1
|
Hou YJ, Wang PW, Zhang H, Fan YY, Cao X, Luo YQ, Li Q, Njolibimi M, Li WJ, Hong B, Zhao CJ. A high-permeability method for extracting purple yam saponins based on ultrasonic-assisted natural deep eutectic solvent. Food Chem 2024; 457:140046. [PMID: 38901342 DOI: 10.1016/j.foodchem.2024.140046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Revised: 06/04/2024] [Accepted: 06/08/2024] [Indexed: 06/22/2024]
Abstract
The extraction of active ingredients from traditional Chinese medicine has received considerable attentions. In this study, 16 kinds of natural deep eutectic solvent (NADES) with ultrasonic were selected to extract saponins from purple yam root and the extraction mechanism was investigated. The results showed that chloride/acrylic acid (1:2; n/n) had the highest extraction yield for saponins. The optimal extraction process parameters were 24% water content, 20 mL/g liquid-solid ratio, and ultrasonic extraction for 85 min (81 °C, 600 W). The extraction rate (ER) of purple yam saponins was 0.935%, close to the fitted result of 96.5 mg/g. Molecular dynamics simulations and FT-IR results showed that the NADES may extract the saponin constituents from purple yam through hydrogen bonding. Compared with traditional extraction methods and molecularly imprinted polymer methods, NADES has a higher ER and lower cost (1.53 $/g), which provides a reference for subsequent industrial quantitative production.
Collapse
Affiliation(s)
- Yu-Jiao Hou
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | - Peng-Wei Wang
- Department of Clinical Pharmacy the First Aiffiliated Hospital of Xinxiang Medical University,Weihui 453100, China
| | - Han Zhang
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | - Ying-Ying Fan
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | - Xu Cao
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | - Yan-Qiong Luo
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | - Qian Li
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China
| | | | - Wen-Jing Li
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China..
| | - Bo Hong
- School of Pharmacy, Qiqihar Medical University, Qiqihar, 161003, China..
| | - Chun-Jie Zhao
- School of Pharmacy, Shenyang Pharmaceutical University, Shenyang 110016, China.
| |
Collapse
|
2
|
Jafari MS, Hejazi P. Poly(3-hydroxybutyrate) production using supplemented corn-processing byproducts through Cupriavidus necator via solid-state fermentation: Cultivation on flask and bioreactor scale. J Biotechnol 2024; 392:1-10. [PMID: 38897291 DOI: 10.1016/j.jbiotec.2024.06.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2024] [Revised: 06/04/2024] [Accepted: 06/14/2024] [Indexed: 06/21/2024]
Abstract
The widespread adoption of Poly(3-hydroxybutyrate) (PHB) encounters challenges due to its higher production costs compared to conventional plastics. To overcome this obstacle, this study investigates the use of low-cost raw materials and optimized production methods. Specifically, food processing byproducts such as corn germ and corn bran were utilized as solid substrates through solid-state fermentation, enriched with molasses and cheese whey. Employing the One Factor at a Time technique, we examined the effects of substrate composition, temperature, initial substrate moisture, molasses, and cheese whey on PHB production at the flask scale. Subsequently, experiments were conducted at the bioreactor scale to evaluate the influence of aeration. In flask-scale experiments, the highest PHB yield, reaching 4.1 (g/kg Initial Dry Weight Substrate) (IDWS) after 72 hours, was achieved using a substrate comprising a 1:1 mass ratio of corn germ to corn bran supplemented with 20 % (v/w) cheese whey. Furthermore, PHB production in a 0.5-L packed-bed bioreactor yielded a maximum of 8.4 (g/kg IDWS), indicating a more than 100 % increase in yield after 72 hours, with optimal results achieved at an aeration rate of 0.5 l/(kg IDWS. h).
Collapse
Affiliation(s)
- Mohammad Sadegh Jafari
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran
| | - Parisa Hejazi
- Biotechnology Research Laboratory, School of Chemical, Petroleum and Gas Engineering, Iran University of Science and Technology, Tehran 16846-13114, Iran.
| |
Collapse
|
3
|
Kumar Sachan RS, Devgon I, Mohammad Said Al-Tawaha AR, Karnwal A. Optimizing Polyhydroxyalkanoate production using a novel Bacillus paranthracis isolate: A response surface methodology approach. Heliyon 2024; 10:e35398. [PMID: 39170281 PMCID: PMC11336651 DOI: 10.1016/j.heliyon.2024.e35398] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Revised: 07/25/2024] [Accepted: 07/28/2024] [Indexed: 08/23/2024] Open
Abstract
Microorganisms have emerged as promising resources for producing economical and sustainable bioproducts like Polyhydroxyalkanoate (PHA), a biodegradable polymer that can replace synthetic plastics. In this study, we screened a novel isolate, Bacillus paranthracis RSKS-3 strain, to produce PHA from sewage water, identifying it using Whole Genome Sequence. This study represents the first report on optimizing PHA production using B. paranthracis RSKS-3, employing Design Expert 12.0 software. Our findings reveal that four factors (temperature, inoculum size, potassium dihydrogen phosphate, and magnesium sulfate) significantly affect PHA production in the Plackett-Burman design experiment. Through Response Surface Methodology, we optimized PHA production to 0.647 g/L with specific values for potassium dihydrogen phosphate (0.55 %), inoculum size (3 %), magnesium sulfate (0.055 %), and a temperature of 35 °C, in agreement with the predicted value of 0.630 g/L. This optimization resulted in a substantial 13.29-fold increase in PHA production from 0.34 g/L to 4.52 g/L, underscoring the promising role of B. paranthracis RSKS-3 in eco-friendly PHA production and advancing sustainable bioproduct development.
