1
|
Rodrigues Reis CE, Milessi TS, Ramos MDN, Singh AK, Mohanakrishna G, Aminabhavi TM, Kumar PS, Chandel AK. Lignocellulosic biomass-based glycoconjugates for diverse biotechnological applications. Biotechnol Adv 2023; 68:108209. [PMID: 37467868 DOI: 10.1016/j.biotechadv.2023.108209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Revised: 06/05/2023] [Accepted: 07/01/2023] [Indexed: 07/21/2023]
Abstract
Glycoconjugates are the ubiquitous components of mammalian cells, mainly synthesized by covalent bonds of carbohydrates to other biomolecules such as proteins and lipids, with a wide range of potential applications in novel vaccines, therapeutic peptides and antibodies (Ab). Considering the emerging developments in glycoscience, renewable production of glycoconjugates is of importance and lignocellulosic biomass (LCB) is a potential source of carbohydrates to produce synthetic glycoconjugates in a sustainable pathway. In this review, recent advances in glycobiology aiming on glycoconjugates production is presented together with the recent and cutting-edge advances in the therapeutic properties and application of glycoconjugates, including therapeutic glycoproteins, glycosaminoglycans (GAGs), and nutraceuticals, emphasizing the integral role of glycosylation in their function and efficacy. Special emphasis is given towards the potential exploration of carbon neutral feedstocks, in which LCB has an emerging role. Techniques for extraction and recovery of mono- and oligosaccharides from LCB are critically discussed and influence of the heterogeneous nature of the feedstocks and different methods for recovery of these sugars in the development of the customized glycoconjugates is explored. Although reports on the use of LCB for the production of glycoconjugates are scarce, this review sets clear that the potential of LCB as a source for the production of valuable glycoconjugates cannot be underestimated and encourages that future research should focus on refining the existing methodologies and exploring new approaches to fully realize the potential of LCB in glycoconjugate production.
Collapse
Affiliation(s)
| | - Thais Suzane Milessi
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil; Graduate Program of Chemical Engineering, Federal University of São Carlos (PPGEQ-UFSCar), Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Márcio Daniel Nicodemos Ramos
- Department of Chemical Engineering, Federal University of São Carlos, Rodovia Washington Luís, km 235, 13565-905 São Carlos, SP, Brazil
| | - Akhilesh Kumar Singh
- Department of Biotechnology, School of Life Sciences, Mahatma Gandhi Central University, Motihari 845401, Bihar, India
| | - Gunda Mohanakrishna
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India
| | - Tejraj M Aminabhavi
- Center for Energy and Environment, School of Advanced Sciences, KLE Technological University, Hubballi 580 031, India.
| | - P Senthil Kumar
- Department of Chemical Engineering, Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; Centre of Excellence in Water Research (CEWAR), Sri Sivasubramaniya Nadar College of Engineering, Kalavakkam 603110, Tamil Nadu, India; School of Engineering, Lebanese American University, Byblos, Lebanon
| | - Anuj K Chandel
- Department of Biotechnology, Engineering School of Lorena, University of São Paulo, Lorena, São Paulo 12602-810, Brazil.
| |
Collapse
|
2
|
Zhang H, Nie M, Gu Z, Xin Y, Zhang L, Li Y, Shi G. Preparation of water-insoluble lignin nanoparticles by deep eutectic solvent and its application as a versatile and biocompatible support for the immobilization of α-amylase. Int J Biol Macromol 2023; 249:125975. [PMID: 37494993 DOI: 10.1016/j.ijbiomac.2023.125975] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 06/04/2023] [Accepted: 07/22/2023] [Indexed: 07/28/2023]
Abstract
As one of the most abundant biopolymers, lignin is a widely available resource. However, its potential largely remains untapped, with most of it ending up as waste from industries like paper production, pulp processing, and bio-refining. The research undertaken in this study focused on the extraction of lignin from agroforestry waste using a deep eutectic solvent (DES) as a carrier for α-amylase immobilization, resulting in high stability and reusability. Several techniques, including Nuclear Magnetic Resonance (NMR), Scanning Electron Microscopy (SEM), Energy-Dispersive X-ray Spectroscopy (EDS), and the Brunauer-Emmett-Teller (BET) method were employed to examine the structure and morphology of both the extracted lignin and the immobilized enzyme. The temperature used to recover lignin by DES would affect immobilization efficiency and enzyme loading by influencing its specific surface area, pore size, and volume distribution. Investigations using Nuclear Overhauser Effect Spectroscopy (NOESY) uncovered that the hydroxyl groups in G, H, and S units and the β-O-4 structure of lignin primarily serve as binding sites for enzyme molecules. Immobilized α-amylase demonstrated a higher pH and thermal stability level, with an optimal pH of 7.0 and temperature of 100 °C, compared to the free enzyme, which exhibited optimal activity at a pH of 6.5 and temperature of 90 °C. Importantly, immobilized α-amylase retained >80 % of its initial activity even after 28 days at room temperature, and it maintained 70 % of its activity after being reused 12 times. These findings strongly suggest that lignin derived from agroforestry residues holds promising potential as a future versatile immobilization material, a prospect integral to society's sustainable development.
