1
|
Winkler J, Neuner T, Hupfauf S, Arthofer A, Ebner C, Rauch W, Bockreis A. Impact of impeller design on anaerobic digestion: Assessment of mixing dynamics, methane yield, microbial communities and digestate dewaterability. BIORESOURCE TECHNOLOGY 2024; 406:131095. [PMID: 38986887 DOI: 10.1016/j.biortech.2024.131095] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2024] [Revised: 06/26/2024] [Accepted: 07/06/2024] [Indexed: 07/12/2024]
Abstract
The efficiency of anaerobic digestion (AD) processes is intricately tied to mixing quality. This research investigates the influence of two impeller types, namely a helical ribbon impeller (HRI) and a pitched-blade impeller (PBI), on key aspects of AD. The investigation encompassed mixing dynamics, methane production, microbial communities, and the previously unexplored impact on digestate dewaterability. Results show that agitation with the PBI exhibited stratification, with bottom layer total solids (TS) values of 3.1% for the PBI and 2.6% for the HRI. Nevertheless, methane yield remained unchanged, averaging 286 LN/kg volatile solids (VS)added. Slower mixing with the HRI achieved more uniform mixing and reduced energy requirements. Additionally, impeller type significantly affected digestate dewaterability, leading to a 3.8% increase in TS of the dewatered sludge when using the PBI. These findings highlight the importance of considering mixing not only for methane production and reduced maintenance but also for achieving optimal digestate dewaterability.
Collapse
Affiliation(s)
- Jacqueline Winkler
- Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria.
| | - Thomas Neuner
- MCI, The Entrepreneurial School, Maximilianstraße 2, 6020 Innsbruck, Austria.
| | - Sebastian Hupfauf
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria.
| | - Anna Arthofer
- Department of Microbiology, Universität Innsbruck, Technikerstraße 25d, A-6020 Innsbruck, Austria.
| | - Christian Ebner
- Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria.
| | - Wolfgang Rauch
- Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria.
| | - Anke Bockreis
- Department of Infrastructure, Universität Innsbruck, Technikerstraße 13, A-6020 Innsbruck, Austria.
| |
Collapse
|
2
|
Li Y, Chen Z, Peng Y, Huang W, Liu J, Mironov V, Zhang S. Deeper insights into the effects of substrate to inoculum ratio selection on the relationship of kinetic parameters, microbial communities, and key metabolic pathways during the anaerobic digestion of food waste. WATER RESEARCH 2022; 217:118440. [PMID: 35429887 DOI: 10.1016/j.watres.2022.118440] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 05/23/2023]
Abstract
The substrate to inoculum ratio (S/I) is a crucial factor that affects not only the stability of the anaerobic digestion (AD) of food waste (FW) but also the methanogenic capacity of the substrate. This is of great significance for the start-up of small-scale batch reactors and the directional regulation of methanogenesi and organic acid production. Most studies have merely clarified the optimal S/I ratio for methane production and revealed the basic composition of microbial communities. However, the mechanism of microbial interactions and the metabolic pathways behind the optimal S/I ratio still remain unclear. Herein, the effects of different S/I ratios (VS basis) on the relationship of kinetic parameters, microbial communities, and metabolic pathways during the AD process of FW were holistically explored. The results revealed that high S/I ratios (4:1, 3:1, 2:1, and 1:1) were prone to irreversible acidification, while low S/I ratios (1:2, 1:3, and 1:4) were favorable for methanogenesis. Moreover, a kinetic analysis demonstrated that the methane yield of S/I = 1:3 were the highest. A bioinformatics analysis found that the diversity of bacteria and archaea of S/I = 1:3 were the most abundant, and the enrichment of Bacteroides and Synergistetes could help to establish a syntrophic relationship with hydrogenotrophic methanogens, which could aid in the fulfillment of a unique niche in the system. In contrast to the findings with the other S/I ratios, the cooperation among microbes in S/I = 1:3 was more apparent. Notably, the abundances of genes encoding key enzymes involved in the methanogenesis pathway under S/I = 1:3 were all the highest. This knowledge will be helpful for revealing the influence mechanism of the ratio relationship between microorganisms and substrates on the biochemical metabolic process of anaerobic digestion, thereby providing effective guidance for the directional regulation of FW batch anaerobic reactors.