Collapse
Affiliation(s)
- Rohan Samir Kumar Sachan
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | - Inderpal Devgon
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| | | | - Arun Karnwal
- School of Bioengineering and Biosciences, Lovely Professional University, Phagwara-144411, Punjab, India
| |
Collapse
|
4
|
Taghizadeh MH, Khajeh K, Nasirpour N, Mousavi SM. Maximization of uricase production in a column bioreactor through response surface methodology-based optimization. Biofabrication 2024; 16:035023. [PMID: 38697098 DOI: 10.1088/1758-5090/ad467f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/11/2023] [Accepted: 05/02/2024] [Indexed: 05/04/2024]
Abstract
Uricase (EC 1.7.3.3) is an oxidoreductase enzyme that is widely exploited for diagnostic and treatment purposes in medicine. This study focuses on producing recombinant uricase fromE. coliBL21 in a bubble column bioreactor (BCB) and finding the optimal conditions for maximum uricase activity. The three most effective variables on uricase activity were selected through the Plackett-Burman design from eight different variables and were further optimized by the central composite design of the response surface methodology (RSM). The selected variables included the inoculum size (%v/v), isopropylβ-d-1-thiogalactopyranoside (IPTG) concentration (mM) and the initial pH of the culture medium. The activity of uricase, the final optical density at 600 nm wavelength (OD600) and the final pH were considered as the responses of this optimization and were modeled. As a result, activity of 5.84 U·ml-1and a final OD600of 3.42 were obtained at optimum conditions of 3% v/v inoculum size, an IPTG concentration of 0.54 mM and a pH of 6.0. By purifying the obtained enzyme using a Ni-NTA agarose affinity chromatography column, 165 ± 1.5 mg uricase was obtained from a 600 ml cell culture. The results of this study show that BCBs can be a highly effective option for large-scale uricase production.
Collapse
Affiliation(s)
| | - Khosro Khajeh
- Biological Sciences Department, Tarbiat Modares University, Tehran, Iran
| | - Niloofar Nasirpour
- Chemical Engineering Department, University of Mohaghegh Ardabili, Ardabil, Iran
| | - Seyyed Mohammad Mousavi
- Biotechnology Group, Chemical Engineering Department, Tarbiat Modares University, Tehran, Iran
- Modares Environmental Research Institute, Tarbiat Modares University, Tehran, Iran
| |
Collapse
|
5
|
González-Rojo S, Díez-Antolínez R. Production of polyhydroxyalkanoates as a feasible alternative for an integrated multiproduct lignocellulosic biorefinery. BIORESOURCE TECHNOLOGY 2023; 386:129493. [PMID: 37460022 DOI: 10.1016/j.biortech.2023.129493] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 07/11/2023] [Accepted: 07/12/2023] [Indexed: 07/23/2023]
Abstract
Polyhydroxyalkanoates (PHAs) are considered an alternative to fossil fuel-based plastics. However, in spite of their interesting properties and their multiple applications, PHAs have not taken off as an industrial development. The reason is mainly due to the associated high-production costs, which represent a significant constraint. In recent years, the interest in lignocellulosic biomass (LCB) derived from crop, forestry or municipal waste by-products has been growing, since LCB is plentiful, cheap, renewable and sustainable. On this matter, the valorization of LCB into PHAs represents a promising route within circular economy strategies. However, much effort still needs to be made to improve the bioconversion yields and to enhance PHA production efficiency. So, this review focuses on reviewing the different options for PHA synthesis from LCB, stressing the progress in biomass deconstruction, enzymatic hydrolysis and microbial conversion. In addition, some of the current biological strategies for improving the process of bioconversion are discussed.
Collapse
Affiliation(s)
- S González-Rojo
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, León 24358, Spain.
| | - R Díez-Antolínez
- Centro de Biocombustibles y Bioproductos, Instituto Tecnológico Agrario de Castilla y León (ITACyL), Polígono Agroindustrial del Órbigo p. 2-6, Villarejo de Órbigo, León 24358, Spain
| |
Collapse
|
6
|
Development of a headspace-solid phase microextraction gas chromatography-high resolution mass spectrometry method for analyzing volatile organic compounds in urine: Application in breast cancer biomarker discovery. Clin Chim Acta 2023; 540:117236. [PMID: 36716910 DOI: 10.1016/j.cca.2023.117236] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Revised: 01/06/2023] [Accepted: 01/24/2023] [Indexed: 02/01/2023]
Abstract
BACKGROUND AND AIM Breast cancer (BC) is the leading cause of cancer-related death in females. The development of non-invasive methods for the early diagnosis of BC still remains challenge. Here, we aimed to discover the urinary volatile organic compounds (VOCs) pattern of BC patients and identify potential VOC biomarkers for BC diagnosis. METHODS Urine samples were analyzed by headspace-solid phase microextraction (HS-SPME) combined with gas chromatography-high resolution mass spectrometry (GC-HRMS). To assure reliable analysis, the factors influencing HS-SPME extraction efficiency were comprehensively investigated and optimized by combing the Plackett-Burman design (PBD) with the central composite design (CCD). The established HS-SPME/GC-HRMS method was validated and applied to analyze urine samples from BC patients (n = 80) and healthy controls (n = 88). RESULTS A total number of 134 VOCs belonging to distinct chemical classes were identified by GC-HRMS. BC patients demonstrated unique urinary VOCs pattern. Orthogonal partial least squares-discriminant analysis (OPLS-DA) showed a clear separation between BC patients and healthy controls. Eight potential VOC biomarkers were identified using multivariate and univariate statistical analysis. The predictive ability of candidate VOC biomarkers was further investigated by the random forest (RF) algorithm. The candidate VOC biomarkers yielded 76.3% sensitivity and 85.4% specificity on the training set, and achieved 76.0% sensitivity and 92.3% specificity on the validation set. CONCLUSIONS Overall, this work not only established a standardized HS-SPME/GC-HRMS approach for urinary VOCs analysis, but also highlighted the value of urinary VOCs for BC diagnosis. The knowledge gained from this study paves the way for early diagnosis of BC using urine in a non-invasive manner.
