1
|
Liu M, Wang J, Umeda I, Wang Z, Kumar S, Zheng Y. Harnessing filamentous fungi and fungal-bacterial co-culture for biological treatment and valorization of hydrothermal liquefaction aqueous phase from corn stover. BIORESOURCE TECHNOLOGY 2024; 409:131240. [PMID: 39122129 DOI: 10.1016/j.biortech.2024.131240] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 07/14/2024] [Accepted: 08/06/2024] [Indexed: 08/12/2024]
Abstract
To promote the sustainability of hydrothermal liquefaction (HTL) for biofuel production, fungal fermentation was investigated to treat HTL aqueous phase (HTLAP) from corn stover. The most promising fungus, Aspergillus niger demonstrated superior tolerance to HTLAP and capability to produce oxalic acid as a value-added product. The fungal-bacterial co-culture of A. niger and Rhodococcus jostii was beneficial at low COD (chemical oxygen demand) loading of 3800 mg/L in HTLAP, achieving 69% COD removal while producing 0.5 g/L oxalic acid and 11% lipid content in microbial biomass. However, higher COD loading of 4500, 6040, and 7800 mg/L significantly inhibited R. jostii, but promoted A. niger growth with increased oxalic acid production while COD removal remained similar (58-65%). Additionally, most total organic carbon (TOC) in HTLAP was transformed into oxalic acid, representing 46-56% of the consumed TOC. These findings highlighted the potential of fungi for bio-upcycling of HTLAP into value-added products.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA
| | - Jiefu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Isamu Umeda
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA 24060, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS 66506, USA.
| |
Collapse
|
2
|
Tatla HK, Ismail S, Khan MA, Dhar BR, Gupta R. Coupling hydrothermal liquefaction and anaerobic digestion for waste biomass valorization: A review in context of circular economy. CHEMOSPHERE 2024; 361:142419. [PMID: 38789051 DOI: 10.1016/j.chemosphere.2024.142419] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/09/2024] [Accepted: 05/22/2024] [Indexed: 05/26/2024]
Abstract
In light of the substantial global production of biomass waste, effective waste management and energy recovery solutions are of paramount importance. Hydrothermal liquefaction (HTL) and anaerobic digestion (AD) have emerged as innovative techniques for converting biomass waste into valuable resources. Their integration creates a synergistic framework that mitigates inherent limitations, leading to improved efficiency, enhanced product quality, and the comprehensive utilization of biomass. This review paper investigates the integration of HTL and AD, highlighting its significance and potential benefits as well as the optimal sequencing (HTL followed by AD and AD followed by HTL). The review encompasses experimental procedures, factors influencing both sequencing options, energy recovery characterizations, final product outcomes, as well as toxicological assessments and discussions on reduction. Additionally, it delves into the transition towards a circular bioeconomy and discusses the challenges and opportunities intrinsic to these processes. The findings presented in this review offer valuable insights to shape future research in this evolving field.
Collapse
Affiliation(s)
- Harveen Kaur Tatla
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada
| | - Sherif Ismail
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada
| | - Mohd Adnan Khan
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Bipro Ranjan Dhar
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, AB, Canada.
| | - Rajender Gupta
- Department of Chemical and Materials Engineering, University of Alberta, Edmonton, AB, Canada.
| |
Collapse
|
3
|
Leme VFC, Lopez K, Costa T, Conerty B, B Leonelli L, Zhang Y, Davidson PC. Hydrothermal liquefaction aqueous phase mycoremediation to increase inorganic nitrogen availability. Heliyon 2024; 10:e31992. [PMID: 38882322 PMCID: PMC11176836 DOI: 10.1016/j.heliyon.2024.e31992] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 05/23/2024] [Accepted: 05/27/2024] [Indexed: 06/18/2024] Open
Abstract
Hydrothermal liquefaction aqueous phase (HTL-AP) is a waste product from a thermochemical process where wet biomass is converted into biocrude oil. This nutrient-rich wastewater may be repurposed to benefit society by assisting crop growth after adequate treatment to increase inorganic nitrogen, especially NO3 -. This study aims to increase HTL-AP inorganic nitrogen, specifically NH3/NH4 + and NO3 -, through fungal remediation for further use in hydroponic systems. Trametes versicolor, a white-rot fungus known for degrading a range of organic pollutants, was used to treat a diluted (5 %) HTL-AP for 9 days. No fungal growth was observed, but T. versicolor activity was suspected by laccase activity throughout cultivation time. NO3 --N and NH3/NH4 +-N increased by 17 and 8 times after three days of fungal treatment, which was chosen as the appropriate time for HTL-AP fungal treatment as it resulted in the highest concentration of NO3 --N. The addition of nitrifying bacteria to the fungal treatment resulted in a twofold increase in NO3 --N concentration compared to the fungal treatment alone, indicating an enhancement in treatment efficacy. COD decreased by 51.33 % after 24 h, which may be related to the fungus' capacity to reduce the concentration of organics in the wastewater; nonetheless, COD increased in the following days, which may be related to the release of fungal byproducts. T. versicolor shows promise as a potential candidate for increasing inorganic nitrogen in HTL-AP. However, future studies should primarily address HTL-AP toxicity, reducing NH3/NH4 +-N while increasing NO3 --N, and hydroponics crop production after fungal treatment.