Collapse
Affiliation(s)
- Yanzeng Li
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Zhou Chen
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China; University of Chinese Academy of Science, Beijing 100049, China
| | - Yanyan Peng
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China
| | - Weizhao Huang
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Junxiao Liu
- Lianyijiyuan Environmental Protection Engineering Co. Ltd, Xiamen 361021, China
| | - Vladimir Mironov
- Winogradsky Institute of Microbiology, Research Center of Biotechnology, Russian Academy of Sciences, Moscow, Russia
| | - Shenghua Zhang
- Key Lab of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, China.
| |
Collapse
|
3
|
Qin S, Wainaina S, Liu H, Soufiani AM, Pandey A, Zhang Z, Awasthi MK, Taherzadeh MJ. Microbial dynamics during anaerobic digestion of sewage sludge combined with food waste at high organic loading rates in immersed membrane bioreactors. FUEL 2021; 303:121276. [DOI: 10.1016/j.fuel.2021.121276] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/20/2023]
|
4
|
Yang P, Peng Y, Tan H, Liu H, Wu D, Wang X, Li L, Peng X. Foaming mechanisms and control strategies during the anaerobic digestion of organic waste: A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 779:146531. [PMID: 34030228 DOI: 10.1016/j.scitotenv.2021.146531] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/25/2020] [Revised: 03/11/2021] [Accepted: 03/12/2021] [Indexed: 06/12/2023]
Abstract
Foaming is a problem that affects the efficient and stable operation of the anaerobic digestion process. Characterizing foaming mechanisms and developing early warning and foaming control methods is thus critically important. This review summarizes the correlation of process parameters, state parameters, and microbial communities with foaming in anaerobic digesters; discusses the applicability of the above-mentioned multi-scale parameters and foaming potential evaluation methods for the prediction of foaming risk; and introduces the principles and practical applications of antifoaming and defoaming methods. Multiple causes of foaming in anaerobic digestion systems have been identified, but a generalizable foaming mechanism has yet to be described. Further study of the correlation between extracellular polymeric substances and soluble microbial products and foaming may provide new insights into foaming mechanisms. Monitoring the foaming potential (including the volume expansion potential) is an effective approach for estimating the risk of foaming. An in-situ monitoring system for determining the foaming potential in anaerobic digestion sites could provide an early warning of foaming risk. Antifoaming methods based on operating parameter management and process regulation help prevent foaming from the source, and biological defoaming methods are highly targeted and efficient, which is a promising research direction. Clarifying foaming mechanisms will aid the development of active antifoaming methods and efficient biological defoaming methods.
Collapse
Affiliation(s)
- Pingjin Yang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Yun Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hanyue Tan
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Hengyi Liu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Di Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xiaoming Wang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Lei Li
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| | - Xuya Peng
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| |
Collapse
|
5
|
Jiang C, McIlroy SJ, Qi R, Petriglieri F, Yashiro E, Kondrotaite Z, Nielsen PH. Identification of microorganisms responsible for foam formation in mesophilic anaerobic digesters treating surplus activated sludge. WATER RESEARCH 2021; 191:116779. [PMID: 33401166 DOI: 10.1016/j.watres.2020.116779] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2020] [Revised: 12/06/2020] [Accepted: 12/20/2020] [Indexed: 06/12/2023]
Abstract
Foaming is a common operational problem in anaerobic digestion (AD) systems, where hydrophobic filamentous microorganisms are usually considered to be the major cause. However, little is known about the identity of foam-stabilising microorganisms in AD systems, and control measures are lacking. This study identified putative foam forming microorganisms in 13 full-scale mesophilic digesters located at 11 wastewater treatment plants in Denmark, using 16S rRNA gene amplicon sequencing with species-level resolution and fluorescence in situ hybridization (FISH) for visualization. A foaming potential aeration test was applied to classify the digester sludges according to their foaming propensity. A high foaming potential for sludges was linked to the abundance of species from the genus Candidatus Microthrix, immigrating with the feed stream (surplus activated sludge), but also to several novel phylotypes potentially growing in the digester. These species were classified to the genera Ca. Brevefilum (Ca. B. fermentans) and Tetrasphaera (midas_s_5), the families ST-12K33 (midas_s_22), and Rikenellaceae (midas_s_141), and the archaeal genus Methanospirillum (midas_s_2576). Application of FISH showed that these potential foam-forming organisms all had a filamentous morphology. Additionally, it was shown that concentrations of ammonium and total nitrogen correlated strongly to the presence of foam-formers. This study provided new insight into the identity of putative foam-forming microorganisms in mesophilic AD systems, allowing for the subsequent surveillance of their abundances and studies of their ecology. Such information will importantly inform the development of control measures for these problematic microorganisms.