Collapse
|
7
|
Han X, Liu J, Tian S, Tao F, Xu P. Microbial cell factories for bio-based biodegradable plastics production. iScience 2022; 25:105462. [DOI: 10.1016/j.isci.2022.105462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/13/2022] Open
|
8
|
Vlaeminck E, Uitterhaegen E, Quataert K, Delmulle T, De Winter K, Soetaert WK. Industrial side streams as sustainable substrates for microbial production of poly(3-hydroxybutyrate) (PHB). World J Microbiol Biotechnol 2022; 38:238. [PMID: 36260135 PMCID: PMC9581835 DOI: 10.1007/s11274-022-03416-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 09/13/2022] [Indexed: 11/03/2022]
Abstract
Poly(3-hydroxybutyrate) (PHB) is a microbially produced biopolymer that is emerging as a propitious alternative to petroleum-based plastics owing to its biodegradable and biocompatible properties. However, to date, the relatively high costs related to the PHB production process are hampering its widespread commercialization. Since feedstock costs add up to half of the total production costs, ample research has been focusing on the use of inexpensive industrial side streams as carbon sources. While various industrial side streams such as second-generation carbohydrates, lignocellulose, lipids, and glycerol have been extensively investigated in liquid fermentation processes, also gaseous sources, including carbon dioxide, carbon monoxide, and methane, are gaining attention as substrates for gas fermentation. In addition, recent studies have investigated two-stage processes to convert waste gases into PHB via organic acids or alcohols. In this review, a variety of different industrial side streams are discussed as more sustainable and economical carbon sources for microbial PHB production. In particular, a comprehensive overview of recent developments and remaining challenges in fermentation strategies using these feedstocks is provided, considering technical, environmental, and economic aspects to shed light on their industrial feasibility. As such, this review aims to contribute to the global shift towards a zero-waste bio-economy and more sustainable materials.
Collapse
Affiliation(s)
- Elodie Vlaeminck
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, Belgium
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium
| | | | - Koen Quataert
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, Belgium
| | - Tom Delmulle
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium
| | - Karel De Winter
- Bio Base Europe Pilot Plant (BBEPP), Rodenhuizekaai 1, Ghent, Belgium
| | - Wim K. Soetaert
- Centre for Industrial Biotechnology and Biocatalysis (InBio.be), Ghent University, Ghent, Belgium
| |
Collapse
|
9
|
Zhang L, Jiang Z, Tsui TH, Loh KC, Dai Y, Tong YW. A Review on Enhancing Cupriavidus necator Fermentation for Poly(3-hydroxybutyrate) (PHB) Production From Low-Cost Carbon Sources. Front Bioeng Biotechnol 2022; 10:946085. [PMID: 35928944 PMCID: PMC9343952 DOI: 10.3389/fbioe.2022.946085] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2022] [Accepted: 06/20/2022] [Indexed: 11/13/2022] Open
Abstract
In the context of a circular economy, bioplastic production using biodegradable materials such as poly(3-hydroxybutyrate) (PHB) has been proposed as a promising solution to fundamentally solve the disposal issue of plastic waste. PHB production techniques through fermentation of PHB-accumulating microbes such as Cupriavidus necator have been revolutionized over the past several years with the development of new strategies such as metabolic engineering. This review comprehensively summarizes the latest PHB production technologies via Cupriavidus necator fermentation. The mechanism of the biosynthesis pathway for PHB production was first assessed. PHB production efficiencies of common carbon sources, including food waste, lignocellulosic materials, glycerol, and carbon dioxide, were then summarized and critically analyzed. The key findings in enhancing strategies for PHB production in recent years, including pre-treatment methods, nutrient limitations, feeding optimization strategies, and metabolism engineering strategies, were summarized. Furthermore, technical challenges and future prospects of strategies for enhanced production efficiencies of PHB were also highlighted. Based on the overview of the current enhancing technologies, more pilot-scale and larger-scale tests are essential for future implementation of enhancing strategies in full-scale biogas plants. Critical analyses of various enhancing strategies would facilitate the establishment of more sustainable microbial fermentation systems for better waste management and greater efficiency of PHB production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Zicheng Jiang
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - To-Hung Tsui
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
| | - Kai-Chee Loh
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, Singapore, Singapore
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), Singapore, Singapore
- Department of Chemical and Biomolecular Engineering, National University of Singapore, Singapore, Singapore
- *Correspondence: Yen Wah Tong,
| |
Collapse
|
10
|
Research on wettability of nickel coating changes induced in the electrodeposition process. J Electroanal Chem (Lausanne) 2022. [DOI: 10.1016/j.jelechem.2022.116146] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
|
11
|
HOU Y, ZHAO P, ZHANG F, YANG S, RADY A, WIJEWARDANE NK, HUANG J, LI M. Fourier-transform infrared spectroscopy and machine learning to predict amino acid content of nine commercial insects. FOOD SCIENCE AND TECHNOLOGY 2022. [DOI: 10.1590/fst.100821] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Affiliation(s)
- Yinchen HOU
- Henan University of Animal Husbandry and Economy, China
| | | | - Fan ZHANG
- China Agricultural University, People’s Republic of China
| | - Shengru YANG
- Henan University of Animal Husbandry and Economy, China
| | | | | | | | - Mengxing LI
- University of Nebraska-Lincoln, USA; University of Nebraska-Lincoln, USA
| |
Collapse
|
12
|
Wang J, Liu S, Huang J, Qu Z. A review on polyhydroxyalkanoate production from agricultural waste Biomass: Development, Advances, circular Approach, and challenges. BIORESOURCE TECHNOLOGY 2021; 342:126008. [PMID: 34592618 DOI: 10.1016/j.biortech.2021.126008] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2021] [Revised: 09/15/2021] [Accepted: 09/19/2021] [Indexed: 06/13/2023]
Abstract
Polyhydroxyalkanoates are biopolymers produced by microbial fermentation. They have excellent biodegradability and biocompatibility, which are regarded as promising substitutes for traditional plastics in various production and application fields. This review details the research progress in PHA production from lignocellulosic crop residues, lipid-type agricultural wastes, and other agro-industrial wastes such as molasses and whey. The effective use of agricultural waste can further reduce the cost of PHA production while avoiding competition between industrial production and food. The latest information on fermentation parameter optimization, fermentation strategies, kinetic studies, and circular approach has also been discussed. This review aims to analyze the crucial process of the PHA production from agricultural wastes to provide support and reference for further scale-up and industrial production.