Collapse
Affiliation(s)
- Vitoria F C Leme
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Karla Lopez
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Tiago Costa
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Beth Conerty
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Laurie B Leonelli
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Yuanhui Zhang
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| | - Paul C Davidson
- Agricultural & Biological Engineering, University of Illinois Urbana-Champaign, Urbana, IL, 61801, USA
| |
Collapse
|
4
|
Liu M, Mahata C, Wang Z, Kumar S, Zheng Y. Comparative exploration of biological treatment of hydrothermal liquefaction wastewater from sewage sludge: Effects of culture, fermentation conditions, and ammonia stripping. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 349:119527. [PMID: 37951111 DOI: 10.1016/j.jenvman.2023.119527] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2023] [Revised: 10/31/2023] [Accepted: 11/01/2023] [Indexed: 11/13/2023]
Abstract
Hydrothermal liquefaction wastewater from sewage sludge (sludge HTLWW) is an emerging waste stream that requires treatment before being discharged into the environment. Biological treatment of sludge HTLWW is an attractive option due to the low cost and operational flexibility. In this study, we investigated and compared the performance of three bacterial strains and four fungal strains for biodegradation of sludge HTLWW. Our screening experiments established pH and mineral supplementation (iron, magnesium, calcium, and phosphorus) conditions that greatly improved COD removal and chemical compound degradation by the microbes. An ammonia stripping pretreatment improved COD removal efficiency of Rhodococci jostii RHA1 by 44%. All tested bacterial strains can tolerate 10× dilution of HTLWW and remove 35-44% of COD in 2-15 days, while all tested fungal strains were able to tolerate 20× dilution and were better at degrading phenolic compounds than bacteria. HTLWW treatment with biomass pellets of fungus Aspergillus niger NRRL 2001 achieved the best COD removal efficiency of 47% in 12 days without the need of nutrient supplementation. Comparisons on chemical compound degradation by the tested microbes suggested that organic acids in HTLWW were highly degradable, followed by phenolic compounds. N-heterocyclic compounds were resistant to biodegradation and were removed by 38%. This study demonstrated pure culture biological treatment of sludge HTLWW with diverse types of microorganisms, which would guide the culture development and bioprocess parameter optimization for treating HTLWW of different compositions.
Collapse
Affiliation(s)
- Meicen Liu
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| | - Chandan Mahata
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Zhiwu Wang
- Department of Biological Systems Engineering, Virginia Tech, 1230 Washington St. SW, Blacksburg, VA, 24061, USA
| | - Sandeep Kumar
- Department of Civil and Environmental Engineering, Old Dominion University, Norfolk, VA, 23529, USA
| | - Yi Zheng
- Department of Grain Science and Industry, Kansas State University, 1980 Kimball Avenue, Manhattan, KS, 66506, USA.
| |
Collapse
|
5
|
Begum YA, Kumari S, Jain SK, Garg MC. A review on waste biomass-to-energy: integrated thermochemical and biochemical conversion for resource recovery. ENVIRONMENTAL SCIENCE: ADVANCES 2024. [DOI: 10.1039/d4va00109e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2024]
Abstract
Integrating thermochemical–biochemical methods overcomes the single-path limits for bioenergy production. This synergy lowers costs and enhances energy sustainability, highlighting waste-to-energy's vital role in the circular economy transition.
