1
|
Yin D, Zhong Y, Hu J. Microbial polysaccharides biosynthesis and their regulatory strategies. Int J Biol Macromol 2025:143013. [PMID: 40220805 DOI: 10.1016/j.ijbiomac.2025.143013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2024] [Revised: 03/29/2025] [Accepted: 04/08/2025] [Indexed: 04/14/2025]
Abstract
Microbial polysaccharides hold significant potential for various applications, including food, cosmetics, petroleum, and pharmaceuticals. A deeper understanding of their biosynthetic pathways and regulatory strategies is crucial for enhancing production efficiency and reducing associated costs. To summarize synthetic biological modification strategies for microbial polysaccharides from a hierarchical perspective, this review classifies these polymers into three categories based on the depths of carried out research regarding their biosynthetic pathways and regulatory strategies, i.e., (1) microbial polysaccharides with well-elucidated biosynthetic pathways, (2) microbial polysaccharides with well-elucidated precursor sugar biosynthetic pathways but synthase-encoding genes incompletely understood, and (3) those whose biosynthesis depends on a single synthetic enzyme. We systematically summarize the biosynthetic pathways of these three categories and provide insights into yield-improvement strategies. This review aims to serve as a valuable reference for metabolic regulation of microbial polysaccharides and to facilitate future advances in their production.
Collapse
Affiliation(s)
- Dafang Yin
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Yadong Zhong
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China
| | - Jielun Hu
- State Key Laboratory of Food Science and Resources, China-Canada Joint Laboratory of Food Science and Technology (Nanchang), Key Laboratory of Bioactive Polysaccharides of Jiangxi Province, Nanchang University, 235 Nanjing East Road, Nanchang, Jiangxi 330047, China.
| |
Collapse
|
2
|
Elazzazy AM, Baeshen MN, Alasmi KM, Alqurashi SI, Desouky SE, Khattab SMR. Where Biology Meets Engineering: Scaling Up Microbial Nutraceuticals to Bridge Nutrition, Therapeutics, and Global Impact. Microorganisms 2025; 13:566. [PMID: 40142459 PMCID: PMC11945976 DOI: 10.3390/microorganisms13030566] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/14/2025] [Revised: 02/26/2025] [Accepted: 02/27/2025] [Indexed: 03/28/2025] Open
Abstract
The global nutraceutical industry is experiencing a paradigm shift, driven by an increasing demand for functional foods and dietary supplements that address malnutrition and chronic diseases such as obesity, diabetes, cardiovascular conditions, and cancer. Traditional plant- and animal-derived nutraceuticals face limitations in scalability, cost, and environmental impact, paving the way for microbial biotechnology as a sustainable alternative. Microbial cells act as bio-factories, converting nutrients like glucose and amino acids into valuable nutraceutical products such as polyunsaturated fatty acids (PUFAs), peptides, and other bioactive compounds. By harnessing their natural metabolic capabilities, microorganisms efficiently synthesize these bioactive compounds, making microbial production a sustainable and effective approach for nutraceutical development. This review explores the transformative role of microbial platforms in the production of nutraceuticals, emphasizing advanced fermentation techniques, synthetic biology, and metabolic engineering. It addresses the challenges of optimizing microbial strains, ensuring product quality, and scaling production while navigating regulatory frameworks. Furthermore, the review highlights cutting-edge technologies such as CRISPR/Cas9 for genome editing, adaptive evolution for strain enhancement, and bioreactor innovations to enhance yield and efficiency. With a focus on sustainability and precision, microbial production is positioned as a game-changer in the nutraceutical industry, offering eco-friendly and scalable solutions to meet global health needs. The integration of omics technologies and the exploration of novel microbial sources hold the potential to revolutionize this field, aligning with the growing consumer demand for innovative and functional bioactive products.