Collapse
Affiliation(s)
- Jianfei Wang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States
| | - Shijie Liu
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States.
| | - Jiaqi Huang
- Department of Chemical Engineering, SUNY College of Environmental Science and Forestry, Syracuse NY13210, United States; The Center for Biotechnology & Interdisciplinary Studies (CBIS) at Rensselaer Polytechnic Institute, Troy NY12180, United States
| | - Zixuan Qu
- School of Engineering, Tufts University, Medford, MA 02155, United States
| |
Collapse
|
13
|
Du Y, Huang P, Jin W, Li C, Yang J, Wan H, He Y. Optimization of Extraction or Purification Process of Multiple Components from Natural Products: Entropy Weight Method Combined with Plackett-Burman Design and Central Composite Design. Molecules 2021; 26:5572. [PMID: 34577043 PMCID: PMC8469851 DOI: 10.3390/molecules26185572] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/05/2021] [Revised: 09/04/2021] [Accepted: 09/10/2021] [Indexed: 11/16/2022] Open
Abstract
In this paper, the optimization of the extraction/purification process of multiple components was performed by the entropy weight method (EWM) combined with Plackett-Burman design (PBD) and central composite design (CCD). We took the macroporous resin purification of Astragalus saponins as an example to discuss the practicability of this method. Firstly, the weight of each component was given by EWM and the sum of the product between the componential content and its weight was defined as the comprehensive score, which was taken as the evaluation index. Then, the single factor method was adopted for determining the value range of each factor. PBD was applied for screening the significant factors. Important variables were further optimized by CCD to determine the optimal process parameters. After the combination of EWM, PBD and CCD, the resulting optimal purification conditions were as follows: pH value of 6.0, the extraction solvent concentration of 0.15 g/mL, and the ethanol volume fraction of 75%. Under the optimal conditions, the practical comprehensive score of recoveries of saponins was close to the predicted value (n = 3). Therefore, the present study provided a convenient and efficient method for extraction and purification optimization technology of multiple components from natural products.
Collapse
Affiliation(s)
- Yu Du
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Pengcheng Huang
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Weifeng Jin
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| | - Chang Li
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Jiehong Yang
- School of Basic Medicine Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Haitong Wan
- School of Life Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China;
| | - Yu He
- School of Pharmaceutical Sciences, Zhejiang Chinese Medical University, Hangzhou 310053, China; (Y.D.); (P.H.); (W.J.)
| |
Collapse
|
14
|
Cestellos-Blanco S, Friedline S, Sander KB, Abel AJ, Kim JM, Clark DS, Arkin AP, Yang P. Production of PHB From CO 2-Derived Acetate With Minimal Processing Assessed for Space Biomanufacturing. Front Microbiol 2021; 12:700010. [PMID: 34394044 PMCID: PMC8355900 DOI: 10.3389/fmicb.2021.700010] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/25/2021] [Accepted: 07/05/2021] [Indexed: 11/13/2022] Open
Abstract
Providing life-support materials to crewed space exploration missions is pivotal for mission success. However, as missions become more distant and extensive, obtaining these materials from in situ resource utilization is paramount. The combination of microorganisms with electrochemical technologies offers a platform for the production of critical chemicals and materials from CO2 and H2O, two compounds accessible on a target destination like Mars. One such potential commodity is poly(3-hydroxybutyrate) (PHB), a common biopolyester targeted for additive manufacturing of durable goods. Here, we present an integrated two-module process for the production of PHB from CO2. An autotrophic Sporomusa ovata (S. ovata) process converts CO2 to acetate which is then directly used as the primary carbon source for aerobic PHB production by Cupriavidus basilensis (C. basilensis). The S. ovata uses H2 as a reducing equivalent to be generated through electrocatalytic solar-driven H2O reduction. Conserving and recycling media components is critical, therefore we have designed and optimized our process to require no purification or filtering of the cell culture media between microbial production steps which could result in up to 98% weight savings. By inspecting cell population dynamics during culturing we determined that C. basilensis suitably proliferates in the presence of inactive S. ovata. During the bioprocess 10.4 mmol acetate L -1 day-1 were generated from CO2 by S. ovata in the optimized media. Subsequently, 12.54 mg PHB L-1 hour-1 were produced by C. basilensis in the unprocessed media with an overall carbon yield of 11.06% from acetate. In order to illustrate a pathway to increase overall productivity and enable scaling of our bench-top process, we developed a model indicating key process parameters to optimize.