Collapse
Affiliation(s)
- Huan Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Mingfu Nie
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Zhenghua Gu
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Yu Xin
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Liang Zhang
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China.
| | - Youran Li
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| | - Guiyang Shi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China; National Engineering Research Center of Cereal Fermentation and Food Biomanufacturing, Jiangnan University, 1800 Lihu Avenue, Wuxi, Jiangsu 214000, PR China
| |
Collapse
|
3
|
Zhang S, Duan Y, Teng C, Quan H, Yang X, Li H, Li X, Yan L. Fast and Selective Degradation of Biomass for Xylose, Glucose and Lignin under Mild Conditions. Molecules 2023; 28:molecules28083306. [PMID: 37110540 PMCID: PMC10145030 DOI: 10.3390/molecules28083306] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/27/2023] [Revised: 04/06/2023] [Accepted: 04/06/2023] [Indexed: 04/29/2023] Open
Abstract
The conversion of lignocellulose into valuable chemicals has been recognized as the key technology in green chemistry. However, selective degradation of hemicellulose and cellulose with the production of lignin is still a challenge. Therefore, a two-step process has been developed to degrade corncob into xylose and glucose under mild conditions. At first, the corncob was treated with the lower concentration of zinc chloride aqueous solution (30-55 w%) at 95 °C with a short reaction time (8-12 min) and 30.4 w% (selectivity = 89%) of xylose obtained with a solid residue of the composite of cellulose and lignin. Next, the solid residue was treated with a high concentration of zinc chloride aqueous solution (65-85 w%) at 95 °C for about 10 min, and 29.4 w% (selectivity = 92%) of glucose can be obtained. Combining the two steps, the total yield of xylose is 97%, while glucose is 95%. In addition, high pure lignin can be obtained simultaneously, which was confirmed using HSQC studies. Furthermore, for the solid residue of the first-step reaction, a ternary deep eutectic solvent (DES) (choline chloride/oxalic acid/1,4-butanediol, ChCl/OA/BD) has been used to separate the cellulose and lignin efficiently, and high-quality cellulose (Re-C) and lignin (Re-L) were obtained. Furthermore, it provides a simple method to disassemble the lignocellulose for monosaccharides, lignin, and cellulose.