Collapse
Affiliation(s)
- Ahmed M. Elazzazy
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Mohammed N. Baeshen
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Khalid M. Alasmi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Shatha I. Alqurashi
- Department of Biological Science, College of Science, University of Jeddah, Jeddah 21589, Saudi Arabia; (M.N.B.); (K.M.A.); (S.I.A.)
| | - Said E. Desouky
- Laboratory of Microbial Technology, Division of Systems Bioengineering, Department of Bioscience and Biotechnology, Faculty of Agriculture, Graduate School, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Sadat M. R. Khattab
- Institute of Advanced Energy, Kyoto University, Gokasho, Uji 611-0011, Japan
- Research Institute for Sustainable Humanosphere, Kyoto University, Gokasho, Uji 611-0011, Japan
| |
Collapse
|
3
|
Zhang M, Hong M, Wang Z, Jiao X, Wu C. Temperature stress improved exopolysaccharide yield from Tetragenococcus halophilus: Structural differences and underlying mechanisms revealed by transcriptomic analysis. BIORESOURCE TECHNOLOGY 2023; 390:129863. [PMID: 37839647 DOI: 10.1016/j.biortech.2023.129863] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 10/09/2023] [Accepted: 10/10/2023] [Indexed: 10/17/2023]
Abstract
This study aimed to enhance exopolysaccharide production by Tetragenococcus halophilus, and results showed that low temperature (20 °C) significantly improved exopolysaccharide production. Based on the analysis of batch fermentation kinetic parameters, a temperature-shift strategy was proposed, and the exopolysaccharide yield was increased by 28 %. Analysis of the structure of exopolysaccharide suggested that low temperature changed the molecular weight and monosaccharide composition. Transcriptomic analysis was performed to reveal mechanisms of low temperature improving exopolysaccharide production. Results suggested that T. halophilus regulated utilization of carbon sources through phosphotransferase system and increased the expression of key genes in exopolysaccharide biosynthesis to improve exopolysaccharide production. Meanwhile, metabolic pathways involved in glycolysis, amino acids synthesis, two-component system and ATP-binding cassette transporters were affected at low temperature. Results presented in this paper provided a theoretical basis for biosynthetic pathway of exopolysaccharide in T. halophilus and aided to strengthen its production and application in many areas.
Collapse
Affiliation(s)
- Min Zhang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Mengting Hong
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China
| | - Zihao Wang
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Xue Jiao
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China
| | - Chongde Wu
- College of Biomass Science and Engineering, Sichuan University, Chengdu 610065, China; Key Laboratory of Leather Chemistry and Engineering, Ministry of Education, Sichuan University, Chengdu 610065, China.
| |
Collapse
|
4
|
Enhancing polysaccharide production by Paraisaria dubia spores batch fermentation through a pH-shift strategy based on kinetic analysis. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.12.020] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
|
5
|
Engineering Gluconobacter cerinus CGMCC 1.110 for direct 2-keto-L-gulonic acid production. Appl Microbiol Biotechnol 2022; 107:153-162. [DOI: 10.1007/s00253-022-12310-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 03/25/2022] [Accepted: 05/17/2022] [Indexed: 12/02/2022]
|
6
|
Li N, Shan X, Zhou J, Yu S. Identification of key genes through the constructed CRISPR-dcas9 to facilitate the efficient production of O-acetylhomoserine in Corynebacterium glutamicum. Front Bioeng Biotechnol 2022; 10:978686. [PMID: 36185436 PMCID: PMC9515461 DOI: 10.3389/fbioe.2022.978686] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Accepted: 08/26/2022] [Indexed: 11/16/2022] Open
Abstract
O-Acetylhomoserine (OAH) is an important platform chemical for the synthesis of L-methamidophos and l-methionine. It has been produced efficiently in Corynebacterium glutamicum. However, a wider range of key factors had not been identified, limiting further increases in OAH production. This study successfully identified some limiting factors and regulated them to improve OAH titer. Firstly, an efficient clustered regularly interspaced short palindromic repeats/dead CRISPR associated protein 9 (CRISPR-dCas9) system was constructed and used to identify the key genes in central metabolism and branch pathways associated with OAH biosynthesis. Then, the gltA gene involved in TCA cycle was identified as the most critical gene. A sequential promoter PNCgl2698, which showed different transcriptional intensity in different strain growth periods, was used to control the expression of gltA gene, resulting in OAH production of 7.0 g/L at 48 h. Finally, the OAH titer of the engineered strain reached 25.9 g/L at 72 h in a 5-L bioreactor. These results show that the identification and regulation of key genes are critical for OAH biosynthesis, which would provide a better research basis for the industrial production of OAH in C. glutamicum.