Collapse
Affiliation(s)
- Stefano Cestellos-Blanco
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Skyler Friedline
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Kyle B Sander
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States
| | - Anthony J Abel
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Ji Min Kim
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States
| | - Douglas S Clark
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Chemical and Biomolecular Engineering, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Molecular Biophysics and Integrated Bioimaging Division, Berkeley, CA, United States
| | - Adam P Arkin
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Bioengineering, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Environmental Genomics and Systems Biology Division, Berkeley, CA, United States
| | - Peidong Yang
- Center for the Utilization of Biological Engineering in Space, Berkeley, CA, United States.,Department of Materials Science and Engineering, University of California, Berkeley, Berkeley, CA, United States.,Department of Chemistry, University of California, Berkeley, Berkeley, CA, United States.,Lawrence Berkeley National Laboratory, Chemical Sciences Division, Berkeley, CA, United States.,Kavli Energy NanoSciences Institute, University of California, Berkeley, Berkeley, CA, United States
| |
Collapse
|
15
|
Khan N, Chowdhary P, Gnansounou E, Chaturvedi P. Biochar and environmental sustainability: Emerging trends and techno-economic perspectives. BIORESOURCE TECHNOLOGY 2021; 332:125102. [PMID: 33853722 DOI: 10.1016/j.biortech.2021.125102] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Revised: 03/22/2021] [Accepted: 03/26/2021] [Indexed: 06/12/2023]
Abstract
Environmental pollutants including emerging contaminants are a growing concern worldwide. Organic wastes, such as food waste, compost, animal manure, crop residues, and sludge are generally used as feedstock. The conventional treatment methodologies (primary and secondary treatment process) do not mitigate or remove pollutants effectively. Hence, an effective, low-cost, and environmentally friendly tertiary treatment process is an urgent need. Biochar finds interesting applications in environmental processes like pollutant remediation, greenhouse gas mitigation, and wastewater treatment. Studies have shown that different types of adsorbents (biochars) like, native and engineered biochar are being used in the removal or mitigation of heavy metals, polycyclic aromatic hydrocarbons (PAHs), polychlorinated biphenyls, pesticides, disinfectants, polychlorinated dibenzofurans, and dibenzo-p-dioxins from contaminated sites for environmental management. The review discusses ample studieswhich can offer solutions for environmental sustenance and managementand the emerging trends and techno-economic prospectives of biochar for sustainable environmental management.
Collapse
Affiliation(s)
- Nawaz Khan
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Pankaj Chowdhary
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India
| | - Edgard Gnansounou
- Bioenergy and Energy planning, IIC, ENAC, École polytechnique fédérale de Lausanne (EPFL) Station 18, CH-1015 Lausanne, Switzerland
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR-Indian Institute of Toxicology Research, Vishvigyan Bhawan, 31, Mahatma Gandhi Marg, Lucknow 226 001, Uttar Pradesh, India.
| |
Collapse
|
16
|
Yang Z, Mao X, Cui J, Wang Y, Zhang Y. Enhancement and analysis of Anthracene degradation by Tween 80 in LMS-HOBt. Sci Rep 2021; 11:13121. [PMID: 34162899 PMCID: PMC8222252 DOI: 10.1038/s41598-021-90609-5] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2021] [Accepted: 04/27/2021] [Indexed: 11/30/2022] Open
Abstract
This study examines the specific effect of Tween 80 on the conversion of anthracene (ANT) in laccase medium system regarding surfactant chemical changes and mechanism. The conversion rate and degradation products of ANT were investigated in different concentrations of Tween 80 solution. Between Tween 80 concentration 0-40 critical micelle concentrations (CMC), the kinetic parameter-k (h-1) and corresponding half-life T1/2 decreased with increasing concentration. When Tween 80 was above 20 CMC the laccase-medium system converted > 95% of ANT to anthraquinone within 12 h. During the entire enzymatic reaction, the laccase activity in the system increased with increasing Tween 80 concentration. Combined with GC/MS analysis of the product, it was speculated that hydrogens belonging to the ether-oxygen bond and carbon-carbon double bond α-CH of Tween 80, were removed by the laccase-media system, promoting its degradation. Additionally, enhanced activity caused by oxygen free radicals (ROS) such as RO• and ROO•, continuously oxidized Tween 80, which in turn produced free radicals while converting ANT. This study provides new theoretical support toward the application of surfactants in the elimination of polycyclic aromatic hydrocarbons.
Collapse
Affiliation(s)
- Zuoyi Yang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Xingchen Mao
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China.
