1
|
Kannah Ravi Y, Kavitha S, Al-Qaradawi SY, Rajesh Banu J. Dual disintegration of microalgae biomass for cost-effective biomethane production: Energy and cost assessment. BIORESOURCE TECHNOLOGY 2024; 399:130630. [PMID: 38522678 DOI: 10.1016/j.biortech.2024.130630] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/24/2023] [Revised: 03/04/2024] [Accepted: 03/21/2024] [Indexed: 03/26/2024]
Abstract
The present study aims to enhance the biomethane production potential of microalgae via a dual disintegration process. During this process, the microalgae biomass was firstly subjected to cell wall weakening by thermochemical disintegration (TC) (50 to 80 °C), pH adjustment with alkali, NaOH (6 to 10) and time (0 to 10 min) and, secondly, by bacterial disintegration (BD). TC-BD disintegration was comparatively higher (33 %) than BD (24 %), TC (8.5 %), and control (7 %). A more significant VFA accumulation of 2816 mg/L was recorded for TC-BD. Similarly, a greater substrate anaerobic biodegradability was achieved in TC-BD (0.32 g COD /g COD) than BD (0.21 g COD /g COD), TC alone (0.09 gCOD/g COD) and control (0.08 g COD /g COD), respectively. The TC-BD achieves a positive net profit and an energy ratio of + 0.12 GJ/d and 1.03. The proposed dual disintegration has a promising future for commercialization.
Collapse
Affiliation(s)
- Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100 Gliwice, Poland
| | - S Kavitha
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu 641021, India
| | - Siham Y Al-Qaradawi
- Department of Chemistry and Earth Sciences, College of Arts and Sciences, Qatar University, Doha P.O. Box 2713, Qatar
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India.
| |
Collapse
|
2
|
S K, Ravi YK, Kumar G, Kadapakkam Nandabalan Y, J RB. Microalgal biorefineries: Advancement in machine learning tools for sustainable biofuel production and value-added products recovery. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2024; 353:120135. [PMID: 38286068 DOI: 10.1016/j.jenvman.2024.120135] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2023] [Revised: 12/16/2023] [Accepted: 01/17/2024] [Indexed: 01/31/2024]
Abstract
The microalgae can be converted into biofuels, biochemicals, and bioactive compounds in a biorefinery. Recently, designing and executing more viable and sustainable biofuel production from microalgal biomass is one of the vital challenges in the development of biorefinery. Scalable cultivation of microalgae is mandatory for commercializing and industrializing the biorefinery. The intrinsic complication in cultivation of microalgae is the physiological and operational factors that renders challenging impact to enable a smooth and profitable operation. However, this aim can only be successful via a simulation prospect. Machine learning tools provides advanced approaches for evaluating, predicting, and controlling uncertainties in microalgal biorefinery for sustainable biofuel production. The present review provides a critical evaluation of the most progressing machine learning tools that validate a potential to be employed in microalgal biorefinery. These tools are highly potential for their extensive evaluation on microalgal screening and classification. However, the application of these tools for optimization of microalgal biomass cultivation in industries in order to increase the biomass production, is still in its initial stages. Integrated hybrid machine learning tools can aid the industries to function efficiently with least resources. Some of the challenges, and perspectives of machine learning tools are discussed. Besides, future prospects are also emphasized. Though, most of the research reports on machine learning tools are not appropriate to gather generalized information, standard protocols and strategies must be developed to design generalized machine learning tools. On a whole, this review offers a perspective information about digitalized microalgal exploitation in a microalgal biorefinery.
Collapse
Affiliation(s)
- Kavitha S
- Department of Biotechnology, Karpagam Academy of Higher Education, Coimbatore, Tamil Nadu, 641021, India
| | - Yukesh Kannah Ravi
- Centre for Organic and Nanohybrid Electronics, Silesian University of Technology, Konarskiego 22B, 44-100, Gliwice, Poland
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul, 03722, Republic of Korea; Institute of Chemistry, Bioscience and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, Box 8600 Forus, 4036 Stavanger, Norway
| | - Yogalakshmi Kadapakkam Nandabalan
- Department of Environmental Science and Technology, School of Environment and Earth Sciences, Central University of Punjab, VPO Ghudda, Bathinda, 151401, Punjab, India
| | - Rajesh Banu J
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, Tamil Nadu, India.
| |
Collapse
|
3
|
Jha P, Ghosh S, Panja A, Kumar V, Singh AK, Prasad R. Microalgae and biogas: a boon to energy sector. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-29135-y. [PMID: 37608163 DOI: 10.1007/s11356-023-29135-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2022] [Accepted: 07/30/2023] [Indexed: 08/24/2023]
Abstract
The global energy generation market immensely depends on fossil fuels which balances our survival on this planet. Energy can be called as the "master element" for our daily needs, starting from household power supply, agricultural purpose, automobile and transportation, industrial workload to economic and research domains. Fuel switching initiatives are being adapted by environmentalist and scientists to bring a novel sustainable source of energy. An environment and renewable alternative to fossil fuels are a must. Over the years, the world has shifted toward generating green fuels immensely. One such potential alternative to fossil fuels are biogases. Being versatile and renewable in nature, it has drawn immense attention globally. Despite having such potentials there exist some major drawbacks which mainly deal with the starting material. One such source for biogases can be microalgae. Microalgae based biogas production can produce huge amount of energy and that has been implemented by many foreign countries and their companies. Despite being in use in many countries, there are issues which needs to be addressed which will overall improve the biogas potential from microalgae even more. This review mainly focuses on generation of biogas from microalgae as a feedstock which are very economical and sustainable in its nature, presenting improvement strategies which can be impended to boost the over biogas sector globally.