Collapse
Affiliation(s)
- Yasmin Ara Begum
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Sheetal Kumari
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Shailendra Kumar Jain
- Amity School of Engineering and Technology, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| | - Manoj Chandra Garg
- Amity Institute of Environmental Sciences, Amity University Uttar Pradesh, Noida Sector-125, Uttar Pradesh 201313, India
| |
Collapse
|
6
|
Macêdo WV, Schmidt JS, Jensen SB, Biller P, Vergeynst L. Is nitrification inhibition the bottleneck of integrating hydrothermal liquefaction in wastewater treatment plants? JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 348:119046. [PMID: 37832286 DOI: 10.1016/j.jenvman.2023.119046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/27/2023] [Revised: 09/13/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023]
Abstract
Sewage sludge management poses challenges due to its environmental impact, varying composition, and stringent regulatory requirements. In this scenario, hydrothermal liquefaction (HTL) is a promising technology for producing biofuel and extracting phosphorus from sewage sludge. However, the toxic nature of the resulting process water (HTL-PW) raises concerns about integrating HTL into conventional wastewater treatment processes. This study investigated the inhibitory effects of HTL-PW on the activity of the main microbial functions in conventional activated sludge. Upon recirculation of the HTL-PW from the excess sludge into the wastewater treatment plant, the level of COD in the influent is expected to increase by 157 mgO2⋅L-1, resulting in 44% nitrification inhibition (IC50 of 197 mg⋅L-1). However, sorption of inhibitory compounds on particles can reduce nitrification inhibition to 27% (IC50 of 253 mg⋅L-1). HTL-PW is a viable carbon source for denitrification, showing nearly as high denitrification rates as acetate and only 17% inhibition at 157 mgO2⋅L-1 COD. Under aerobic conditions, heterotrophic organic nitrogen and organic matter conversion remains unaffected up to 223 mgO2⋅L-1 COD, with COD removal higher than 94%. This study is the first to explore the full integration of HTL in wastewater treatment plants for biofuel production from the excess activated sludge. Potential nitrification inhibition is concerning, and further long-term studies are needed to fully investigate the impacts.
Collapse
Affiliation(s)
- Williane Vieira Macêdo
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark.
| | - Jennie Spicker Schmidt
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Sara Brorson Jensen
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Patrick Biller
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| | - Leendert Vergeynst
- Centre for Water Technology (WATEC), Department of Biological and Chemical Engineering, Aarhus University, Universitetsbyen 36, 8000, Aarhus C, Denmark
| |
Collapse
|
7
|
Gugliucci W, Cirillo V, Maggio A, Romano I, Ventorino V, Pepe O. Valorisation of hydrothermal liquefaction wastewater in agriculture: effects on tobacco plants and rhizosphere microbiota. FRONTIERS IN PLANT SCIENCE 2023; 14:1180061. [PMID: 37342148 PMCID: PMC10277691 DOI: 10.3389/fpls.2023.1180061] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/05/2023] [Accepted: 05/05/2023] [Indexed: 06/22/2023]
Abstract
Industrial wastewater obtained from hydrothermal liquefaction (HTL-WW) of food wastes for biofuels production could represent a source of crop nutrients since it is characterized by a high amount of organic and inorganic compounds. In the present work, the potential use of HTL-WW as irrigation water for industrial crops was investigated. The composition of the HTL-WW was rich in nitrogen, phosphorus, and potassium with high level of organic carbon. A pot experiment with Nicotiana tabacum L. plants was conducted using diluted wastewater to reduce the concentration of some chemical elements below the official accepted threshold values. Plants were grown in the greenhouse under controlled conditions for 21 days and irrigated with diluted HTL-WW every 24 hours. Soils and plants were sampled every seven days to evaluate, over time, the effect of wastewater irrigation both on soil microbial populations, through high-throughput sequencing, and plant growth parameters, through the measurement of different biometric indices. Metagenomic results highlighted that, in the HTL-WW treated rhizosphere, the microbial populations shifted via their mechanisms of adaptation to the new environmental conditions, establishing a new balance among bacterial and fungal communities. Identification of microbial taxa occurring in the rhizosphere of tobacco plants during the experiment highlighted that the HTL-WW application improved the growth of Micrococcaceae, Nocardiaceae and Nectriaceae, which included key species for denitrification, organic compounds degradation and plant growth promotion. As a result, irrigation with HTL-WW improved the overall performance of tobacco plants which showed higher leaf greenness and increased number of flowers compared to irrigated control plants. Overall, these results demonstrate the potential feasibility of using of HTL-WW in irrigated agriculture.
