgopal D, Panchamoorthy Gopinath K, Arun J, SundarRajan P, Bhatnagar A. Recent advancements in the synthesis of novel thermostable biocatalysts and their applications in commercially important chemoenzymatic conversion processes. BIORESOURCE TECHNOLOGY 2021; 323:124558. [PMID: 33383359 DOI: 10.1016/j.biortech.2020.124558] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/28/2020] [Revised: 12/11/2020] [Accepted: 12/12/2020] [Indexed: 06/12/2023]
Abstract
Thermostable enzymes are a field of growing interest in bioremediation, pharmaceuticals, food industry etc., due to their ability to catalyze bio reactions at high temperatures. This review aims to provide an overview on extremophiles with a special focus on thermophiles and enzymes produced from extremophilic bacteria. Novel thermostable catalysts, used in producing commercially important chemicals, are discussed in this review. Various classes of enzymes produced by microbes, synthesis of thermozymes and comparison with enzymes produced at optimal conditions are critically discussed. A detailed discussion on immobilized enzymes in comparisons with free enzymes, produced by extremozymes, is included. Different parameters which affect enzyme production are also discussed. The current industrial trends along with the future of biocatalysts in the production of chemicals using efficient methods are also discussed.
Collapse
Affiliation(s)
- Aravind Suresh
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Dhakshin Shravan Ramgopal
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Kannappan Panchamoorthy Gopinath
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Jayaseelan Arun
- Centre for Waste Management, International Research Centre, Sathyabama Institute of Science and Technology, Jeppiaar Nagar (OMR), Chennai 600119, Tamil Nadu, India
| | - Panneerselvam SundarRajan
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam - 603110, Chennai, Tamil Nadu, India
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130 Mikkeli, Finland.
| |
Collapse
|
14
|
Magnetic Cross-Linked Enzyme Aggregates of a Transpeptidase-Specialized Variant (N450D) of Bacillus licheniformis γ-Glutamyl Transpeptidase: An Efficient and Stable Biocatalyst for l-Theanine Synthesis. Catalysts 2021. [DOI: 10.3390/catal11020243] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
γ-Glutamyl transpeptidase (GGT) catalyzes the transfer of glutathione’s γ-glutamyl group and related γ-glutamyl amides to water, amino acids or peptides, and utilizes a conserved Thr residue to process its own polypeptide chain into a large and a small subunit that then assemble to produce a catalytically competent enzyme. In this study, the magnetic cross-linked enzyme aggregates (mCLEAs) of a transpeptidase-specialized variant (N450D) of Bacillus licheniformis GGT were successfully prepared with optimized process parameters viz.1.25:1 (v/v) of isopropanol to N450D (0.3 mg/mL) ratio/0.02:1 (w/w) of enzyme to 3-aminopropyl triethoxysilane (APTES)-coated magnetic nanoparticle ratio/20 mM of glutaraldehyde. The prepared magnetic nanoparticles and immobilized enzyme (N450D-mCLEAs) were characterized by X-ray diffraction (XRD) and Fourier transform infrared (FTIR) spectroscopy, field-emission scanning electron microscope integrated with energy dispersive X-ray spectroscopy (FESEM/EDS), and superparamagnetic analysis. As compared with free enzyme, N450D-mCLEAs displayed significantly higher heat resistance at temperatures of 55 and 60 °C, and had a greater stability over a storage period of one month. The immobilized enzyme could also be reused for 10 consecutive biocatalytic cycles with no significant reduction in the percent yield of l-theanine. Conclusively, this immobilization strategy surely provides a meaningful glance of developing N450D-mediated biocatalysis for the production of physiologically important γ-glutamyl compounds.