| | - Jiahao Cui
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yujie Wang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| | - Yaping Zhang
- Guangzhou Key Laboratory of Environmental Catalysis and Pollution Control, School of Environmental Science and Engineering, Guangdong University of Technology, Guangzhou, 510006, China
| |
Collapse
|
17
|
Optimization of extraction process and antioxidant activities of saponins from Camellia fascicularis leaves. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00754-0] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
18
|
Fourier-transform infrared spectroscopy and machine learning to predict fatty acid content of nine commercial insects. JOURNAL OF FOOD MEASUREMENT AND CHARACTERIZATION 2021. [DOI: 10.1007/s11694-020-00694-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2023]
|
19
|
Hou Y, Yang S, Huang J, Xu Q, Liao A, Zhong Q, Li M. Nutritional profile and in vitro immunomodulatory activity of protein extract from goat placenta and fermented extraction residual. J FOOD PROCESS ENG 2021. [DOI: 10.1111/jfpe.13576] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Affiliation(s)
- Yinchen Hou
- College of Food and Biological Engineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Shengru Yang
- College of Food and Biological Engineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Jihong Huang
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Qianying Xu
- Department of Biochemical Engineering University College London London UK
| | - Aimei Liao
- College of Biological Engineering Henan University of Technology Zhengzhou China
| | - Qiufan Zhong
- College of Food and Biological Engineering Henan University of Animal Husbandry and Economy Zhengzhou China
| | - Mengxing Li
- Department of Biological Systems Engineering The University of Nebraska‐Lincoln Lincoln Nebraska USA
- Department of Statistics The University of Nebraska‐Lincoln Lincoln Nebraska USA
| |
Collapse
|
20
|
Liu E, Wilkins MR. Process optimization and scale-up production of fungal aryl alcohol oxidase from genetically modified Aspergillus nidulans in stirred-tank bioreactor. BIORESOURCE TECHNOLOGY 2020; 315:123792. [PMID: 32659422 DOI: 10.1016/j.biortech.2020.123792] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2020] [Revised: 07/01/2020] [Accepted: 07/02/2020] [Indexed: 06/11/2023]
Abstract
Microbial production of aryl alcohol oxidase (AAO) has attracted increasing attention due to the central role of AAO in enzymatic lignin depolymerization. However, large-scale production of AAO has not been reached because of the low yield and inefficient fermentation process. This study aims to optimize the process parameters and scale-up production of AAO using Aspergillus nidulans in a stirred-tank bioreactor. Effects of pH and dissolved oxygen on AAO production at bioreactor scale were particularly investigated. Results revealed that pH control significantly affected protein production and increasing dissolved oxygen level stimulated AAO production. The greatest AAO activity (1906 U/L) and protein concentration (1.19 g/L) were achieved in 48 h at 60% dissolved oxygen with pH controlled at 6.0. The yield and productivity (in 48 h) were 31.2 U/g maltose and 39.7 U/L/h, respectively. In addition, crude AAO was concentrated and partially purified by ultrafiltration and verified by protein identification.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
21
|
Synergistic effects of α-Fe2O3-TiO2 and Na2S2O8 on the performance of a non-thermal plasma reactor as a novel catalytic oxidation process for dimethyl phthalate degradation. Sep Purif Technol 2020. [DOI: 10.1016/j.seppur.2020.117185] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
|
22
|
Liu J, Zhang X, Yan T, Wang F, Li J, Jia L, Jia J, Hu G. Screening of an Endophyte Transforming Polydatin to Resveratrol from Reynoutria Japonica Houtt and the Optimization of Its Transformation Parameters. Molecules 2020; 25:E4830. [PMID: 33092209 PMCID: PMC7587952 DOI: 10.3390/molecules25204830] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2020] [Revised: 09/28/2020] [Accepted: 10/14/2020] [Indexed: 12/13/2022] Open
Abstract
Resveratrol showed various kinds of bioactivities, such as antioxidant, antimicrobial, anticancer effects and, therefore, has been used widely as an important ingredient in medication, healthy foods and cosmetics. However, in nature, resveratrol usually exists at low content and more often exists as polydatin. Therefore, it becomes important to find the cost-effective and environmental-friendly way to transform polydatin to resveratrol. In this study, endophytes were isolated from the rhizome tissue of Reynoutria japonica and screened for transforming polydatin to resveratrol using reversed-phase high-performance liquid chromatography (RP-HPLC) and confirmed by liquid chromatography-mass spectrometry (LC-MS) and nuclear magnetic resonance (NMR) spectroscopy. A bacterium identified as Bacillus aryabhattai using 16S rRNA phylogenetic tree analysis showed highest transformation rate. The transforming conditions were optimized including substrate concentration, substrate addition time, culture temperature and inoculation ratio. Our results demonstrated that the bacteria isolated from R. japonica rhizome tissue showed high activity in transforming polydatin into resveratrol. Crude extract of R. japonica root and rhizome (RJE) was also tested as substrate and it was found that the transformation was significantly inhibited at 10.0 mg/mL RJE. Emodin at equivalent concentration of 10.0 mg/mL RJE showed no inhibition activity, and glucose content in RJE was trace and far from enough to exhibit the inhibitory activity. Successive solvent partition followed by an inhibition activity assay revealed that the ethyl acetate fraction showed the main inhibition activity. However, due to the coexistence of polydatin and compounds with inhibitory activity, the concentration of RJE can only be used at limited concentration as substrate.
Collapse
Affiliation(s)
- Jin Liu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Xueqing Zhang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Ting Yan
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Faling Wang
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Jing Li
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Lingyun Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
| | - Jingming Jia
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
- China-Korea Joint Laboratory of Molecular Pharmacognosy, Shenyang Pharmaceutical University, Shenyang 110016, China
| | - Gaosheng Hu
- School of Traditional Chinese Materia Medica, Shenyang Pharmaceutical University, Shenyang 110016, China; (J.L.); (X.Z.); (T.Y.); (F.W.); (J.L.); (L.J.); (J.J.)
- China-Korea Joint Laboratory of Molecular Pharmacognosy, Shenyang Pharmaceutical University, Shenyang 110016, China
| |
Collapse
|
23
|
Fed-batch polyhydroxybutyrate production by Paraburkholderia sacchari from a ternary mixture of glucose, xylose and arabinose. Bioprocess Biosyst Eng 2020; 44:185-193. [PMID: 32895870 DOI: 10.1007/s00449-020-02434-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/06/2020] [Accepted: 08/24/2020] [Indexed: 10/23/2022]
Abstract
Polyhydroxybutyrate (PHB) is a biodegradable bioplastic that is comparable with many petroleum-based plastics in terms of mechanical properties and is highly biocompatible. Lignocellulosic biomass conversion into PHB can increase profit and add sustainability. Glucose, xylose and arabinose are the main monomer sugars derived from upstream lignocellulosic biomass processing. The sugar mixture ratios may vary greatly depending on the pretreatment and enzymatic hydrolysis conditions. Paraburkholderia sacchari DSM 17165 is a bacterium strain that can convert all three sugars into PHB. In this study, fed-batch mode was applied to produce PHB on three sugar mixtures (glucose:xylose:arabinose = 4:2:1, 2:2:1, 1:2:1). The highest PHB concentration produced was 67 g/L for 4:2:1 mixture at 41 h corresponding to an accumulation of 77% of cell dry weight as PHB. Corresponding sugar conversion efficiency and productivity were 0.33 g PHB/g sugar consumed and 1.6 g/L/h, respectively. The results provide references for process control to maximize PHB production from real sugar streams derived from corn fibre.