Collapse
Affiliation(s)
- Shangzhong Zhang
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Yi Duan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
- Key Laboratory of Anhui for Tobacco Chemistry, Hefei 230088, China
| | - Changchang Teng
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Hongdong Quan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| | - Xiuguo Yang
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Hongyan Li
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Xiaohe Li
- Inner Mongolia Key Laboratory of Polyol Chemical New Material Enterprise, Chifeng Ruiyang Chemical Co., Ltd., Pingzhuang, Chifeng 024076, China
| | - Lifeng Yan
- Department of Chemical Physics, University of Science and Technology of China, Jinzai Road 96, Hefei 230026, China
| |
Collapse
|
4
|
Jiang W, Dai L, Tan X, Zhou X, Xu Y. Screening of Gluconobacter oxydans in xylonic acid fermentation for tolerance of the inhibitors formed dilute acid pretreatment. Bioprocess Biosyst Eng 2023; 46:589-597. [PMID: 36670301 DOI: 10.1007/s00449-023-02845-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/12/2022] [Accepted: 01/10/2023] [Indexed: 01/21/2023]
Abstract
Pre-hydrolysate liquor, as an inevitable by-product, contains a large amount of xylose, and is therefore an inexpensive feedstock that can be upgraded to value-added chemical xylonic acid. However, inhibitors, simultaneously formed in lignocellulose pretreatment process, are regarded as the major obstacle for effectively bio-converting xylose in pre-hydrolysate into xylonic acid. In this study, Gluconobacter oxydans, with highly selective and efficient, was employed for xylonic acid production; the impacts of five typical toxic inhibitory compounds on xylonic acid productivity and the activity of the membrane-bound dehydrogenase were evaluated. The results revealed that the inhibitors showed different degrees of influence toward xylonic acid production, and the order of inhibitory effect for acidic inhibitors was formic acid > acetic acid > levulinic acid; the inhibitory effect of aldehyde inhibitors was furfural > 5-hydroxymethyl-furfural. This study provides an important basis of metabolic modification and detoxification process for enhancing inhibitor tolerance and xylonic acid productivity.
Collapse
Affiliation(s)
- Wenfei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China
| | - Xin Tan
- College of Biological and Food Engineering, Anhui Polytechnic University, Wuhu, 24100, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China. .,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, No. 159 Longpan Road, Nanjing, 210037, People's Republic of China.,Jiangsu Province Key Laboratory of Green Biomass-Based Fuels and Chemicals, Nanjing, 210037, People's Republic of China
| |
Collapse
|
5
|
Wu R, Li Y, Wang X, Fu Y, Qin M, Zhang Y. In-situ lignin sulfonation for enhancing enzymatic hydrolysis of poplar using mild organic solvent pretreatment. BIORESOURCE TECHNOLOGY 2023; 369:128410. [PMID: 36455816 DOI: 10.1016/j.biortech.2022.128410] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/30/2022] [Revised: 11/23/2022] [Accepted: 11/24/2022] [Indexed: 06/17/2023]
Abstract
Biomass pretreatment is an essential strategy to overcome biomass recalcitrance and promote lignocellulosic bioconversion. Here, a reusable organic solvent system (formic acid-methanesulfonic acid) was explored to pretreat poplar under a mild temperature (below 100 °C). The results showed that the co-solvent system could extract basically complete hemicelluloses and part of lignin with original cellulose retained in the pretreated substrates. Meanwhile, sulfonic acid groups were introduced into lignin structure remained in the substrates. The glucose conversion yield of the substrates with a higher concentration of sulfonic acid groups (13.2 mmol/kg) reached 45.9 % by reducing the hydrophobic interaction between lignin and cellulase, showing 89.3 % improvement compared with that of the substrates treated with single formic acid. This progressive study aimed to develop a new strategy to realize sulfonation and promote enzymatic hydrolysis of substrates by using mild organic solvent pretreatment.
Collapse
Affiliation(s)
- Ruijie Wu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China; Laboratory of Natural Materials Technology, Faculty of Science and Engineering, Åbo Akademi University, Henrikinkatu 2, Turku FI-20500, Finland
| | - Yongzheng Li
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| | - Xiaodi Wang
- Organic Chemistry Laboratory, Taishan University, Taian 271021, Shandong, China
| | - Yingjuan Fu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China
| | - Menghua Qin
- Organic Chemistry Laboratory, Taishan University, Taian 271021, Shandong, China
| | - Yongchao Zhang
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, Shandong, China.