Collapse
|
15
|
Khankari S, Badoei-Dalfard A, Karami Z. Cross-linked Enzyme Aggregates of Fibrinolytic Protease BC1 Immobilized on Magnetic Chitosan Nanoparticles (CLEAs-Fib-mChi): Synthesis, Purification, and Characterization. Appl Biochem Biotechnol 2021; 193:2004-2027. [PMID: 33538961 DOI: 10.1007/s12010-021-03494-z] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2020] [Accepted: 01/07/2021] [Indexed: 12/26/2022]
Abstract
Bacterial fibrinolytic proteases achieved more attention in the prevention and treatment of cardiovascular diseases, so purification, characterization, and activity enhancement are of prime importance. In this study, a fibrinolytic serine metalloprotease was purified from the culture supernatant from Bacillus sp. BC1. It was purified to homogeneity by a two-step procedure with a 24-fold increase in specific activity and a 33.1% yield. It showed 28 kDa molecular weight, while its optimal pH and temperature were obtained 8 and 50-60 °C. The cross-link enzyme aggregates of this fibrinolytic BC1 successfully immobilized on magnetic chitosan nanoparticles. A 52% activity enhancement was obtained by immobilized enzyme at pH 6.0, compared to free protease. Km values of the free and immobilized proteases were obtained about 0.638 and 0.61 mg/ml, respectively. The free and immobilized enzymes did not show any activity concerning transferrin, γ-globulins, and hemoglobin, as blood plasma proteins. The in vitro blood clot lysis test of the free and immobilized proteases showed a maximum of 42 and 50% clot lysis, which was comparatively higher than that revealed by streptokinase and heparin at the same condition. These results indicated that the free and immobilized proteases have the potential to be effective fibrinolytic agents.
Collapse
Affiliation(s)
- Shima Khankari
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| | - Arastoo Badoei-Dalfard
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran.
| | - Zahra Karami
- Department of Biology, Faculty of Sciences, Shahid Bahonar University of Kerman, Kerman, Iran
| |
Collapse
|
16
|
Del Arco J, Alcántara AR, Fernández-Lafuente R, Fernández-Lucas J. Magnetic micro-macro biocatalysts applied to industrial bioprocesses. BIORESOURCE TECHNOLOGY 2021; 322:124547. [PMID: 33352394 DOI: 10.1016/j.biortech.2020.124547] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2020] [Revised: 12/10/2020] [Accepted: 12/11/2020] [Indexed: 06/12/2023]
Abstract
The use of magnetic biocatalysts is highly beneficial in bioprocesses technology, as it allows their easy recovering and enhances biocatalyst lifetime. Thus, it simplifies operational processing and increases efficiency, leading to more cost-effective processes. The use of small-size matrices as carriers for enzyme immobilization enables to maximize surface area and catalysts loading, also reducing diffusion limitations. As highly expensive nanoparticles (nm size) usually aggregate, their application at large scale is not recommended. In contrast, the use of magnetic micro-macro (µm-mm size) matrices leads to more homogeneous biocatalysts with null or very low aggregation, which facilitates an easy handling and recovery. The present review aims to highlight recent trends in the application of medium-to-high size magnetic biocatalysts in different areas (biodiesel production, food and pharma industries, protein purification or removal of environmental contaminants). The advantages and disadvantages of these above-mentioned magnetic biocatalysts in bioprocess technology will be also discussed.
Collapse
Affiliation(s)
- Jon Del Arco
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain
| | - Andrés R Alcántara
- Departamento de Química en Ciencias Farmacéuticas, Facultad de Farmacia, Universidad Complutense de Madrid, Plaza de Ramón y Cajal, s/n., 28040 Madrid, Spain
| | - Roberto Fernández-Lafuente
- Departamento de Biocatálisis, ICP-CSIC, C/Marie Curie 2, Campus UAM-CSIC, 28049 Madrid, Spain; Center of Excellence in Bionanoscience Research, External Scientific Advisory Board, King Abdulaziz University, Jeddah, Saudi Arabia
| | - Jesús Fernández-Lucas
- Applied Biotechnology Group, Biomedical Science School, Universidad Europea de Madrid, Urbanización El Bosque, Calle Tajo, s/n, 28670 Villaviciosa de Odón, Spain; Grupo de Investigación en Ciencias Naturales y Exactas, GICNEX, Universidad de la Costa, CUC, Calle 58 # 55 - 66, Barranquilla, Colombia.