Collapse
Affiliation(s)
- Wanda Gugliucci
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Valerio Cirillo
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Albino Maggio
- Department of Agricultural Sciences, Division of Plant Biology and Crop Science, University of Naples Federico II, Naples, Italy
| | - Ida Romano
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
| | - Valeria Ventorino
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| | - Olimpia Pepe
- Department of Agricultural Sciences, Division of Microbiology, University of Naples Federico II, Naples, Italy
- Task Force on Microbiome Studies, University of Naples Federico II, Naples, Italy
| |
Collapse
|
8
|
Xu Y, Wang Y, Lu J, Yuan C, Zhang L, Liu Z. Understand the antibacterial behavior and mechanism of hydrothermal wastewater. WATER RESEARCH 2022; 226:119318. [PMID: 36369687 DOI: 10.1016/j.watres.2022.119318] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/16/2022] [Revised: 10/02/2022] [Accepted: 10/31/2022] [Indexed: 06/16/2023]
Abstract
Unlocking the antibacterial potential is an emerging strategy to valorizing the toxic wastewater from hydrothermal liquefaction (HTL). Here, we investigated the response and biological mechanism of antibacterial properties of HTL wastewater. Four different biowastes i.e. microalgae, cornstalk, cow manure and swine manure were used as the feedstock of HTL to create wastewater with diverse molecule spectrum, whereas ten strains i.e. five gram-positive strains and five gram-negative strains were employed to represent typical pathogenic microorganism. HTL wastewater exhibited antibacterial potential and obvious reduction on cell viability at high inclusion ratio, although the minimum inhibitory concentration (MIC) and cell response intensity varied depending on different HTL feedstocks and strain species. The decreased ATP generation and increased H2O2 accumulation in treated cells further confirmed the inhibition of HTL wastewater on the cell metabolism. The antibacterial mechanism of HTL wastewater was confirmed, including damage to biomolecules or membranes, depletion of crucial components, disruption of metabolic circuits and imbalance of creation of redox cofactor. The complex compounds in HTL wastewater were probably attributed to the multiple inhibition pathways and the relationship among those multiple pathways was speculated. The present study contributes to the mechanism analysis of complex compound mixture and bactericide characteristics of HTL wastewater.
Collapse
Affiliation(s)
- Yongdong Xu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Yueyao Wang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Jianwen Lu
- Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China
| | - Changbin Yuan
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Leli Zhang
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E), Key Laboratory of Agricultural Engineering in Structure and Environment of Ministry of Agriculture and Rural Affairs, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
9
|
Li Y, Hua D, Xu H, Jin F, Zhao Y, Chen L, Zhao B, Rosendahl LA, Zhu Z. Energy recovery from high ash-containing sewage sludge: Focusing on performance evaluation of bio-fuel production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 843:157083. [PMID: 35780877 DOI: 10.1016/j.scitotenv.2022.157083] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2022] [Revised: 05/28/2022] [Accepted: 06/27/2022] [Indexed: 06/15/2023]
Abstract
Hydrothermal liquefaction (HTL) has shown great potential to convert sewage sludge (SS) with high moisture into bio-crude. However, the disposal and reutilization of hydrothermal liquefaction wastewater (HTLWW) is a critical issue. Anaerobic digestion (AD) is proven to be an alternative to treat organic wastewater. Therefore, energy recovery from high ash-containing SS was studied by integrating AD with HTL. The effect of temperature on HTL efficiency was investigated and then methane production from HTLWW was conducted by AD with organic loading increasing from 2 g COD/L to 6 g COD/L. Results showed that the maximum bio-crude yield of 23.5 % was obtained at 350 °C. Methane yield of 309.4 mL CH4/g CODremoved was achieved at 2 g COD/L with COD removal rate of 72.5 %. Meanwhile, the microbial structure and abundance showed great shifts resulting from the adaptation to complex compounds. JGI-000079-D21, Aminicenantales, and Bacteroidetes_ vadinHA17 predominated in the bacterial community. Due to the presence of the toxic substances in HTLWW, such as phenolic and nitrogenous heterocyclic compounds, there was a decrease in methane yield when the organic loading was higher than 4 g COD/L. The organic matters in extracellular polymeric substances (EPS) were rich in fulvic acid-like and humic acid-like substances due to the attack and stimulation of toxicants. Under the condition of unstable fermentation, Advenella and Bacillus first appeared as phenol and pyridine degrading bacteria, respectively. The microbial diversity declined sharply to demonstrate the toxic effect of the refractory organics existing at high organic loading. The enrichment of Methanosaeta in methanogens meant that acetotrophic metabolism is the dominant pathway in methanogenesis. In this study, the profile of bio-fuel production from high ash-containing SS would provide an integrated reference to treat wet biomass and recover energy simultaneously.