Collapse
Affiliation(s)
- Priyanka Jha
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Department of Research Facilitation, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Snigdha Ghosh
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Avirup Panja
- Amity Institute of Biotechnology, Amity University, Major Arterial Road, New Town, Kolkata, West Bengal, 700135, India
| | - Vijay Kumar
- Department of Biotechnology, School of Bioengineering and Biosciences, Lovely Professional University, Phagwara, Punjab, 144411, India
- Plant Biotechnology Lab, Division of Research and Development, Lovely Professional University, Phagwara, Punjab, 144411, India
| | - Akhilesh Kumar Singh
- Department of Biotechnology, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India
| | - Ram Prasad
- Department of Botany, Mahatma Gandhi Central University, Belisarai, Motihari, Bihar, 845401, India.
| |
Collapse
|
4
|
Marangon BB, Magalhães IB, Pereira ASAP, Silva TA, Gama RCN, Ferreira J, Castro JS, Assis LR, Lorentz JF, Calijuri ML. Emerging microalgae-based biofuels: Technology, life-cycle and scale-up. CHEMOSPHERE 2023; 326:138447. [PMID: 36940833 DOI: 10.1016/j.chemosphere.2023.138447] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 02/23/2023] [Accepted: 03/17/2023] [Indexed: 06/18/2023]
Abstract
Microalgae biomass is a versatile feedstock with a variable composition that can be submitted to several conversion routes. Considering the increasing energy demand and the context of third-generation biofuels, algae can fulfill the increasing global demand for energy with the additional benefit of environmental impact mitigation. While biodiesel and biogas are widely consolidated and reviewed, emerging algal-based biofuels such as biohydrogen, biokerosene, and biomethane are cutting-edge technologies in earlier stages of development. In this context, the present study covers their theoretical and practical conversion technologies, environmental hotspots, and cost-effectiveness. Scaling-up considerations are also addressed, mainly through Life Cycle Assessment results and interpretation. Discussions on the current literature for each biofuel directs researchers towards challenges such as optimized pretreatment methods for biohydrogen and optimized catalyst for biokerosene, besides encouraging pilot and industrial scale studies for all biofuels. While presenting studies for larger scales, biomethane still needs continuous operation results to consolidate the technology further. Additionally, environmental improvements on all three routes are discussed in light of life-cycle models, highlighting the ample research opportunities on wastewater-grown microalgae biomass.
Collapse
Affiliation(s)
- B B Marangon
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - I B Magalhães
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - A S A P Pereira
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - T A Silva
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - R C N Gama
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J Ferreira
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J S Castro
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - L R Assis
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - J F Lorentz
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| | - M L Calijuri
- Department of Civil Engineering, Federal University of Viçosa (Universidade Federal de Viçosa/UFV), Av. Peter Henry Rolfs, S/n, Campus Universitário, Viçosa, Minas Gerais, 36570-900, Brazil.
| |
Collapse
|
5
|
Priya A, Naseem S, Pandey D, Bhowmick A, Attrah M, Dutta K, Rene ER, Suman SK, Daverey A. Innovative strategies in algal biomass pretreatment for biohydrogen production. BIORESOURCE TECHNOLOGY 2023; 369:128446. [PMID: 36473587 DOI: 10.1016/j.biortech.2022.128446] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/29/2022] [Accepted: 12/02/2022] [Indexed: 06/17/2023]
Abstract
Biohydrogen is one of the cleanest renewable energies with a high calorific value. Algal biomass can be utilized as a sustainable feedstock for biohydrogen production via dark fermentation. However, the recovery of fermentable sugar from algal biomass is challenging because of the diversity and complex cell wall composition and therefore, requires an additional pretreatment step. However, most of the conventional pretreatment strategies suffer from limited technological feasibility and poor economic viability. In this context, this review aims to present the structural complexities of the cell wall of algae and highlight the innovative approaches such as the use of hybrid technologies, biosurfactants, nanoparticles, and genetic engineering approaches for the hydrolysis of algal biomass and improved biohydrogen production. Additionally, a comprehensive discussion of the comparative evaluation of various pretreatment methods, and the techno-economic and life cycle assessment of algal biohydrogen production is also presented in this review.
Collapse
Affiliation(s)
- Anshu Priya
- School of Energy and Environment, City University of Hong Kong, Tat Chee Ave, Kowloon, Hong Kong
| | - Shifa Naseem
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Deepshikha Pandey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India
| | - Anisha Bhowmick
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Mustafa Attrah
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Kasturi Dutta
- Department of Biotechnology and Medical Engineering, National Institute of Technology Rourkela, Rourkela 769008, Odisha, India
| | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, the Netherlands
| | - Sunil Kumar Suman
- Material Resource Efficiency Division, CSIR-Indian Institute of Petroleum, Haridwar Road, Dehradun 248005, Uttarakhand, India
| | - Achlesh Daverey
- School of Environment and Natural Resources, Doon University, Dehradun 248012, Uttarakhand, India; School of Biological Sciences, Doon University, Dehradun, 248012, Uttarakhand, India.