| |
Collapse
|
17
|
Polatoğlu İ, Aydin L. A new design strategy with stochastic optimization on the preparation of magnetite cross-linked tyrosinase aggregates (MCLTA). Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.08.019] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
|
18
|
Preparation and synthetic dye decolorization ability of magnetic cross-linked enzyme aggregates of laccase from Bacillus amyloliquefaciens. Bioprocess Biosyst Eng 2020; 44:727-735. [PMID: 33245440 DOI: 10.1007/s00449-020-02481-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/30/2020] [Accepted: 11/09/2020] [Indexed: 10/22/2022]
Abstract
Laccases are versatile oxidases that are capable of decolorizing various synthetic dyes. Recombinant Bacillus amyloliquefaciens laccase was immobilized as magnetic cross-linked enzyme aggregates (M-CLEAs) for application in dye decolorization. Several parameters influencing the activity recovery were evaluated during the synthesis of M-CLEAs. With ammonium sulfate as precipitant, maximum activity was recovered by cross-linking with 0.16% glutaraldehyde for 1 h. The prepared M-CLEAs exhibited improved activity under alkaline conditions. It remained 74% activity after incubation at 60 °C for 5 h. Enhanced tolerance towards NaCl was also observed for the M-CLEAs, with 68% activity remaining in the presence of 1 M NaCl. The immobilized laccase could rapidly decolorize more than 93% of reactive black 5 and indigo carmine in 1 h, while its catalytic efficiency towards reactive blue 19 was relatively low. After four cycles of consecutive reuse, the M-CLEAs could decolorize 92% of indigo carmine. The easy recovery and reusability of M-CLEAs facilitate the potential application of bacterial laccase in dye decolorization.
Collapse
|
19
|
Greener production of low methoxyl pectin via recyclable enzymatic de-esterification using pectin methylesterase cross-linked enzyme aggregates captured from citrus peels. Food Hydrocoll 2020. [DOI: 10.1016/j.foodhyd.2020.105786] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
20
|
Abd Rahman NH, Jaafar NR, Abdul Murad AM, Abu Bakar FD, Shamsul Annuar NA, Md Illias R. Novel cross-linked enzyme aggregates of levanase from Bacillus lehensis G1 for short-chain fructooligosaccharides synthesis: Developmental, physicochemical, kinetic and thermodynamic properties. Int J Biol Macromol 2020; 159:577-589. [DOI: 10.1016/j.ijbiomac.2020.04.262] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2020] [Revised: 04/28/2020] [Accepted: 04/29/2020] [Indexed: 10/24/2022]
|
21
|
Sadeghzadeh S, Ghobadi Nejad Z, Ghasemi S, Khafaji M, Borghei SM. Removal of bisphenol A in aqueous solution using magnetic cross-linked laccase aggregates from Trametes hirsuta. BIORESOURCE TECHNOLOGY 2020; 306:123169. [PMID: 32182473 DOI: 10.1016/j.biortech.2020.123169] [Citation(s) in RCA: 43] [Impact Index Per Article: 10.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2019] [Revised: 03/02/2020] [Accepted: 03/07/2020] [Indexed: 06/10/2023]
Abstract
Enzymatic removal of Bisphenol A (BPA), acknowledged as an environmentally friendly approach, is a promising method to deal with hard degradable contaminants. However, the application of "enzymatic treatment" has been limited due to lower operational stability and practical difficulties associated with recovery and recycling. Enzyme immobilization is an innovative approach which circumvents these drawbacks. In this study, laccase from Trametes hirsuta was used for BPA removal. Amino-functionalized magnetic Fe3O4 nanoparticles were synthesized via the co-precipitation method followed by surface modification with (3-aminopropyl)trimethoxysilane (APTMS). The as-prepared nanoparticles were utilized for the immobilization of laccase with the magnetic cross-linked enzyme aggregates method (MCLEAs). Activity recovery of 27% was achieved, while no immobilized laccase was observed in the cross-linked enzyme aggregates method. The performance of immobilized laccase was measured by analyzing the degradation of BPA pollutant. The maximum removal efficiency of 87.3% was attained with an initial concentration of 60 ppm throughout 11 h.
Collapse
Affiliation(s)
- Sadegh Sadeghzadeh
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran
| | - Zahra Ghobadi Nejad
- Biochemistry & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran
| | - Shahnaz Ghasemi
- Institute of Water and Energy, Sharif University of Technology, Azadi Avenue, P.O Box 11365-8639, Tehran, Iran
| | - Mona Khafaji
- Institute for Nanoscience & Nanotechnology, Sharif University of Technology, Azadi Avenue, P.O Box 14588-89694, Tehran, Iran
| | - Seyed Mehdi Borghei
- Chemical Engineering Department, Sharif University of Technology, Tehran, Iran; Biochemistry & Bioenvironmental Research Center, Sharif University of Technology, Azadi Avenue, P.O Box 11155-1399, Tehran, Iran.