Collapse
Affiliation(s)
- Ning Li
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Food Science and Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Engineering Research Center of Ministry of Education on Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
- Jiangsu Province Engineering Research Center of Food Synthetic Biotechnology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- *Correspondence: Shiqin Yu,
| |
Collapse
|
7
|
Xu S, Xu J, Zeng W, Shan X, Zhou J. Efficient biosynthesis of exopolysaccharide in Candida glabrata by a fed-batch culture. Front Bioeng Biotechnol 2022; 10:987796. [PMID: 36118574 PMCID: PMC9478339 DOI: 10.3389/fbioe.2022.987796] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 08/08/2022] [Indexed: 11/13/2022] Open
Abstract
Polysaccharides are important natural biomacromolecules. In particular, microbial exopolysaccharides have received much attention. They are produced by a variety of microorganisms, and they are widely used in the food, pharmaceutical, and chemical industries. The Candida glabrata mutant 4-C10, which has the capacity to produce exopolysaccharide, was previously obtained by random mutagenesis. In this study we aimed to further enhance exopolysaccharide production by systemic fermentation optimization. By single factor optimization and orthogonal design optimization in shaking flasks, an optimal fermentation medium composition was obtained. By optimizing agitation speed, aeration rate, and fed-batch fermentation mode, 118.6 g L−1 of exopolysaccharide was obtained by a constant rate feeding fermentation mode, with a glucose yield of 0.62 g g−1 and a productivity of 1.24 g L−1 h−1. Scaling up the established fermentation mode to a 15-L fermenter led to an exopolysaccharide yield of 113.8 g L−1, with a glucose yield of 0.60 g g−1 and a productivity of 1.29 g L−1 h−1.
Collapse
Affiliation(s)
- Sha Xu
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jinke Xu
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Weizhu Zeng
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Research Center for Cereal Fermentation and Food Biomanufacturing, Jiangnan University, Wuxi, China
- School of Biotechnology and Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, Wuxi, China
- Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
- Science Center for Future Foods, Jiangnan University, Wuxi, China
- *Correspondence: Jingwen Zhou,
| |
Collapse
|
8
|
Efficient ε-poly-L-lysine production by Streptomyces albulus based on a dynamic pH-regulation strategy. Process Biochem 2022. [DOI: 10.1016/j.procbio.2022.05.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/17/2022]
|
9
|
Zheng Y, Zhao C, Li X, Xia M, Wang X, Zhang Q, Yan Y, Lang F, Song J, Wang M. Kinetics of predominant microorganisms in the multi-microorganism solid-state fermentation of cereal vinegar. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113209] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
|
10
|
Ha GS, Saha S, Basak B, Kurade MB, Kim GU, Ji MK, Ahn Y, Salama ES, Woong Chang S, Jeon BH. High-throughput integrated pretreatment strategies to convert high-solid loading microalgae into high-concentration biofuels. BIORESOURCE TECHNOLOGY 2021; 340:125651. [PMID: 34333346 DOI: 10.1016/j.biortech.2021.125651] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2021] [Revised: 07/19/2021] [Accepted: 07/21/2021] [Indexed: 06/13/2023]
Abstract
The commercial feasibility of energy-efficient conversion of highly concentrated microalgal suspensions to produce high-titer biofuels is a major bottleneck due to high energy consumption. Herein, high-titer biofuels (bioethanol, higher-alcohols, and biodiesel) were generated from carbohydrate-rich Chlamydomonas mexicana and lipid-rich Chlamydomonas pitschmannii biomass through energy-saving microwave pretreatment, successive fermentation, and transesterification. Microwave pretreatment needed low specific energy (4.2 MJ/kg) for 100 g/L of microalgal suspension. Proposed sustainable integrated pretreatments method achieved unprecedented total conversion efficiency (67%) and highest biomass utilization (87%) of C. pitschmannii (100 g/L) with high yields of bioethanol (0.48 g-ethanol/g-carbohydrates), higher-alcohols (0.44 g-higher-alcohols/g-proteins), and biodiesel (0.90 g-biodiesel/g-lipids). Transmission electron microscopy showed the changes in the microalgal cellular integrity before and after sequential fermentations. Energy-efficient integrated pretreatments enhanced the extraction efficiency and whole utilization of high-concentration microalgae to generate high-titer biofuels with minimum waste production.