Collapse
Affiliation(s)
- Chenjing Jiang
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Key Laboratory of Engineering Oceanography, Second Institute of Oceanography, SOA, Hangzhou, 310012, China
| | - Simon Jon McIlroy
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark; Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rong Qi
- State Key Laboratory of Environmental Aquatic Chemistry, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Beijing, 10085, China
| | - Francesca Petriglieri
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Erika Yashiro
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Zivile Kondrotaite
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark
| | - Per Halkjær Nielsen
- Center for Microbial Communities, Department of Chemistry and Bioscience, Aalborg University, 9220 Aalborg, Denmark.
| |
Collapse
|
6
|
Qi WK, Liu LF, Shi Q, Wang C, Li YY, Peng Y. Detailed composition evolution of food waste in an intermittent self-agitation anaerobic digestion baffled reactor. BIORESOURCE TECHNOLOGY 2021; 320:124342. [PMID: 33157439 DOI: 10.1016/j.biortech.2020.124342] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/23/2020] [Accepted: 10/24/2020] [Indexed: 06/11/2023]
Abstract
This study used an intermittent self-agitation anaerobic baffled reactor (SA-ABR) to treat food waste. The organic matter and detailed composition evolution were analyzed under continuous operation. The gas production rate was 2.43 ± 0.18 L-Gas/d/L-Re, and the biogas conversion was 0.94 L-Gas/g-TS. The effluent concentration of total chemical oxygen demand (COD) was 22.5 ± 2.44 g/L, and the removal rate of soluble COD was always over 97%. In this study, the removal rates of carbohydrate, protein, and lipids in the SA-ABR treatment were 95%, 60%, and 85%, respectively, and the concentrations were 0.11 g/L, 0.32 g/L, and 0.33 g/L, respectively. The conversion of soluble organic matter was much higher than that of insoluble substrates. The concentration of soluble pollutants was significantly lower than that of pollutants in suspended matter. The treatment of organic matter in the first half of the SA-ABR was 85-100% that of the entire reactor.
Collapse
Affiliation(s)
- Wei-Kang Qi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Li-Fang Liu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qi Shi
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Cong Wang
- Beijing Drainage Group Co., Ltd., Beijing 100044, China
| | - Yu-You Li
- Department of Civil and Environmental Engineering, Graduate School of Engineering, Tohoku University, 6-6-06 Aza-Aoba, Aramaki, Aoba-ku, Sendai 980-8579, Japan
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Key Laboratory of Beijing for Water Quality Science and Water Environment Recovery Engineering, Beijing University of Technology, Beijing 100124, China; Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
7
|
Performance of a Full-Scale Biogas Plant Operation in Greece and Its Impact on the Circular Economy. WATER 2020. [DOI: 10.3390/w12113074] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Abstract
Biogas plants have been started to expand recently in Greece and their positive contribution to the economy is evident. A typical case study is presented which focuses on the long-term monitoring (lasting for one year) of a 500 kW mesophilic biogas plant consisting of an one-stage digester. The main feedstock used was cow manure, supplemented occasionally with chicken manure, corn silage, wheat/ray silage, glycerine, cheese whey, molasses and olive mill wastewater. The mixture of the feedstocks was adjusted based on their availability, cost and biochemical methane potential. The organic loading rate (OLR) varied at 3.42 ± 0.23 kg COD m−3 day−1 (or 2.74 ± 0.18 kg VS m−3 day−1) and resulted in a stable performance in terms of specific biogas production rate (1.27 ± 0.12 m3 m−3 day−1), biogas yield (0.46 ± 0.05 m3 kg−1 VS, 55 ± 1.3% in methane) and electricity production rate (12687 ± 1140 kWh day−1). There were no problems of foaming, nor was there a need for trace metal addition. The digestate was used by the neighboring farmers who observed an improvement in their crop yield. The profit estimates per feedstock indicate that chicken manure is superior to the other feedstocks, while molasses, silages and glycerin result in less profit due to the long distance of the biogas plant from their production source. Finally, the greenhouse gas emissions due to the digestate storage in the open air seem to be minor (0.81% of the methane consumed).