Collapse
Affiliation(s)
- Yan Li
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China.
| | - Dongliang Hua
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Haipeng Xu
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Fuqiang Jin
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Yuxiao Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lei Chen
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Baofeng Zhao
- Energy Research Institute, Qilu University of Technology (Shandong Academy of Sciences), Shandong Provincial Key Laboratory of Biomass Gasification Technology, Jinan 250014, China; School of Energy and Power Engineering, Qilu University of Technology (Shandong Academy of Sciences), Jinan 250014, China
| | - Lasse A Rosendahl
- Department of Energy Technology, Aalborg University, Aalborg 9220, Denmark
| | - Zhe Zhu
- School of Environmental Science and Safety Engineering, Tianjin University of Technology, Tianjin 300384, China.
| |
Collapse
|
10
|
Li R, Liu D, Zhang Y, Tommaso G, Si B, Liu Z, Duan N. Enhanced anaerobic digestion of post-hydrothermal liquefaction wastewater: Bio-methane production, carbon distribution and microbial metabolism. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 837:155659. [PMID: 35513144 DOI: 10.1016/j.scitotenv.2022.155659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2021] [Revised: 04/28/2022] [Accepted: 04/28/2022] [Indexed: 06/14/2023]
Abstract
Hydrothermal liquefaction (HTL) is a cost-effective and environment-friendly technology for using biomass to produce bio-crude oil. The critical challenge of HTL is its complicated aqueous product containing high concentrations of organics and diverse toxicants. This paper reports the continuous anaerobic digestion of raw and zeolite-adsorbed Chlorella HTL wastewater using up-flow anaerobic sludge bed reactors. The bio-methane production capacity, total carbon distribution and microbial response were investigated. The anaerobic process was severely suppressed when more than 20% raw wastewater was fed; while it showed essentially improved performance till 60% pre-treated wastewater was added. Produced methane contained 17.3% of the total carbon in feedstock, which was comparable with the value (16.7%) when 25% of raw wastewater was added. The metagenomic analysis revealed distinct microbial community structures in different stages and feedstock shifts. The abundance of functional genes was consistent with anaerobic digester performance.
Collapse
Affiliation(s)
- Ruirui Li
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China; Department of Chemical Engineering, Institute of Biochemical Engineering, Tsinghua University, Beijing, China
| | - Dianlei Liu
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, China
| | - Yuanhui Zhang
- Department of Agricultural and Biological Engineering, Univeristy of Illinois at Urbana-Champaign, 1304 W Pennsylvania Ave, Urbana, IL 61801, USA
| | - Giovana Tommaso
- Laboratory of Environmental Biotechnology, Faculty of Animal Science and Food Engineering (FZEA), University of São Paulo (USP), 225 N Duque de Caxias. Ave., Jardim Elite, Pirassununga, SP, Brazil
| | - Buchun Si
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Zhidan Liu
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China
| | - Na Duan
- Laboratory of Environment-Enhancing Energy (E2E) and Key Laboratory of Agricultural Engineering in Structure and Environment, Ministry of Agriculture, College of Water Resources and Civil Engineering, China Agricultural University, Beijing 100083, China.