Collapse
Affiliation(s)
- Geon-Soo Ha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Shouvik Saha
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Bikram Basak
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Mayur B Kurade
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Gyeong-Uk Kim
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea
| | - Min-Kyu Ji
- Environmental Assessment Group, Korea Environment Institute, Yeongi-gun 30147, South Korea
| | - Yongtae Ahn
- Center for Environment, Health, and Welfare Research, Korea Institute of Science and Technology, South Korea
| | - El-Sayed Salama
- Department of Occupational and Environmental Health, School of Public Health, Lanzhou University, Lanzhou 730000, Gansu Province, PR China
| | - Soon Woong Chang
- Department of Environmental Engineering, Kyonggi University, Suwon 16627, South Korea
| | - Byong-Hun Jeon
- Department of Earth Resources and Environmental Engineering, Hanyang University, Seoul 04763, South Korea.
| |
Collapse
|
11
|
Zeng W, Wang J, Shan X, Yu S, Zhou J. Efficient Production of Scleroglucan by Sclerotium rolfsii and Insights Into Molecular Weight Modification by High-Pressure Homogenization. Front Bioeng Biotechnol 2021; 9:748213. [PMID: 34540818 PMCID: PMC8448344 DOI: 10.3389/fbioe.2021.748213] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2021] [Accepted: 08/23/2021] [Indexed: 11/13/2022] Open
Abstract
Scleroglucan is a non-ionic water-soluble polysaccharide, and has been widely used in the petroleum, food, medicine and cosmetics industries. Currently, scleroglucan is mainly produced by Sclerotium rolfsii. A higher level of scleroglucan (42.0 g/L) was previously obtained with S. rolfsii WSH-G01. However, the production of scleroglucan was reduced despite a higher glucose concentration remaining. Additionally, the molecular weight of scleroglucan was large, thus restricted its application. In this study, by adjusting the state of seeds inoculated, the degradation issue of scleroglucan during the fermentation process was solved. By comparing different fed-batch strategies, 66.6 g/L of scleroglucan was harvested by a two-dose fed-batch mode, with 53.3% glucose conversion ratio. To modify the molecular weight of scleroglucan, a combination method with HCl and high-pressure homogenization treatment was established. Finally, scleroglucan with molecular weight of 4.61 × 105 Da was obtained. The developed approaches provide references for the biosynthesis and molecular weight modification of polysaccharides.
Collapse
Affiliation(s)
- Weizhu Zeng
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China
| | - Junyi Wang
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Xiaoyu Shan
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Shiqin Yu
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| | - Jingwen Zhou
- National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, Wuxi, China.,Science Center for Future Foods, Jiangnan University, Wuxi, China.,Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, China.,Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, Wuxi, China
| |
Collapse
|
12
|
Carranza-Saavedra D, Sánchez Henao CP, Zapata Montoya JE. Kinetic analysis and modeling of L-valine production in fermentation batch from E. coli using glucose, lactose and whey as carbon sources. BIOTECHNOLOGY REPORTS (AMSTERDAM, NETHERLANDS) 2021; 31:e00642. [PMID: 34150530 PMCID: PMC8193114 DOI: 10.1016/j.btre.2021.e00642] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Revised: 06/02/2021] [Accepted: 06/03/2021] [Indexed: 11/18/2022]
Abstract
In this study the effect of the carbon source on L-valine production kinetics using genetically modified E. coli was researched. Glucose, lactose, Whey (W) and deproteinized whey (DW) were tested as carbon sources, keeping the carbon/nitrogen (C/N) ratio constant. Biomass generation and substrate consumption were modeled with Contois and Mass Conservation models, respectively, whereas Mass Conservation Balance and Luedeking-Piret models were used for product obtaining. Results showed that L-valine production is partially associated to growth, with values of 0.485 g L-valine/(g dry cell weight.h), and a product loss effect at a specific rate (β) of 0.019 g L-valine/(g dry cell weight.h) with W. The yield of this product increased 36 % using W concerning glucose or lactose as carbon sources. On the other hand, Mass Balance and Luedeking-Piret models adjust properly to experimental data (R2 >0.90). In conclusion whey is a promising substrate for obtaining L-valine using genetically-modified E. coli.