| |
Collapse
|
6
|
Kavitha S, Gondi R, Kannah RY, Kumar G, Rajesh Banu J. A review on current advances in the energy and cost effective pretreatments of algal biomass: Enhancement in liquefaction and biofuel recovery. BIORESOURCE TECHNOLOGY 2023; 369:128383. [PMID: 36427767 DOI: 10.1016/j.biortech.2022.128383] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/29/2022] [Revised: 11/16/2022] [Accepted: 11/19/2022] [Indexed: 06/16/2023]
Abstract
The main downside of utilizing algal biomass for biofuel production is the rigid cell wall which confines the availability of soluble organics to hydrolytic microbes during biofuel conversion. This constraint reduces the biofuel production efficiency of algal biomass. On the other hand, presenting various pretreatment methods before biofuel production affords cell wall disintegration and enhancement in biofuel generation. The potential of pretreatment methods chiefly relies on the extent of biomass liquefaction, energy, and cost demand. In this review, different pretreatments employed to disintegrate algal biomass were conferred in depth with detailed information on their efficiency in enhancing liquefaction and biofuel yield for pilot-scale implementation. Based on this review, it has been concluded that combinative and phase-separated pretreatments provide virtual input in enhancing the biofuel generation based on liquefaction potential, energy, and cost. Future studies should focus on decrement in cost and energy requirement of pretreatment in depth.
Collapse
Affiliation(s)
- S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu, India
| | - Rashmi Gondi
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu - 610005, India
| | - R Yukesh Kannah
- Department of Environmental and Sustainable Engineering, University at Albany, State University of New York, 1400 Washington Avenue, Albany, New York 12222, United States of America
| | - Gopalakrishnan Kumar
- Institute of Chemistry, Bioscience, and Environmental Engineering, Faculty of Science and Technology, University of Stavanger, PO Box 8600 Forus, 4036 Stavanger, Norway; School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Biotechnology, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu - 610005, India.
| |
Collapse
|
7
|
Oraby S, Hegazy MI, Labeeb HM, Mahdy A. Iron oxide nanoparticle-based pretreatment for simultaneous elevated hydrolysis efficiency and methanization augmentation of Chlorella vulgaris biomass. ALGAL RES 2023. [DOI: 10.1016/j.algal.2023.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
8
|
Tijjani Usman IM, Ho YC, Baloo L, Lam MK, Sujarwo W. A comprehensive review on the advances of bioproducts from biomass towards meeting net zero carbon emissions (NZCE). BIORESOURCE TECHNOLOGY 2022; 366:128167. [PMID: 36341858 DOI: 10.1016/j.biortech.2022.128167] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/13/2022] [Accepted: 10/17/2022] [Indexed: 06/16/2023]
Abstract
This review investigates the development of bioproducts from biomass and their contribution towards net zero carbon emissions. The promising future of biomasses conversion techniques to produce bioproducts was reviewed. The advances in anaerobic digestion as a biochemical conversion technique have been critically studied and contribute towards carbon emissions mitigation. Different applications of microalgae biomass towards carbon neutrality were comprehensively discussed, and several research findings have been tabulated in this review. The carbon footprints of wastewater treatment plants were studied, and bioenergy utilisation from sludge production was shown to mitigate carbon footprints. The carbon-sinking capability of microalgae has also been outlined. Furthermore, integrated conversion processes have shown to enhance bioproducts generation yield and quality. The anaerobic digestion/pyrolysis integrated process was promising, and potential substrates have been suggested for future research. Lastly, challenges and future perspectives of bioproducts were outlined for a contribution towards meeting carbon neutrality.
Collapse
Affiliation(s)
- Ibrahim Muntaqa Tijjani Usman
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia; Agricultural and Environmental Engineering Department, Faculty of Engineering, Bayero University Kano, Kano 700241, Nigeria.
| | - Yeek-Chia Ho
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Lavania Baloo
- Centre for Urban Resource Sustainability, Institute of Self-Sustainable Building, Civil and Environmental Engineering Department, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Man-Kee Lam
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Department of Chemical Engineering, Universiti Teknologi PETRONAS, Seri Iskandar, Perak Darul Ridzuan 32610, Malaysia.
| | - Wawan Sujarwo
- Ethnobotany Research Group, Research Center for Ecology and Ethnobiology, National Research and Innovation Agency (BRIN), Cibinong, Bogor 16911, Indonesia.
| |
Collapse
|
9
|
Lee JS, Sung YJ, Sim SJ. Kinetic analysis of microalgae cultivation utilizing 3D-printed real-time monitoring system reveals potential of biological CO 2 conversion. BIORESOURCE TECHNOLOGY 2022; 364:128014. [PMID: 36155817 DOI: 10.1016/j.biortech.2022.128014] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Revised: 09/16/2022] [Accepted: 09/17/2022] [Indexed: 06/16/2023]
Abstract
The microalgae-based bioconversion process is a promising carbon utilization technology because it can upgrade CO2 into valuable substances, but a multiplex monitoring system required for process control to maximize biomass productivity has not been well established. Herein, a 3D printed real-time optical density monitoring device (RTOMD) combined platform was presented. This platform enables precise kinetics analysis by maintaining high accuracy (over 95 %) under raucous outdoor conditions. Through RTOMD-based high-frequency measurements, it was observed that maximum biomass productivity of 4.497 g L-1 d-1 was reached, which greatly exceeds the requirements for a feasible microalgae process. We discovered that the CO2 fixation efficiency could be achieved to 70.75 %, indicating the potential of a bioconversion process to realize a carbon-neutral society. Consequently, the RTOMD system can contribute to promoting microalgae cultivation as an attractive carbon mitigation technology based on an improved understanding of the photosynthetic CO2 fixation kinetics.