| |
Collapse
|
22
|
Ahmed SA, Abdella MA, El-Sherbiny GM, Ibrahim AM, El-Shamy AR, Atalla SM, Hassan ME. Catalytic, kinetic and thermal properties of free andimmobilized Bacillus subtilis -MK1 α-amylase on Chitosan-magnetic nanoparticles. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2020; 26:e00443. [PMID: 32154128 PMCID: PMC7056624 DOI: 10.1016/j.btre.2020.e00443] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/15/2019] [Revised: 10/31/2019] [Accepted: 02/26/2020] [Indexed: 12/14/2022]
Abstract
Bacillus subtilis strain-MK1 α-amylase was successfully immobilized on Chitosan-magnetic nanoparticles (Ch-MNP) that had been modified with polyethyleneimine (PEI) and glutaraldehyde (GA). Optimization of Ch-MNP/PEI/GA beads modification by Central Composite design enhanced the immobilization yield (IY %) by 1.5-fold. Ch-MNP/PEI/GA was characterized before and after modification and immobilization by FTIR and SEM. Ch-MNP/PEI/GA/Enzyme showed the same pH optima of free enzyme, while an elevation 10 °C in temperature optima was observed after its immobilization. Ch-MNP/PEI/GA/Enzyme displayed higher Km and Vmax values (2.1 and 1.2-fold) and lower Vmax/Km ratio (1.7-fold), respectively than the free enzyme. Compared to the free enzyme, Ch-MNP/PEI/GA/Enzyme exhibited lower activation energy, lower deactivation constant rate, higher D-values, higher half-life, and higher energy for denaturation. Immobilization of α-amylase increased enthalpy (4.2-fold), free energy (1.1-fold) and decreased entropy (4.6-fold) of thermal inactivation. A significant increase in pH stability of Ch-MNP/PEI/GA/Enzyme was observed especially at alkaline pH values. In addition, Ch-MNP/PEI/GA/Enzyme preserved 83.2 % of its initial activity after 15 consecutive cycles. When storing Ch-MNP/PEI/GA/Enzyme at 4 °C the residual activity was 100 and 86 %, respectively after 21 and 40 days. Finally, immobilization process improved the catalytic properties and stabilities, thus raising the suitability for industrial processes with lower cost and time.
Collapse
Affiliation(s)
- Samia A. Ahmed
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed A.A. Abdella
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Gamal M. El-Sherbiny
- Department of Botany and Microbiology, Faculty of Science (Boys), Al-Azhar University, Cairo, Egypt
| | - Atef M. Ibrahim
- Microbial Biotechnology Department, Genetic Engineering and Biotechnology Research Institute (GEBRI), University of Sadat City, Menoufia, Egypt
| | - Aliaa R. El-Shamy
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Sherien M.M. Atalla
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
| | - Mohamed E. Hassan
- Chemistry of Natural and Microbial Products Department, National Research Centre, Dokki, Cairo, Egypt
- Centre of Excellence, Encapsulation Nanobiotechnology Group, National Research Centre, Dokki, Cairo, Egypt
| |
Collapse
|
23
|
Gupta MN, Perwez M, Sardar M. Protein crosslinking: Uses in chemistry, biology and biotechnology. BIOCATAL BIOTRANSFOR 2020. [DOI: 10.1080/10242422.2020.1733990] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Affiliation(s)
| | - Mohammad Perwez
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| | - Meryam Sardar
- Department of Biosciences, Jamia Millia Islamia, New Delhi, India
| |
Collapse
|
24
|
Muley AB, Mulchandani KH, Singhal RS. Immobilization of enzymes on iron oxide magnetic nanoparticles: Synthesis, characterization, kinetics and thermodynamics. Methods Enzymol 2020; 630:39-79. [DOI: 10.1016/bs.mie.2019.10.016] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/25/2023]
|
25
|
Chen G, Hu Q, Shu H, Wang L, Cui X, Han J, Bashir K, Luo Z, Chang C, Fu Q. Fluorescent biosensor based on magnetic cross-linking enzyme aggregates/CdTe quantum dots for the detection of H 2O 2-bioprecursors. NEW J CHEM 2020. [DOI: 10.1039/d0nj03761c] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/06/2023]
Abstract
A fluorescent sensing system for H2O2-bioprecursors based on CdTe quantum dots and magnetic cross-linking enzyme aggregates was designed.