Collapse
|
24
|
Liu E, Li M, Abdella A, Wilkins MR. Development of a cost-effective medium for submerged production of fungal aryl alcohol oxidase using a genetically modified Aspergillus nidulans strain. BIORESOURCE TECHNOLOGY 2020; 305:123038. [PMID: 32120232 DOI: 10.1016/j.biortech.2020.123038] [Citation(s) in RCA: 18] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/30/2020] [Revised: 02/13/2020] [Accepted: 02/15/2020] [Indexed: 06/10/2023]
Abstract
Aryl alcohol oxidase (AAO), an extracellular H2O2-providing enzyme, plays a central role in lignin depolymerization. Cost-effective production of AAO has not been achieved, due to the low yield of enzyme-producing microorganisms and the high cost of fermentation media. This study aims to develop a cost-effective medium for high-yield production of AAO in submerged culture using a recombinant Aspergillus nidulans strain. Results demonstrate that corn steep liquor (CSL) was a rich but inexpensive nitrogen source for AAO production, and CSL can provide enough trace metals and vitamins (i.e. pyridoxine) for A. nidulans. A 2-level Plackett-Burman design was utilized to determine the main affecting factors in AAO production. The medium was further optimized by a 3-level Box-Behnken design to obtain the optimum medium component concentrations (61.0 g/L maltose, 26.4 g/L CSL, and 13.8 g/L NaNO3). The greatest AAO activity achieved was 1021 U/L with a protein concentration of 0.75 g/L.
Collapse
Affiliation(s)
- Enshi Liu
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Statistics, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Asmaa Abdella
- Department of Industrial Biotechnology, Genetic Engineering and Biotechnology Research Institute, University of Sadat City, Sadat City 22857, Egypt; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark R Wilkins
- Department of Biological Systems Engineering, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA.
| |
Collapse
|
25
|
Recent advances in polyhydroxyalkanoate production: Feedstocks, strains and process developments. Int J Biol Macromol 2020; 156:691-703. [PMID: 32315680 DOI: 10.1016/j.ijbiomac.2020.04.082] [Citation(s) in RCA: 44] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/24/2020] [Revised: 04/01/2020] [Accepted: 04/12/2020] [Indexed: 11/20/2022]
Abstract
Polyhydroxyalkanoates (PHAs) have been actively studied in academia and industry for their properties comparable to petroleum-derived plastics and high biocompatibility. However, the major limitation for commercialization is their high cost. Feedstock costs, especially carbon costs, account for the majority of the final cost. Finding cheap feedstocks for PHA production and associated process development are critical for a cost-effective PHA production. In this study, waste materials from different sources, particularly lignocellulosic biomass, were proposed as suitable feedstocks for PHA production. Strains involved in the conversion of these feedstocks into PHA were reviewed. Newly isolated strains were emphasized. Related process development, including the factors that affect PHA production, fermentation modes and downstream processing, was elaborated upon.
Collapse
|
26
|
Li M, Wilkins M. Fed-batch cultivation and adding supplements to increase yields of polyhydroxybutyrate production by Cupriavidus necator from corn stover alkaline pretreatment liquor. BIORESOURCE TECHNOLOGY 2020; 299:122676. [PMID: 31924491 DOI: 10.1016/j.biortech.2019.122676] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Revised: 12/19/2019] [Accepted: 12/21/2019] [Indexed: 06/10/2023]
Abstract
The aim of this study was to evaluate polyhydroxybutyrate (PHB) production and productivity with supplements under fed-batch cultivation at bioreactor scale (1.3 L). In this study, multiple supplements including oxidative enzyme, mediators, surfactants and silicon nanoparticles were added to Cupriavidus necator culture growing on alkaline pretreatment liquor (APL). At 1.3 L bioreactor scale, PHB production reached 3.3 g/L. To further enhance PHB production, fed-batch cultivation with two different feeding strategies were applied. Under single pulse feeding of 300 mL medium, PHB production reached 4.0 g/L. Under 4 pulses feeding of 75 mL medium each time, PHB production reached 4.5 g/L. This is the highest PHB production from lignin that the authors are aware of in literature.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583 USA; Department of Statistics, The University of Nebraska-Lincoln, Lincoln 68583 USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln 68583 USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln 68588 USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln 68583 USA.