Collapse
Affiliation(s)
- Darwin Carranza-Saavedra
- Grupo Nutrición y Tecnología de Alimentos, Universidad de Antioquia, Medellín 050010, Colombia
- Departamento de Producción y Sanidad Vegetal, Facultad de Ingeniería Agronómica, Universidad Del Tolima, Ibagué 730006299, Colombia
| | | | | |
Collapse
|
13
|
Gao M, Xu Y, Yang G, Jin S, Hu X, Jiang Y, Zhu L, Li Z, Zhan X. One-step production of functional branched oligoglucosides with coupled fermentation of Pichia pastoris GS115 and Sclerotium rolfsii WSH-G01. BIORESOURCE TECHNOLOGY 2021; 335:125286. [PMID: 34022479 DOI: 10.1016/j.biortech.2021.125286] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/01/2021] [Revised: 05/07/2021] [Accepted: 05/08/2021] [Indexed: 06/12/2023]
Abstract
Endo-β-1,3-glucanase with high specific activity is a prerequisite for enzymatic preparation of valuable β-oligoglucosides. Heterologous expression in Pichia pastoris GS115 with error-prone PCR technology was implemented, and the mutant strain 7 N12 was obtained. The mutant endo-β-1,3-glucanase showed efficient specific activities for degrading curdlan (366 U mg-1) and scleroglucan (274.5 U mg-1). Thereafter, one-step production of functional branched oligoglucosides was established with coupled fermentation of Pichia pastoris and Sclerotium rolfsii. During the fermentation process, the endo-β-1,3-glucanase secreted by Pichia pastoris GS115 can efficiently hydrolyse scleroglucan metabolized by Sclerotium rolfsii WSH-G01. The maximum yields of β-oligoglucosides in the shake flasks and 7-L bioreactor reached 1.73 g L-1 and 12.71 g L-1, respectively, with polymerization degrees of 2-17. The successful implementation of heterologous expression with error-prone PCR and the coupled fermentation simplified the multi-step enzymatic β-oligoglucoside preparation procedures, which makes it a potential strategy for industrial production of functional oligosaccharides.
Collapse
Affiliation(s)
- Minjie Gao
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Ying Xu
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Guoshuai Yang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Shuxia Jin
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiuyu Hu
- China Biotech Fermentation Industry Association, Beijing 100833, PR China
| | - Yun Jiang
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Li Zhu
- Wuxi Galaxy Biotech Co. Ltd., Wuxi 214125, PR China
| | - Zhitao Li
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China
| | - Xiaobei Zhan
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, Jiangnan University, Wuxi 214122, PR China.
| |
Collapse
|
14
|
Dong Y, Zhang H, Wang X, Ma J, Lei P, Xu H, Li S. Enhancing ectoine production by recombinant Escherichia coli through step-wise fermentation optimization strategy based on kinetic analysis. Bioprocess Biosyst Eng 2021; 44:1557-1566. [PMID: 33751211 DOI: 10.1007/s00449-021-02541-7] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2020] [Accepted: 02/16/2021] [Indexed: 12/29/2022]
Abstract
In this study, the recombinant ectoine-producing Escherichia coli ET01 was constructed by introducing the ectABC operon from Halomonas venusta ZH. To further improve ectoine production, the regulation of the fermentation process was systematically investigated. First, the effects of the initial glucose concentrations and glucose feeding mode on ectoine production were analyzed. Using a combination of pH-feedback feeding and glucose-controlled feeding, the ectoine titer reached 25.5 g/L, representing an 8.8-fold increase over standard batch culture. Then, the effects of dissolved oxygen (DO) levels (50, 40, 30, or 20%) on ectoine production were studied, and a DO control strategy was developed based on the fermentation kinetics. When the final optimized two-stage fermentation strategy was used, the ectoine titer reached 47.8 g/L, which was the highest level of ectoine produced by E. coli fermentation. The fermentation regulation strategy developed in this study might be useful for scaling up the commercial production of ectoine.
Collapse
Affiliation(s)
- Yingsheng Dong
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hao Zhang
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - XinYi Wang
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - JunJie Ma
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Peng Lei
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
| | - Hong Xu
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China
- Jiangsu National Synergetic Innovation Center for Advanced Materials, Nanjing Tech University, Nanjing, People's Republic of China
| | - Sha Li
- State Key Laboratory of Materials-Oriented Chemical Engineering, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
- College of Food Science and Light Industry, Nanjing Tech University, Nanjing, 211816, People's Republic of China.