Collapse
Affiliation(s)
- Jeong Seop Lee
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea
| | - Young Joon Sung
- Department of Chemical and Biological Engineering, Sookmyung Women's University, 100 Cheongpa-ro 47-gil, Yongsan-gu, Seoul, Republic of Korea
| | - Sang Jun Sim
- Department of Chemical and Biological Engineering, Korea University, 145, Anam-ro, Seongbuk-gu, Seoul 02841, Republic of Korea.
| |
Collapse
|
10
|
Khan SZ, Zaidi AA, Naseer MN, AlMohamadi H. Nanomaterials for biogas augmentation towards renewable and sustainable energy production: A critical review. Front Bioeng Biotechnol 2022; 10:868454. [PMID: 36118570 PMCID: PMC9478561 DOI: 10.3389/fbioe.2022.868454] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2022] [Accepted: 07/26/2022] [Indexed: 11/22/2022] Open
Abstract
Nanotechnology is considered one of the most significant advancements in science and technology over the last few decades. However, the contemporary use of nanomaterials in bioenergy production is very deficient. This study evaluates the application of nanomaterials for biogas production from different kinds of waste. A state-of-the-art comprehensive review is carried out to elaborate on the deployment of different categories of nano-additives (metal oxides, zero-valent metals, various compounds, carbon-based nanomaterials, nano-composites, and nano-ash) in several kinds of biodegradable waste, including cattle manure, wastewater sludge, municipal solid waste, lake sediments, and sanitary landfills. This study discusses the pros and cons of nano-additives on biogas production from the anaerobic digestion process. Several all-inclusive tables are presented to appraise the literature on different nanomaterials used for biogas production from biomass. Future perspectives to increase biogas production via nano-additives are presented, and the conclusion is drawn on the productivity of biogas based on various nanomaterials. A qualitative review of relevant literature published in the last 50 years is conducted using the bibliometric technique for the first time in literature. About 14,000 research articles are included in this analysis, indexed on the Web of Science. The analysis revealed that the last decade (2010–20) was the golden era for biogas literature, as 84.4% of total publications were published in this timeline. Moreover, it was observed that nanomaterials had revolutionized the field of anaerobic digestion, methane production, and waste activated sludge; and are currently the central pivot of the research community. The toxicity of nanomaterials adversely affects anaerobic bacteria; therefore, using bioactive nanomaterials is emerging as the best alternative. Conducting optimization studies by varying substrate and nanomaterials’ size, concentration and shape is still a field. Furthermore, collecting and disposing nanomaterials at the end of the anaerobic process is a critical environmental challenge to technology implementation that needs to be addressed before the nanomaterials assisted anaerobic process could pave its path to the large-scale industrial sector.
Collapse
Affiliation(s)
- Sohaib Z. Khan
- Department of Mechanical Engineering, Faculty of Engineering, Islamic University of Madina, Madinah, Saudi Arabia
- *Correspondence: Sohaib Z. Khan,
| | - Asad A. Zaidi
- Department of Mechanical Engineering, Faculty of Engineering Science and Technology, Hamdard University, Karachi, Pakistan
| | - Muhammad Nihal Naseer
- Department of Engineering Sciences, PN Engineering College, National University of Sciences and Technology, Karachi, Pakistan
| | - Hamad AlMohamadi
- Department of Chemical Engineering, Faculty of Engineering, Islamic University of Madinah, Madinah, Saudi Arabia
| |
Collapse
|
11
|
Banu J R, Varjani S, P S, Tyagi VK, Gunasekaran M. Breakthrough in hydrolysis of waste biomass by physico-chemical pretreatment processes for efficient anaerobic digestion. CHEMOSPHERE 2022; 294:133617. [PMID: 35041820 DOI: 10.1016/j.chemosphere.2022.133617] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2021] [Revised: 12/19/2021] [Accepted: 01/11/2022] [Indexed: 06/14/2023]
Abstract
Anaerobic digestion (AD) is the most comprehended process to stabilise the waste biomass efficiently and to obtain bioenergy. The AD starts with the hydrolysis process, where the major liability is the action of inhibitors during the hydrolysis process. The biomass pretreatment preceding anaerobic digestion is obligatory to improve feedstock biodegradability for enhanced biogas generation. It can be prevailed by the application of various pretreatment processes. This review explains the major inhibiting compounds and their formation during hydrolysis that affect the efficiency of anaerobic digestion and the benefits of the physico-chemical pretreatment (PCP) method for enhancing hydrolysis in the digestion of waste biomass. The synergistic effect of PCP on macromolecular release, liquefaction and biodegradability were presented. The feasibility of the pretreatment process was evaluated in terms of energy and cost assessment for pilot scale implementation. The outcome of this review reveals that the physico-chemical process is one of the best pretreatment methods to enhance anaerobic digestion by optimising various parameters and increasing the solubilization by about 90%. The thermochemical pretreatment at lower temperature (<100) increases the net energy yield. The solubilization of waste biomass in terms of macromolecular release and liquefaction cannot describe the pretreatment potential. The effectiveness of pretreatment was evaluated by the substrate pre-treatment followed by anaerobic digestibility of pretreated substrate.