| |
Collapse
|
11
|
Devi TE, Parthiban R. Hydrothermal liquefaction of Nostoc ellipsosporum biomass grown in municipal wastewater under optimized conditions for bio-oil production. BIORESOURCE TECHNOLOGY 2020; 316:123943. [PMID: 32750639 DOI: 10.1016/j.biortech.2020.123943] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2020] [Revised: 07/25/2020] [Accepted: 07/27/2020] [Indexed: 06/11/2023]
Abstract
Microalgae offer numerous potential applications, however the industrial scale-up of algal technology still remains a challenge due to high production cost. Optimization of growth conditions and integration with waste streams can improve the economic viability of microalgal production systems. This study investigated on the optimal growth conditions of microalgae Nostoc ellipsosporum cultivated in municipal wastewater with the objective of achieving maximum biomass production, nutrient removal efficiency and bio-oil yield. The effect of light intensity, photoperiod, wavelength, aeration and growth media composition were studied. Different formulations of municipal wastewater blended with Fog's nutrient were used as growth medium. Optimization of growth conditions and acclimatization to wastewater enhanced the biomass yield of Nostoc ellipsosporum from 1.42 to 2.9 g L-1, achieving 87.59% of nitrogen removal and 88.31% of phosphate removal from wastewater. Furthermore, hydrothermal liquefaction of biomass produced bio-oil yield of 24.62% at 300 °C.
Collapse
Affiliation(s)
- Thangavelu Eswary Devi
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu 603110, India
| | - Rangasamy Parthiban
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam, Tamil Nadu 603110, India.
| |
Collapse
|
12
|
Hua D, Fan Q, Zhao Y, Xu H, Chen L, Si H, Li Y. Continuous Anaerobic Digestion of Wood Vinegar Wastewater From Pyrolysis: Microbial Diversity and Functional Genes Prediction. Front Bioeng Biotechnol 2020; 8:923. [PMID: 32850755 PMCID: PMC7422680 DOI: 10.3389/fbioe.2020.00923] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2020] [Accepted: 07/17/2020] [Indexed: 01/21/2023] Open
Abstract
Wood vinegar wastewater (WVWW) is the main by-product of biomass pyrolysis process, which is more suitable to use anaerobic digestion (AD) to achieve energy recovery due to its large amount of organic matter. In this study, the up-flow anaerobic sludge bed (UASB) reactor was used to investigate the continuous anaerobic transformation of WVWW with gradient concentrations (0.3, 0.675, 1, 2, 3, 4, 5, 6, and 7 g COD/L). Then, the changes of microbial community, diversity index and functional gene were analyzed in detail. The results revealed that WVWW showed good AD performance in continuous fermentation. WVWW of organic loading rate (OLR) of >8.58 g COD/L⋅d showed severe inhibition on biodegradability and methane production, which is mainly due to the toxic substances as compared with the control group. The bacterial communities were dominated by phyla of Chloroflexi, Firmicutes, Proteobacteria, Acidobacteria, Synergistetes, and Actinobacteria. The gene abundances related to energy production, carbohydrate transport and metabolism were relatively high, which are mainly responsible for carbon forms conversion and carbohydrate degradation. This study will provide a basis for the screening and enrichment of functional bacteria and genes.
Collapse
Affiliation(s)
- Dongliang Hua
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Qingwen Fan
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Yuxiao Zhao
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Haipeng Xu
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Lei Chen
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Hongyu Si
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China
| | - Yan Li
- Shandong Provincial Key Laboratory of Biomass Gasification Technology, Shandong Academy of Sciences, Energy Research Institute, Qilu University of Technology, Jinan, China.,State Key Laboratory of Microbial Technology, Shandong University, Qingdao, China
| |
Collapse
|
13
|
Couto E, Calijuri ML, Assemany P. Biomass production in high rate ponds and hydrothermal liquefaction: Wastewater treatment and bioenergy integration. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 724:138104. [PMID: 32408433 DOI: 10.1016/j.scitotenv.2020.138104] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 03/16/2020] [Accepted: 03/20/2020] [Indexed: 06/11/2023]
Abstract
Against the worldwide energy crisis and climate change, new forms of energy generation have been investigated. Among the possibilities, microalgae are considered potential feedstock for biofuels production. However, there are still important challenges to overcome. In this context, the integration of biomass cultivation and the treatment of different types of wastewater can represent a source of nutrients and water, with the additional benefit of reducing the discharge of pollutant loads into water bodies. The wastewater grown biomass is composed by a microorganism consortium. These microorganisms can develop important symbiotic relationships for the optimization of biomass production. However, the success of algal biomass cultivation in effluents also involves the development of efficient reactors, which ranges from design criteria to operational parameters. High rate ponds are the most suitable reactors for such a purpose, within the context of a wastewater treatment plant. In this reactor, the addition of CO2 is an important parameter for pH control and, consequently, will influence nutrient assimilation. Another relevant operational parameter is the pond depth, which will have a major role in radiation availability along the water column. With respect to the energy use of the biomass, hydrothermal liquefaction (HTL) represents an interesting alternative for wastewater grown biomass, since the process does not require complete drying of the biomass, its bio-oil production efficiency is not necessarily attached to the lipid content and may present a positive energy balance. In addition, the possibility of using the HTL by-products, especially the water soluble products, in the context of a biorefinery, represents a route for nutrient recycling, residue minimization, and cost reduction.