| |
Collapse
|
15
|
Bai T, Wang T, Li Y, Gao NL, Zhang L, Chen WH, Yin X. Optimization of scleroglucan production by Sclerotium rolfsii by lowering pH during fermentation via oxalate metabolic pathway manipulation using CRISPR/Cas9. Fungal Biol Biotechnol 2021; 8:1. [PMID: 33602329 PMCID: PMC7893912 DOI: 10.1186/s40694-021-00108-5] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2020] [Accepted: 01/29/2021] [Indexed: 12/27/2022] Open
Abstract
Background Sclerotium rolfsii is a potent producer of many secondary metabolites, one of which like scleroglucan is an exopolysaccharide (EPS) appreciated as a multipurpose compound applicable in many industrial fields. Results Aspartate transaminase (AAT1) catalyzes the interconversion of aspartate and α-ketoglutarate to glutamate and oxaloacetate. We selected AAT1 in the oxalate metabolic pathway as a target of CRISPR/Cas9. Disruption of AAT1 leads to the accumulation of oxalate, rather than its conversion to α-ketoglutarate (AKG). Therefore, AAT1-mutant serves to lower the pH (pH 3–4) so as to increase the production of the pH-sensitive metabolite scleroglucan to 21.03 g L−1 with a productivity of up to 0.25 g L−1·h−1. Conclusions We established a platform for gene editing that could rapidly generate and select mutants to provide a new beneficial strain of S. rolfsii as a scleroglucan hyper-producer, which is expected to reduce the cost of controlling the optimum pH condition in the fermentation industry.
Collapse
Affiliation(s)
- Tianlong Bai
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, 110142, China.,Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Teng Wang
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Yan Li
- Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China
| | - Na L Gao
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China
| | - Lixin Zhang
- Liaoning Province Key Laboratory of Green Functional Molecule Design and Development, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| | - Wei-Hua Chen
- Key Laboratory of Molecular Biophysics of the Ministry of Education, Hubei Key Laboratory of Bioinformatics and Molecular Imaging, Department of Bioinformatics and Systems Biology, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China. .,College of Life Science, HeNan Normal University, Xinxiang, 453007, Henan, China.
| | - Xiushan Yin
- Applied Biology Laboratory, Shenyang University of Chemical Technology, Shenyang, 110142, China.
| |
Collapse
|
16
|
Valdez AL, Delgado OD, Fariña JI. Cost-effective optimized scleroglucan production by Sclerotium rolfsii ATCC 201126 at bioreactor scale. A quantity-quality assessment. Carbohydr Polym 2020; 260:117505. [PMID: 33712177 DOI: 10.1016/j.carbpol.2020.117505] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/27/2020] [Revised: 11/24/2020] [Accepted: 12/08/2020] [Indexed: 11/25/2022]
Abstract
Exopolysaccharide (EPS) secretion by Sclerotium rolfsii ATCC 201126 in submerged cultures, already identified as high-osmolarity responsive, was assessed by reducing C-source without compromising EPS yields. A designed medium with 80 g sucrose L-1 (MOPT80) was tested at 3 L-bioreactor scale at different temperature, agitation, aeration and pH (uncontrolled vs. controlled) values. Optimal operative conditions (200 rpm, 28 °C, 0.5 vvm and initial pH -pHi- 4.5) were validated, as well as the possibility to work at pHi 5.5 to reduce biomass production. Purified EPSs produced in MOPT80 at optimal and other valid operative conditions exhibited refined grade (<1 % proteins and ash, 3-4 % reducing sugars, 87-99 % total sugars). EPS purity, MW and rheological parameters led to discourage pH controlled at 4.5. Relatively constant MW (6-8 × 106 Da) and outstanding viscosifying ability were found. Polyphasic EPS analysis (titre, purity, macromolecular features and rheological fitness) would support to properly select production conditions.
Collapse
Affiliation(s)
- Alejandra L Valdez
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| | - Osvaldo D Delgado
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina; Universidad Nacional de Catamarca (UNCa), Facultad de Ciencias Exactas y Naturales, Centro de Biología Molecular y Biotecnología (CEBIOTEC), Av. Belgrano 300, (K4751XAK) S.F.V., Catamarca, Catamarca, Argentina.
| | - Julia I Fariña
- Mycodiversity & Mycoprospection Laboratory, Planta Piloto de Procesos Industriales Microbiológicos, PROIMI-CONICET, Av. Belgrano y Pje, Caseros, T4001MVB, S.M. Tucumán, Tucumán, Argentina.