Collapse
Affiliation(s)
- Rajesh Banu J
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, 610005, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat, 382010, India
| | - Sivashanmugam P
- Department of Chemical Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu, India
| | - Vinay Kumar Tyagi
- Environmental BioTechnology Group (EBiTG), Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, 247667, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu, 627007, India.
| |
Collapse
|
12
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Varjani S, Gunasekaran M. Mild hydrogen peroxide interceded bacterial disintegration of waste activated sludge for efficient biomethane production. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 817:152873. [PMID: 34998769 DOI: 10.1016/j.scitotenv.2021.152873] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2021] [Revised: 12/27/2021] [Accepted: 12/29/2021] [Indexed: 06/14/2023]
Abstract
Regardless of the issue of sludge management all over the world, the role of phase separated pretreatment prior to anaerobic digestion are more promising in terms of energy efficient biomethane production. However, the effect of phase separated pretreatment (dissociation of extracellular polymeric substances (EPS) followed by biological pretreatment in a two-step process) must be sensibly evaluated from various perceptions to consolidate its effectiveness in sludge management and bioenergy recovery. In this study, mild hydrogen peroxide induced bacterial pretreatment (H2O2-BP) was employed as phase separated pretreatment to investigate the effectiveness of EPS dissociation prior to biological pretreatment on sludge solubilization and biomethanation. The novelty of this study is the application of mild dosage of hydrogen peroxide at sludge pH for the removal of EPS layer with lesser formation of recalcitrant substances which thereby enhances the disintegration by enzyme secreting bacterial and methane generation. The outcome confirmed that the higher EPS dissociation was achieved at H2O2 dosage of 8 μL per 100 mL of sludge with negligible cell lysis. An extractable EPS of 172.8 mg/L was obtained after H2O2 treatment. The higher sCOD solubilization of 22% and the suspended solid reduction of 17.14% were achieved in hydrogen peroxide followed by bacterial pretreatment (H2O2-BP) as compared to of bacterial pretreatment alone (BP) (solubilization-11% and suspended solids reduction-9.3%) and control (C) sludges (solubilization-5% and suspended solids reduction-4.3%). The methane generation for H2O2-BP sludge is 0.174 L/gCOD which is higher than BP (0.078 L/gCOD,) and C sludge (0.02175 L/gCOD). A higher biomass solubilization and increased biomethanation in H2O2-BP revealed that dissociation of EPS prior to bacterial pretreatment increases the surface area for bacterial pretreatment facilitating easier accessibility of substrate and enhanced biomethanation.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur 610005, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India; Department of Civil Engineering, National Institute of Technology, Tiruchirapalli, Tamil Nadu 620015, India
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - M Gunasekaran
- Department of Physics, Anna University Regional Campus, Tirunelveli, Tamil Nadu 627007, India.
| |
Collapse
|
13
|
A Review of Trends in the Energy Use of Biomass: The Case of the Dominican Republic. SUSTAINABILITY 2022. [DOI: 10.3390/su14073868] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
Abstract
This review examines the use of residual biomass as a renewable resource for energy generation in the Dominican Republic. The odology includes a thorough examination of scientific publications in recent years about logistics operations. The use of mathematical models can be beneficial for the selection of areas with a high number of residual biomass and processing centers; for the design of feedstock allocation; for the planning and selection of the mode of transport; and for the optimization of the supply chain, logistics, cost estimation, availability of resources, energy efficiency, economic performance, and environmental impact assessment. It is also essential to consider the exhaustive analysis of the most viable technological solutions among the conversion processes, in order to guarantee the minimum emissions of polluting or greenhouse gases. In addition, this document provides a critical review of the most relevant challenges that are currently facing logistics linked to the assessment of biomass in the Dominican Republic, with a straightforward approach to the complementarity and integration of non-manageable renewable energy sources.
Collapse
|
14
|
Gondi R, Kavitha S, Yukesh Kannah R, Parthiba Karthikeyan O, Kumar G, Kumar Tyagi V, Rajesh Banu J. Algal-based system for removal of emerging pollutants from wastewater: A review. BIORESOURCE TECHNOLOGY 2022; 344:126245. [PMID: 34743994 DOI: 10.1016/j.biortech.2021.126245] [Citation(s) in RCA: 45] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/31/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
The bioremediation of emerging pollutants in wastewater via algal biotechnology has been emerging as a cost-effective and low-energy input technological solution. However, the algal bioremediation technology is still not fully developed at a commercial level. The development of different technologies and new strategies to cater specific needs have been studied. The existence of multiple emerging pollutants and the selection of microalgal species is a major concern. The rate of algal bioremediation is influenced by various factors, including accidental contaminations and operational conditions in the pilot-scale studies. Algal-bioremediation can be combined with existing treatment technologies for efficient removal of emerging pollutants from wastewater. This review mainly focuses on algal-bioremediation systems for wastewater treatment and pollutant removal, the impact of emerging pollutants in the environment, selection of potential microalgal species, mechanisms involved, and challenges in removing emerging pollutants using algal-bioremediation systems.