Collapse
|
8
|
Nguyen LN, Commault AS, Kahlke T, Ralph PJ, Semblante GU, Johir MAH, Nghiem LD. Genome sequencing as a new window into the microbial community of membrane bioreactors - A critical review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 704:135279. [PMID: 31791792 DOI: 10.1016/j.scitotenv.2019.135279] [Citation(s) in RCA: 22] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/15/2019] [Revised: 10/27/2019] [Accepted: 10/28/2019] [Indexed: 06/10/2023]
Abstract
Recent developed sequencing techniques have resulted in a new and unprecedented way to study biological wastewater treatment, in which most organisms are uncultivable. This review provides (i) an insight on state-of-the-art sequencing techniques and their limitations; (ii) a critical assessment of the microbial community in biological reactor and biofouling layer in a membrane bioreactor (MBR). The data from high-throughput sequencing has been used to infer microbial growth conditions and metabolisms of microorganisms present in MBRs at the time of sampling. These data shed new insight to two fundamental questions about a microbial community in the MBR process namely the microbial composition (who are they?) and the functions of each specific microbial assemblage (what are their function?). The results to date also highlight the complexity of the microbial community growing on MBRs. Environmental conditions are dynamic and diverse, and can influence the diversity and structural dynamics of any given microbial community for wastewater treatment. The benefits of understanding the structure of microbial communities on three major aspects of the MBR process (i.e. nutrient removal, biofouling control, and micropollutant removal) were symmetrically delineated. This review also indicates that the deployment of microbial community analysis for a practical engineering context, in terms of process design and system optimization, can be further realized.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Tim Kahlke
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Peter J Ralph
- Climate Change Cluster (C3), University of Technology Sydney, NSW 2007, Australia
| | - Galilee U Semblante
- Technical Services, Western Sydney University, Kingswood, NSW 2747, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia
| | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|
9
|
Nguyen LN, Commault AS, Johir MAH, Bustamante H, Aurisch R, Lowrie R, Nghiem LD. Application of a novel molecular technique to characterise the effect of settling on microbial community composition of activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2019; 251:109594. [PMID: 31557668 DOI: 10.1016/j.jenvman.2019.109594] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/14/2019] [Revised: 09/04/2019] [Accepted: 09/16/2019] [Indexed: 06/10/2023]
Abstract
Activated sludge (AS) and return activated sludge (RAS) microbial communities from three full-scale municipal wastewater treatment plants (denoted plant A, B and C) were compared to assess the impact of sludge settling (i.e. gravity thickening in the clarifier) and profile microorganisms responsible for nutrient removal and reactor foaming. The results show that all three plants were dominated with microbes in the phyla of Proteobacteria, Bacteroidetes, Verrucomicrobia, Actinobacteria, Chloroflexi, Firmicutes, Nitrospirae, Spirochaetae, Acidobacteria and Saccharibacteria. AS and RAS shared above 80% similarity in the microbial community composition, indicating that sludge thickening does not significantly alter the microbial composition. Autotrophic and heterotrophic nitrifiers were present in the AS. However, the abundance of autotrophic nitrifiers was significantly lower than that of the heterotrophic nitrifiers. Thus, ammonium removal at these plants was achieved mostly by heterotrophic nitrification. Microbes that can cause foaming were at 3.2% abundance, and this result is well corroborated with occasional aerobic biological reactor foaming. By contrast, these microbes were not abundant (<2.1%) at plant A and C, where aerobic biological reactor foaming has not been reported.
Collapse
Affiliation(s)
- Luong N Nguyen
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia.
| | - Audrey S Commault
- Climate Change Cluster (C3), University of Technology Sydney, NSW, 2007, Australia
| | - Md Abu Hasan Johir
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia
| | | | | | | | - Long D Nghiem
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, NSW, 2007, Australia; NTT Institute of Hi-Technology, Nguyen Tat Thanh University, Ho Chi Minh City, Viet Nam
| |
Collapse
|