| |
Collapse
|
27
|
Visible/near infrared spectroscopy and machine learning for predicting polyhydroxybutyrate production cultured on alkaline pretreated liquor from corn stover. ACTA ACUST UNITED AC 2020. [DOI: 10.1016/j.biteb.2020.100386] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/10/2023]
|
28
|
Sun X, Atiyeh HK, Li M, Chen Y. Biochar facilitated bioprocessing and biorefinery for productions of biofuel and chemicals: A review. BIORESOURCE TECHNOLOGY 2020; 295:122252. [PMID: 31669180 DOI: 10.1016/j.biortech.2019.122252] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2019] [Revised: 10/04/2019] [Accepted: 10/05/2019] [Indexed: 05/22/2023]
Abstract
Biochar is traditionally used to improve soil properties in arable land and as adsorbent or precursor of activated carbon in wastewater treatment. Recent advances have shown biochar potentials in enhancing productions of biofuels and chemicals such as bio-ethanol, butanol, methane, hydrogen, bio-diesel, hydrocarbons and carboxylic acids. The properties of biochar such as high levels of porosity, functional groups, cation exchange capacity, pH buffering capacity, electron conductivity, and macro-/micro- nutrients (Na, K, Ca, Mg, P, S, Fe, etc.) provide appropriate conditions to relieve physicochemical stresses on microorganisms through pH buffering, detoxification, nutrients supply, serving as electron carrier and supportive microbial habitats. This paper critically reviewed biochar production and characteristics, biochar utilization in anaerobic digestion, composting, microbial fermentation, hydrolysate detoxification, catalysis in biomass refinery and biodiesel synthesis. This review provides novel vision of biochar application, which could guide future research towards cleaner and more economic production of renewable fuels and bio-based chemicals.
Collapse
Affiliation(s)
- Xiao Sun
- Department of Bioproducts and Biosystems Engineering, University of Minnesota, Saint Paul 55108, MN, USA.
| | - Hasan K Atiyeh
- Department of Biosystems and Agricultural Engineering, Oklahoma State University, Stillwater 74078, OK, USA
| | - Mengxing Li
- Department of Biological Systems Engineering, University of Nebraska, Lincoln 68583, NE, USA
| | - Yan Chen
- School of Bioengineering, Dalian University of Technology, Dalian 116024, Liaoning, China
| |
Collapse
|
29
|
Treichel H, Fongaro G, Scapini T, Frumi Camargo A, Spitza Stefanski F, Venturin B. Waste Biomass Pretreatment Methods. UTILISING BIOMASS IN BIOTECHNOLOGY 2020. [DOI: 10.1007/978-3-030-22853-8_3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
|
30
|
Li M, Wilkins M. Flow cytometry for quantitation of polyhydroxybutyrate production by Cupriavidus necator using alkaline pretreated liquor from corn stover. BIORESOURCE TECHNOLOGY 2020; 295:122254. [PMID: 31629285 DOI: 10.1016/j.biortech.2019.122254] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2019] [Revised: 10/07/2019] [Accepted: 10/08/2019] [Indexed: 06/10/2023]
Abstract
Alkaline pretreated liquor (APL) from lignocellulosic feedstock pretreatment is a lignin-rich stream. Polyhydroxybutyrate (PHB), a biodegradable polymer, has been previously synthesized from APL. It is of interest to monitor PHB production and cell number from APL rapidly for process control. However, APL has insoluble substances and is dark, which makes quantitation of cells by visible light absorbance difficult. A sample preparation method was developed using Nile Red staining and flow cytometry to quantify bacterial cells and PHB concentration. A linear model with good fitness (R2 = 0.9939) was constructed to predict PHB concentration (0.2-2.1 g/L) based on fluorescence intensity acquired from a flow cytometer. A linear model (R2 = 0.8614) to predict cell number based on fluorescence intensity was also established. The good correlation between PHB concentration and fluorescence intensity indicates the potential of applying flow cytometry for quantitation of PHB from APL and other media that is dark and/or contains insoluble particles.
Collapse
Affiliation(s)
- Mengxing Li
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Statistics, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA
| | - Mark Wilkins
- Department of Biological Systems Engineering, The University of Nebraska-Lincoln, Lincoln, NE 68583, USA; Department of Food Science and Technology, University of Nebraska-Lincoln, Lincoln, NE 68588, USA; Industrial Agricultural Products Center, University of Nebraska-Lincoln, Lincoln, NE 68583, USA.
| |
Collapse
|
31
|
Shin SK, Ko YJ, Hyeon JE, Han SO. Studies of advanced lignin valorization based on various types of lignolytic enzymes and microbes. BIORESOURCE TECHNOLOGY 2019; 289:121728. [PMID: 31277889 DOI: 10.1016/j.biortech.2019.121728] [Citation(s) in RCA: 21] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2019] [Revised: 06/26/2019] [Accepted: 06/28/2019] [Indexed: 06/09/2023]
Abstract
Lignin is a robust material that is considered useless because it has an inhibitory effect on microbes and acts as a physical barrier for cellulose degradation. Therefore, it has been removed from cellulosic biomass to produce high-value materials. However, lignin monomers can be converted to value-added chemicals such as biodegradable plastics and food additives by appropriately engineered microbes. Lignin degradation through peroxidase, laccase and other proteins with auxiliary activity is the first step in lignin valorization. Metabolic engineering of microorganisms for increased tolerance and production yield is the second step for lignin valorization. Here, this review offers a summary of current biotechnologies using various enzymatic activities, synergistic enzyme mixtures and metabolic engineering for lignin valorization in biorefinery.
Collapse
Affiliation(s)
- Sang Kyu Shin
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Young Jin Ko
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea
| | - Jeong Eun Hyeon
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea; Department of Food Science and Biotechnology, College of Knowledge-Based Services Engineering, Sungshin Women's University, Seoul 01133, Republic of Korea; Department of Food and Nutrition, College of Health & Wellness, Sungshin Women's University, Seoul 01133, Republic of Korea
| | - Sung Ok Han
- Department of Biotechnology, Korea University, Seoul 02841, Republic of Korea.
| |
Collapse
|
32
|
Zhang X, Tang H, Chen G, Qiao L, Li J, Liu B, Liu Z, Li M, Liu X. Growth performance and nutritional profile of mealworms reared on corn stover, soybean meal, and distillers’ grains. Eur Food Res Technol 2019. [DOI: 10.1007/s00217-019-03336-7] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|