Collapse
Affiliation(s)
- Rashmi Gondi
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - R Yukesh Kannah
- Department of Civil Engineering, National Institute of Technology Tiruchirappalli, Tiruchirappalli, Tamil Nadu, India
| | - Obulisamy Parthiba Karthikeyan
- Department of Engineering Technology, College of Technology, University of Houston, Houston, TX, USA; Department of Civil and Environmental Engineering, South Dakota School of Mines and Technology, Rapid City, SD, USA
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Vinay Kumar Tyagi
- Department of Civil Engineering, Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, India
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
15
|
Bibi M, Zhu X, Munir M, Angelidaki I. Bioavailability and effect of α-Fe 2O 3 nanoparticles on growth, fatty acid composition and morphological indices of Chlorella vulgaris. CHEMOSPHERE 2021; 282:131044. [PMID: 34470146 DOI: 10.1016/j.chemosphere.2021.131044] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/26/2021] [Accepted: 05/27/2021] [Indexed: 06/13/2023]
Abstract
The wide application of α-Fe2O3 nanoparticles (NPs) in different fields has resulted in release and accumulation of these materials into the aquatic ecosystem. Therefore, it is important to understand the potential impact of these NPs on aquatic organisms especially primary producers i.e., microalgae. Present study aimed to investigate the bioavailability and the effect of α-Fe2O3 NPs on growth of iron deprived cells of Chlorella vulgaris. Results showed that α-Fe2O3 NPs are not available as iron source to support the growth of C. vulgaris. Moreover,α-Fe2O3 NPs induced stress condition to C. vulgaris, which were reflected in its growth rates, total lipid contents, fatty acid profile and cell morphology. Specifically, low concentrations of α-Fe2O3 NPs (0.1, 0.5, 2.5, 5, 10 mg/L) showed similar growth profile and total lipid contents at both exponential and stationary growth phases. At 50 and 100 mg/L α-Fe2O3 NPs concentrations biomass reduced by 41.2% and 83.7% whereas total lipid contents increased by 39.7% and 25.5% respectively at exponential growth phase along with reduction in fatty acids. The results illustrated novel insights into the microalgal interaction with nanoparticles, providing fundamental knowledge for the development of future microalgae ecology and cultivation technology.
Collapse
Affiliation(s)
- Muhammadi Bibi
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark; Department of Botany, Pir Mehr Ali Shah Arid Agriculture University, Rawalpindi, Pakistan.
| | - Xinyu Zhu
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark.
| | - Mubashrah Munir
- Department of Biological Sciences, University of Veterinary and Animal Sciences, Ravi Campus, Pattoki, Pakistan.
| | - Irini Angelidaki
- Department of Chemical and Biochemical Engineering, Technical University of Denmark, 2800, Kgs. Lyngby, Denmark
| |
Collapse
|
16
|
Yukesh Kannah R, Kavitha S, Parthiba Karthikeyan O, Rene ER, Kumar G, Rajesh Banu J. A review on anaerobic digestion of energy and cost effective microalgae pretreatment for biogas production. BIORESOURCE TECHNOLOGY 2021; 332:125055. [PMID: 33813179 DOI: 10.1016/j.biortech.2021.125055] [Citation(s) in RCA: 20] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Revised: 03/19/2021] [Accepted: 03/20/2021] [Indexed: 06/12/2023]
Abstract
Microalgae is considered as a renewable and sustainable biomass to produce bioenergy and other high-value products. Besides, the cultivation of microalgae does not need any fertile land and it provides opportunities for climate change mitigation by sequestering atmospheric carbon-dioxide (CO2), facilitating nutrient recovery from wastewater and regulating industrial pollutions/emissions. Algal biomass harvested from different technologies are unique in their physio-chemical properties that require critical understanding prior to value-addition or bioenergy recovery. In this review, we elaborate the importance of cell wall weakening followed by pretreatment as a key process step and strategy to reduce the energy cost of converting algal biomass into bioenergy. From the energy-calculations, it was measured that the cell wall weakening significantly improves the net-energy ratio from 0.68 to 1.02. This approach could be integrated with any pre-treatment options, while it reduces the time of pre-treatment and costs of energy/chemicals required for hydrolysis of algal biomass.
Collapse
Affiliation(s)
- R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, Tamil Nadu, India
| | | | - Eldon R Rene
- Department of Water Supply, Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest 7, 2601DA Delft, The Netherlands
| | - Gopalakrishnan Kumar
- School of Civil and Environmental Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu, India.
| |
Collapse
|
17
|
Rana MS, Bhushan S, Prajapati SK. New insights on improved growth and biogas production potential of Chlorella pyrenoidosa through intermittent iron oxide nanoparticle supplementation. Sci Rep 2020; 10:14119. [PMID: 32839563 PMCID: PMC7445271 DOI: 10.1038/s41598-020-71141-4] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2020] [Accepted: 08/11/2020] [Indexed: 12/12/2022] Open
Abstract
In the present work, the effect of α-Fe2O3-nanoparticles (IONPs) supplementation at varying doses (0, 10, 20 and, 30 mg L-1) at the intermittent stage (after 12th day of growth period) was studied on the growth and biogas production potential of Chlorella pyrenoidosa. Significant enhancements in microalgae growth were observed with all the tested IONPs doses, the highest (2.94 ± 0.01 g L-1) being at 20 mg L-1. Consequently, the composition of the biomass was also improved. Based on the precedent determinations, theoretical chemical oxygen demand (CODth) as well as theoretical and stoichiometric methane potential (TMP, and SMP) were also estimated. The CODth, TMP, SMP values indicated IONPs efficacy for improving biogas productivity. Further, the biochemical methane potential (BMP) test was done for IONPs supplemented biomass. The BMP test revealed up to a 25.14% rise in biogas yield (605 mL g-1 VSfed) with 22.4% enhanced methane content for 30 mg L-1 IONPs supplemented biomass over control. Overall, at 30 mg L-1 IONPs supplementation, the cumulative enhancements in biomass, biogas, and methane content proffered a net rise of 98.63% in biomethane potential (≈ 2.86 × 104 m3 ha-1 year-1) compared to control. These findings reveal the potential of IONPs in improving microalgal biogas production.