Collapse
Affiliation(s)
- Guoning Chen
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Qianqian Hu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Hua Shu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Lu Wang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Xia Cui
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Jili Han
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Kamran Bashir
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Zhimin Luo
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Chun Chang
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| | - Qiang Fu
- School of Pharmacy
- Xi'an Jiaotong University
- Xi'an 710061
- China
| |
Collapse
|
26
|
Kulkarni NH, Muley AB, Bedade DK, Singhal RS. Cross-linked enzyme aggregates of arylamidase from Cupriavidus oxalaticus ICTDB921: process optimization, characterization, and application for mitigation of acrylamide in industrial wastewater. Bioprocess Biosyst Eng 2019; 43:457-471. [PMID: 31705314 DOI: 10.1007/s00449-019-02240-4] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2019] [Accepted: 10/22/2019] [Indexed: 12/23/2022]
Abstract
Acrylamidase produced by Cupriavidus oxalaticus ICTDB921 was recovered directly from the fermentation broth by ammonium sulfate (40-50%) precipitation and then stabilized by cross-linking with glutaraldehyde. The optimum conditions for the preparation of cross-linked enzyme aggregates of acrylamidase (acrylamidase-CLEAs) were using 60 mM glutaraldehyde for 10 min at 35 °C and initial broth pH of 7.0. Acrylamidase-CLEAs were characterized by SDS-PAGE, FTIR, particle size analyzer and SEM. Cross-linking shifted the optimal temperature and pH from 70 to 50 °C and 5-7 to 6-8, respectively. It also altered the secondary structure fractions, pH and thermal stability along with the kinetic constants, Km and Vmax, respectively. A complete degradation of acrylamide ~ 1.75 g/L in industrial wastewater was achieved after 60 min in a batch process under optimum operating conditions, and the kinetics was best represented by Edward model (R2 = 0.70). Acrylamidase-CLEAs retained ~ 40% of its initial activity after three cycles for both pure acrylamide and industrial wastewater, and were stable for 15 days at 4 °C, retaining ~ 25% of its original activity.
Collapse
Affiliation(s)
- Nidhi H Kulkarni
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Dattatray K Bedade
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai, 400019, India.
| |
Collapse
|
27
|
Bedade DK, Dev MJ, Singhal RS. Bioreactor studies on acrylamidase produced from Cupriavidus oxalaticus ICTDB921: Production, kinetic modeling, and purification. Biochem Eng J 2019. [DOI: 10.1016/j.bej.2019.107245] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
28
|
Covalent immobilization and characterization of penicillin G acylase on amino and GO functionalized magnetic Ni0.5Zn0.5Fe2O4@SiO2 nanocomposite prepared via a novel rapid-combustion process. Int J Biol Macromol 2019; 134:507-515. [DOI: 10.1016/j.ijbiomac.2019.05.066] [Citation(s) in RCA: 19] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2019] [Revised: 04/28/2019] [Accepted: 05/10/2019] [Indexed: 12/19/2022]
|
29
|
Muley AB, Chaudhari SA, Bankar SB, Singhal RS. Stabilization of cutinase by covalent attachment on magnetic nanoparticles and improvement of its catalytic activity by ultrasonication. ULTRASONICS SONOCHEMISTRY 2019; 55:174-185. [PMID: 30852153 DOI: 10.1016/j.ultsonch.2019.02.019] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/23/2018] [Revised: 02/15/2019] [Accepted: 02/17/2019] [Indexed: 06/09/2023]
Abstract
This paper reports on stabilization of serine cutinase activity by immobilizing it through cross linking with glutaraldehyde on magnetic nanoparticles (Fe-NPs) and intensification of catalytic activity by ultrasonic treatment. The optimum parameters were cross linking with 10.52 mM glutaraldehyde for 90 min using 1:2 (w/w) ratio of enzyme:Fe-NPs. The characterization of cutinase-Fe-NPs was done by different instrumental analysis. Ultrasonic power showed a beneficial effect on the activity of free and immobilized cutinase at 5.76 and 7.63 W, respectively, after 12 min. Immobilization and ultrasonic treatment led to increments in kinetic parameters (Km and Vmax) along with noticeable changes in the secondary structural fractions of cutinase. Cutinase-Fe-NPs showed augmented pH (4-8) and thermal stability (40-60 °C). Considerably higher thermal inactivation kinetic constants (kd, t1/2 and D-value) and thermodynamic constants (Ed, ΔH°, ΔG° and ΔS°) highlighted superior thermostability of cutinase-Fe-NPs. Cutinase-Fe-NPs and ultrasound treated cutinase-Fe-NPs retained 61.88% and 38.76% activity during 21-day storage, and 82.82 and 80.69% activity after fifth reusability cycle, respectively.