| |
Collapse
|
17
|
Tian S, Liang X, Chen J, Zeng W, Zhou J, Du G. Enhancement of 2-phenylethanol production by a wild-type Wickerhamomyces anomalus strain isolated from rice wine. BIORESOURCE TECHNOLOGY 2020; 318:124257. [PMID: 33096442 DOI: 10.1016/j.biortech.2020.124257] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/11/2020] [Revised: 10/08/2020] [Accepted: 10/09/2020] [Indexed: 06/11/2023]
Abstract
2-Phenylethanol (2-PE) is an important high-grade aromatic alcohol, which is widely used in the cosmetics, perfumery and food industries. However, 2-PE is mainly synthesized using a chemical route, which produces environmental pollution and harmful by-products. Screening of high-yielding wild-type strains has become an important goal for the future biosynthesis of 2-PE. In this study, a wild-type Wickerhamomyces anomalus was isolated from rice wine fermented mash. By optimizing the initial glucose and l-phenylalanine concentrations, 2630.7 mg/L of 2-PE was obtained in shaking flasks. The conditions of initial glucose and l-phenylalanine concentration, pH, and inoculation amount were optimized for 2-PE production with W. anomalus. Finally, based on the optimal conditions, the 2-PE titer reached 4,727.3 mg/L by a single-dose fed-batch strategy in a 5-L bioreactor. The results showed that the ability was expanded to harness the Ehrlich pathway for the production of high-value aromatics in aroma-producing yeast species.
Collapse
Affiliation(s)
- Shufang Tian
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Xiaolin Liang
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jian Chen
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Weizhu Zeng
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China
| | - Jingwen Zhou
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; National Engineering Laboratory for Cereal Fermentation Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Jiangsu Provisional Research Center for Bioactive Product Processing Technology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| | - Guocheng Du
- Key Laboratory of Industrial Biotechnology, Ministry of Education and School of Biotechnology, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China; Science Center for Future Foods, Jiangnan University, 1800 Lihu Road, Wuxi, Jiangsu 214122, China.
| |
Collapse
|
18
|
Li M, Chang P, Pan X, Imanaka T, Igarashi Y, Luo F. Efficient expressions of reporter genes in the industrial filamentous fungus Sclerotium rolfsii mediated by Agrobacterium tumefaciens. Fungal Biol 2020; 124:932-939. [PMID: 33059845 DOI: 10.1016/j.funbio.2020.08.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2019] [Revised: 05/28/2020] [Accepted: 08/03/2020] [Indexed: 10/23/2022]
Abstract
Sclerotium rolfsii (teleomorph Athelia rolfsii) is one of the plant pathogenic basidiomycetes, which causes severe stem-rot disease in hundreds of plants and produces important metabolites, such as scleroglucan and TF-specific lectin. However, further molecular biological research on this filamentous fungus is severely plateaued out due to the lack of genetic methods. In this study, the A. tumefaciens strain LBA4404 harboring a binary vector containing the basta resistance gene fused with three reporters (DsRed, tdTomato, and GUSPlus) respectively, driven by the SrGPD promoter, was used for genetic transformation of S. rolfsii. The results showed that the three reporter genes were all effectively expressed in S. rolfsii. This study also showed that the intron of the SrGPD promoter is not necessary for transgene expression in this fungus. Besides, we showed that these reporters' signals could be observed easily but in a short time window. The efficient Agrobacterium-mediated transformation system and the three reporter gene plasmids for S. rolfsii developed in this study are of significance in overcoming current limitations of no available transformation and genetic manipulation techniques in S. rolfsii, facilitating further genetic manipulations and gene function exploration.
Collapse
Affiliation(s)
- Meilin Li
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China
| | - Peng Chang
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China; Chongqing Key Lab of Bio-resource Development for Bioenergy, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China.
| | - Xiaohong Pan
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China
| | - Tadayuki Imanaka
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China; Chongqing Key Lab of Bio-resource Development for Bioenergy, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China
| | - Yasuo Igarashi
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China; Chongqing Key Lab of Bio-resource Development for Bioenergy, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China.
| | - Feng Luo
- College of Resources and Environment, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China; Chongqing Key Lab of Bio-resource Development for Bioenergy, Southwest University, 2 Tiansheng Road, Chongqing, 400715, China.
| |
Collapse
|