Collapse
Affiliation(s)
- Mohit Singh Rana
- Enviroment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India
| | - Shashi Bhushan
- Enviroment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.,Department of Agricultural and Biosystems Engineering, North Dakota State University, Fargo, ND, 58102, USA
| | - Sanjeev Kumar Prajapati
- Enviroment and Biofuel Research Laboratory, Department of Hydro and Renewable Energy (HRED), Indian Institute of Technology Roorkee, Roorkee, Uttarakhand, 247667, India.
| |
Collapse
|
18
|
Almomani F. Algal cells harvesting using cost-effective magnetic nano-particles. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 720:137621. [PMID: 32146403 DOI: 10.1016/j.scitotenv.2020.137621] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/13/2019] [Revised: 02/27/2020] [Accepted: 02/27/2020] [Indexed: 06/10/2023]
Abstract
Innovative iron-based nanoparticles were synthesized, characterized and tested for the first time for harvesting single and mixed algal culture from real wastewater. The tailor-made magnetic nanoparticles (MNPs; Fe-MNP-I and Fe-MNP-II) achieved a percentage algae harvesting efficiency (%AHE) higher than 95% using a concentration of MNPs (CMNP) of 25 ± 0.3 (std. dev = 0.08) mg.L-1, mixing speed (Mspeed) of 120 ± 2 (std. dev = 0.10) rpm, short contact time (Ct) of 7 ± 0.1 (std. dev = 0.05) min and separation time (SPt) of 3 ± 0.1 (std. dev = 0.09) min. The optimum operational conditions for harvesting of Chlorella vulgaris (C.v) were determined at (CMNP = 40 ± 0.4 (std. dev = 0.5) gMNPs.L-1, SPt = 2.5 ± 0.4 (std. dev = 0.1) min, Mspeed = 145 ± 3 (std. dev = 1.50) rpm and Ct = 5 ± 0.3 (std. dev = 0.10) min using surface response methodology. Langmuir model describes better the adsorption behavior of algae-Fe-MNP-I system, while both Langmuir and Freundlich fit well the adsorption behavior of algae-Fe-MNP-II. The maximum adsorption capacity of Spirulina platensis (SP.PL) (18.27 ± 0.07 (std. dev = 0.19) mgDWC.mgparticles-1) was higher than that for Chlorella vulgaris (C.v) (11.52 ± 0.01 (std. dev = 0.34) mgDWC.mgparticles-1) and mixed algal culture (M.X) (17.20 ± 0.07 (std. dev = 0.54) mgDWC.mgparticles-1) over Fe-MNP-I. Zeta potential measurements revealed that the adsorption mechanism between MNPs and algal strains is controlled by electrostatic interaction. The synthesized MNPs were recycled 10 times using alkaline-ultrasonic regeneration procedure.
Collapse
Affiliation(s)
- Fares Almomani
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box 2713, Doha, Qatar.
| |
Collapse
|
19
|
Rajesh Banu J, Yukesh Kannah R, Kavitha S, Ashikvivek A, Bhosale RR, Kumar G. Cost effective biomethanation via surfactant coupled ultrasonic liquefaction of mixed microalgal biomass harvested from open raceway pond. BIORESOURCE TECHNOLOGY 2020; 304:123021. [PMID: 32086031 DOI: 10.1016/j.biortech.2020.123021] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 02/08/2020] [Accepted: 02/10/2020] [Indexed: 05/16/2023]
Abstract
The present study aimed to enhance the biomethanation potential of mixed microalgae via cost effective surfactant coupled ultrasonic homogenization (SCUH). Mixed microalgae biomass was harvested using a coagulant (Alum) from a raceway pond. The harvested algal biomass was subjected to ultrasonic homogenization (UH) by varying the power from 100 to 180 W. A maximal soluble organic release of 2131 mg/L was achieved at an ultrasonic input energy (UIE) of 25200 kJ/kg TS. In order to enhance soluble organic release and to reduce energy spent, the optimized condition of ultrasonic pretreatment was coupled with varying sodium dodecyl sulphate (SDS) dosage. A higher solubilization of 30.5% was achieved at a UIE of 4200 kJ/kg SS with surfactant dosage of 0.02 g SDS/g SS for SCUH. SCUH showed higher methane production of 358 mL/g COD when compared to UH (185.9 mL/g COD), SCUH was economically feasible than UH.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, Neelakudi, Thiruvarur, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - A Ashikvivek
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Rahul R Bhosale
- Department of Chemical Engineering, College of Engineering, Qatar University, P.O. Box - 2713, Doha, Qatar
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
20
|
Banu JR, Kavitha S, Kannah RY, Usman TMM, Kumar G. Application of chemo thermal coupled sonic homogenization of marine macroalgal biomass for energy efficient volatile fatty acid recovery. BIORESOURCE TECHNOLOGY 2020; 303:122951. [PMID: 32058908 DOI: 10.1016/j.biortech.2020.122951] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2019] [Revised: 01/30/2020] [Accepted: 02/01/2020] [Indexed: 06/10/2023]
Abstract
The present study aimed to employ energy efficient chemo thermal coupled sonic homogenization (CTSH) to obtain VFA from marine macroalgal hydrolysate, (Ulva fasciata). At first, chemo thermal homogenization (CTH) was applied on macroalgal biomass by adjusting the temperature, pH and treatment time from 60 to 90 ℃, 4-7 and 0-60 min, respectively. A higher organic matter solubilisation of 11.81% was obtained at an optimum pH of 6 at a temperature of 80 ℃ with 40 min of homogenization time. The results of CTSH implied that a higher organic matter solubilization of 26.4% was achieved by combined CTSH (sonic power & treatment time - 140 W & 14 min treatment time). CTSH considerably doubles the liquefaction in comparison with CTH. Based on OMS grouping, achieving 25% was sufficient for VFA production (2172.09 mg/L) and considered as economically feasible with net cost of 97.17 USD/ton of macroalgae.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Life Sciences, Central University of Tamil Nadu, CUTN Bridge, Neelakudy, Tamil Nadu 610005, India; Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - T M Mohamed Usman