Collapse
Affiliation(s)
- Abhijeet B Muley
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India
| | - Sandeep A Chaudhari
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India; Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Sandip B Bankar
- Department of Bioprocess and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Helsinki, Finland
| | - Rekha S Singhal
- Food Engineering and Technology Department, Institute of Chemical Technology, Matunga, Mumbai 400019, India.
| |
Collapse
|
30
|
Bilal M, Cui J, Iqbal HMN. Tailoring enzyme microenvironment: State-of-the-art strategy to fulfill the quest for efficient bio-catalysis. Int J Biol Macromol 2019; 130:186-196. [PMID: 30817963 DOI: 10.1016/j.ijbiomac.2019.02.141] [Citation(s) in RCA: 57] [Impact Index Per Article: 11.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2018] [Revised: 02/15/2019] [Accepted: 02/23/2019] [Indexed: 02/08/2023]
Abstract
Enzymes as green industrial biocatalysts have become a powerful norm that offers several advantages over traditional catalytic agents with regard to process efficiency, reusability, sustainability, and overall cost-effective ratio. However, enzymes obtained from natural origins are often engineered/tailored since their native forms do not fulfill the acute need for the industrial application. Revolutionary developments in protein engineering provide excellent opportunities for designing and constructing novel industrial biocatalysts with improved functional properties including catalytic activity, stability, substrate specificity, and reaction product inhibition. Momentum in enzyme immobilization has enabled robustness and optimal functions in extreme industrial environments, such as high temperature or organic solvents. The emergence of multi-enzyme catalytic cascade based on a combination of biocatalysts presents multifarious opportunities in biosynthesis, biocatalysis, and biotransformation. This review focuses on the emerging and state-of-the-art enzyme engineering trends and approaches to constructing innovative nano- and microstructured biocatalysts with enhanced catalytic activity and stability features requisite for industrial exploitation. Continuous key developments in this direction together with protein engineering in unique ways might offer ever-increasing opportunities for future biocatalysis-based industrial bioprocesses.
Collapse
Affiliation(s)
- Muhammad Bilal
- School of Life Science and Food Engineering, Huaiyin Institute of Technology, Huaian 223003, China
| | - Jiandong Cui
- State Key Laboratory of Food Nutrition and Safety, Key Laboratory of Industrial Fermentation Microbiology, Ministry of Education, Tianjin University of Science and Technology, No 29, 13th, Avenue, Tianjin Economic and Technological Development Area (TEDA), Tianjin 300457, China.
| | - Hafiz M N Iqbal
- Tecnologico de Monterrey, School of Engineering and Sciences, Campus Monterrey, Ave. Eugenio Garza Sada 2501, Monterrey, N.L. CP 64849, Mexico.
| |
Collapse
|
31
|
Abstract
Biocatalysis has emerged in the last decade as a pre-eminent technology for enabling the envisaged transition to a more sustainable bio-based economy. For industrial viability it is essential that enzymes can be readily recovered and recycled by immobilization as solid, recyclable catalysts. One method to achieve this is via carrier-free immobilization as cross-linked enzyme aggregates (CLEAs). This methodology proved to be very effective with a broad selection of enzymes, in particular carbohydrate-converting enzymes. Methods for optimizing CLEA preparations by, for example, adding proteic feeders to promote cross-linking, and strategies for making the pores accessible for macromolecular substrates are critically reviewed and compared. Co-immobilization of two or more enzymes in combi-CLEAs enables the cost-effective use of multiple enzymes in biocatalytic cascade processes and the use of “smart” magnetic CLEAs to separate the immobilized enzyme from other solids has raised the CLEA technology to a new level of industrial and environmental relevance. Magnetic-CLEAs of polysaccharide-converting enzymes, for example, are eminently suitable for use in the conversion of first and second generation biomass.
Collapse
|
32
|
Sastry SKC, Jadhav NL, Doltade SB, Pinjari DV. Effect of concentrated solar radiation on the morphology of the silver nanoparticles and its antibacterial activity. Chem Ind 2019. [DOI: 10.1080/00194506.2019.1579674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2022]
Affiliation(s)
| | - Nilesh L. Jadhav
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - Sarjerao B. Doltade
- Chemical Engineering Department, Institute of Chemical Technology, Mumbai, India
| | - Dipak V. Pinjari
- National Centre for Nanosciences and Nanotechnology, University of Mumbai, Mumbai, India
| |
Collapse
|