Collapse
Affiliation(s)
- Eduardo Couto
- Federal Universityof Itajubá, Campus Itabira (Universidade Federal de Itajubá, Campus Itabira/Unifei), Intitute of Applied and Pure Sciences, Rua Irmã Ivone Drumond, 200, 35903-087 Itabira, MG, Brazil.
| | - Maria Lúcia Calijuri
- Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Department of Civil Engineering, Environmental Engineering Group - nPA, Avenida PH Rolfs s/n, 36570-900 Viçosa, MG, Brazil.
| | - Paula Assemany
- Federal University of Lavras (Universidade Federal de Lavras/UFLA), Department of Water Resources and Sanitation, Campus Universitário, 37200-000 Lavras, MG, Brazil.
| |
Collapse
|
14
|
Biocrude Production from Wheat Straw at Sub and Supercritical Hydrothermal Liquefaction. ENERGIES 2020. [DOI: 10.3390/en13123114] [Citation(s) in RCA: 18] [Impact Index Per Article: 3.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
In this study, hydrothermal liquefaction (HTL) of wheat straw (WS) in sub (350 °C) and supercritical (400 °C) water with and without alkali catalyst was performed to investigate the potential of WS for the production of biocrude. The influences of temperature and catalyst were studied for the HTL products. Results showed that maximum biocrude yield (32.34 wt. %) with least solid residue (4.34 wt. %) was obtained at subcritical catalytic condition, whereas the carbon content was slightly higher in biocrude at supercritical. The higher heating value (HHV) for biocrude is around 35 MJ/kg for all four conditions. The major compounds in biocrude were observed as ketones, alcohols, acids, and hydrocarbons. At 350 °C, 44–55% of the carbon recovered into biocrude. The products were characterized in terms of elemental composition, higher heating values, organics, and inorganic compounds in different phases. To keep in consideration the scale-up of HTL process for continuous plant, aqueous phase from HTL was also recirculated which showed the fruitful outcomes by increasing the biocrude yield at each cycle.
Collapse
|
15
|
Ciarlini J, Alves L, Rajarathnam GP, Haynes BS, Montoya A. Electrochemical oxidation of nitrogen-rich post-hydrothermal liquefaction wastewater. ALGAL RES 2020. [DOI: 10.1016/j.algal.2020.101919] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
|
16
|
Feedstock-Dependent Phosphate Recovery in a Pilot-Scale Hydrothermal Liquefaction Bio-Crude Production. ENERGIES 2020. [DOI: 10.3390/en13020379] [Citation(s) in RCA: 12] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
Abstract
Microalgae (Spirulina) and primary sewage sludge are considerable feedstocks for future fuel-producing biorefinery. These feedstocks have either a high fuel production potential (algae) or a particularly high appearance as waste (sludge). Both feedstocks bring high loads of nutrients (P, N) that must be addressed in sound biorefinery concepts that primarily target specific hydrocarbons, such as liquid fuels. Hydrothermal liquefaction (HTL), which produces bio-crude oil that is ready for catalytic upgrading (e.g., for jet fuel), is a useful starting point for such an approach. As technology advances from small-scale batches to pilot-scale continuous operations, the aspect of nutrient recovery must be reconsidered. This research presents a full analysis of relevant nutrient flows between the product phases of HTL for the two aforementioned feedstocks on the basis of pilot-scale data. From a partial experimentally derived mass balance, initial strategies for recovering the most relevant nutrients (P, N) were developed and proofed in laboratory-scale. The experimental and theoretical data from the pilot and laboratory scales are combined to present the proof of concept and provide the first mass balances of an HTL-based biorefinery modular operation for producing fertilizer (struvite) as a value-added product.
Collapse
|