- Department of Civil Engineering, Anna University Regional Campus Tirunelveli, India
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
21
|
Rajesh Banu J, Kavitha S, Yukesh Kannah R, Dinesh Kumar M, Atabani AE, Kumar G. Biorefinery of spent coffee grounds waste: Viable pathway towards circular bioeconomy. BIORESOURCE TECHNOLOGY 2020; 302:122821. [PMID: 32008862 DOI: 10.1016/j.biortech.2020.122821] [Citation(s) in RCA: 20] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/30/2019] [Revised: 01/11/2020] [Accepted: 01/13/2020] [Indexed: 06/10/2023]
Abstract
The circular bioeconomy plan is an innovative research based scheme intended for augmenting the complete utilization and management of bio-based resources in a sustainable biorefinery route. Spent coffee grounds based biorefinery is the emerging aspect promoting circular bioeconomy. The sustainable circular bioeconomy by utilizing SCG is achieved by cascade approaches and the inclusion of many biorefinery approaches to obtain many bio-products. The maximum energy recovery can be obtained by process integration. The economic analysis of the biofuel production from SCG is dependent on the cost of raw material, transportation, the need of labor and energy, oil extraction operations and biofuel production. The inclusion of new products from already established product can minimize the investment cost when related to the production cost. A positive net present value can be achieved via SCG biorefinery which indicates the profitability of the process.
Collapse
Affiliation(s)
- J Rajesh Banu
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - S Kavitha
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - R Yukesh Kannah
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - M Dinesh Kumar
- Department of Civil Engineering, Anna University Regional Campus, Tirunelveli, India
| | - A E Atabani
- Alternative Fuels Research Laboratory (AFRL), Energy Division, Department of Mechanical Engineering, Faculty of Engineering, Erciyes University, Kayseri 38039, Turkey
| | - Gopalakrishnan Kumar
- Green Processing, Bioremediation and Alternative Energies Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Viet Nam.
| |
Collapse
|
22
|
Lee YJ, Lee DJ. Impact of adding metal nanoparticles on anaerobic digestion performance - A review. BIORESOURCE TECHNOLOGY 2019; 292:121926. [PMID: 31409520 DOI: 10.1016/j.biortech.2019.121926] [Citation(s) in RCA: 36] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/29/2019] [Revised: 07/25/2019] [Accepted: 07/27/2019] [Indexed: 06/10/2023]
Abstract
Anaerobic digestion is the most widely adopted biological waste treatment processes with renewable energy production. The effects of adding metal nanoparticles (NPs) on improving digestion performance are well noted. This paper reviewed the traditional view on the cytotoxicity of NPs to living organisms and the contemporary view of mechanisms for enhancement in anaerobic digestion performance in the presence of metal NPs. The complicated interactions acquire further studies for comprehending the physical and chemical interactions of metal NPs to the constituent compounds and to the living cells, and the involvement of mechanisms such as direct interspecies electron transfer for better design and control of the "NP strategy" for anaerobic digestion performance enhancement.
Collapse
Affiliation(s)
- Yu-Jen Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei 10617, Taiwan; Department of Chemical Engineering, National Taiwan University of Science and Technology, Taipei 10607, Taiwan; College of Technology and Engineering, National Taiwan Normal University, Taipei 10610, Taiwan.
| |
Collapse
|
23
|
Panigrahi S, Dubey BK. Electrochemical pretreatment of yard waste to improve biogas production: Understanding the mechanism of delignification, and energy balance. BIORESOURCE TECHNOLOGY 2019; 292:121958. [PMID: 31408777 DOI: 10.1016/j.biortech.2019.121958] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2019] [Revised: 08/01/2019] [Accepted: 08/04/2019] [Indexed: 06/10/2023]
Abstract
In the present study, electrochemical pretreatment with a pair of graphite electrode was conducted to pretreat yard waste prior to anaerobic digestion. The Response Surface Methodology was employed to optimize the pretreatment conditions. To determine the mechanism of delignification physical and chemical properties of untreated and pretreated yard waste were investigated. In the subsequent anaerobic digestion of pretreated yard waste, the ultimate biogas production of 446 mL/g VS was achieved in comparison to the untreated yard waste of 287 mL/g VS on 35th day of anaerobic digestion. A net energy gain of 4.75 kJ/g VS (Output energy of 5.73 kJ/g VS - Input energy of 0.98 kJ/g VS) and net profit of 518 rupees (US$ 7.4) per 1 ton of yard waste indicates the applicability of electrochemical pretreatment for pilot scale.
Collapse
Affiliation(s)
- Sagarika Panigrahi
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India
| | - Brajesh Kumar Dubey
- Department of Civil Engineering, Indian Institute of Technology Kharagpur, Kharagpur, West Bengal 721302, India.
| |
Collapse
|