| |
Collapse
|
6
|
A New Insight into the Composition and Physical Characteristics of Corncob—Substantiating Its Potential for Tailored Biorefinery Objectives. FERMENTATION-BASEL 2022. [DOI: 10.3390/fermentation8120704] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/12/2022]
Abstract
Corncobs of four different corn varieties were physically segregated into two different anatomical portions, namely the corncob outer (CO) and corncob pith (CP). The biomass composition analysis of both the CO and CP was performed by four different methods. The CP showed a higher carbohydrate and lower lignin content (83.32% and 13.58%, respectively) compared with the CO (79.93% and 17.12%, respectively) in all of the methods. The syringyl/guaiacyl (S/G) ratio was observed to be higher in the CP (1.34) than in the CO (1.28). The comprehensive physical characterization of both samples substantiated the lower crystallinity and lower thermal stability that was observed in the CP compared to the CO. These properties make the CP more susceptible to glycanases, as evident from the enzymatic saccharification of CP carried out with a commercial cellulase and xylanase in this work. The yields obtained were 70.57% and 88.70% of the respective theoretical yields and were found to be equal to that of pure cellulose and xylan substrates. These results support the feasibility of the tailored valorization of corncob anatomical portions, such as enzymatic production of xylooligosaccharides from CP without pretreatment combined with the bioethanol production from pretreated CO to achieve an economical biorefinery output from corncob feedstock.
Collapse
|
7
|
Madadi M, Song G, Sun F, Sun C, Xia C, Zhang E, Karimi K, Tu M. Positive role of non-catalytic proteins on mitigating inhibitory effects of lignin and enhancing cellulase activity in enzymatic hydrolysis: Application, mechanism, and prospective. ENVIRONMENTAL RESEARCH 2022; 215:114291. [PMID: 36103929 DOI: 10.1016/j.envres.2022.114291] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/25/2022] [Revised: 08/18/2022] [Accepted: 09/04/2022] [Indexed: 06/15/2023]
Abstract
Fermentable sugar production from lignocellulosic biomass has received considerable attention and has been dramatic progress recently. However, due to low enzymatic hydrolysis (EH) yields and rates, a high dosage of the costly enzyme is required, which is a bottleneck for commercial applications. Over the last decades, various strategies have been developed to reduce cellulase enzyme costs. The progress of the non-catalytic additive proteins in mitigating inhibition in EH is discussed in detail in this review. The low efficiency of EH is mostly due to soluble lignin compounds, insoluble lignin, and harsh thermal and mechanical conditions of the EH process. Adding non-catalytic proteins into the EH is considered a simple and efficient approach to boost hydrolysis yield. This review discussed the multiple mechanical steps involved in the EH process. The effect of physicochemical properties of modified lignin on EH and its interaction with cellulase and cellulose are identified and discussed, which include hydrogen bonding, hydrophobic, electrostatic, and cation-π interactions, as well as physical barriers. Moreover, the effects of different conditions of EH that lead to cellulase deactivation by thermal and mechanical mechanisms are also explained. Finally, recent advances in the development, potential mechanisms, and economic feasibility of non-catalytic proteins on EH are evaluated and perspectives are presented.
Collapse
Affiliation(s)
- Meysam Madadi
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Guojie Song
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Fubao Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China.
| | - Chihe Sun
- Key Laboratory of Industrial Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi, 214122, China
| | - Changlei Xia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, International Innovation Center for Forest Chemicals and Materials, College of Materials Science and Engineering, Nanjing Forestry University, Nanjing, Jiangsu, 210037, China
| | - Ezhen Zhang
- Institute of Agro-Products Processing Science and Technology, Guangxi Academy of Agricultural Sciences, Nanning, 530007, China
| | - Keikhosro Karimi
- Department of Chemical Engineering, Isfahan University of Technology, Isfahan, 84156-83111, Iran
| | - Maobing Tu
- Department of Chemical and Environmental Engineering, University of Cincinnati, Cincinnati, OH, 45221, United States
| |
Collapse
|
8
|
Kumar V, Sharma N, Umesh M, Selvaraj M, Al-Shehri BM, Chakraborty P, Duhan L, Sharma S, Pasrija R, Awasthi MK, Lakkaboyana SR, Andler R, Bhatnagar A, Maitra SS. Emerging challenges for the agro-industrial food waste utilization: A review on food waste biorefinery. BIORESOURCE TECHNOLOGY 2022; 362:127790. [PMID: 35973569 DOI: 10.1016/j.biortech.2022.127790] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/04/2022] [Revised: 08/10/2022] [Accepted: 08/11/2022] [Indexed: 05/27/2023]
Abstract
Modernization and industrialization has undoubtedly revolutionized the food and agro-industrial sector leading to the drastic increase in their productivity and marketing thereby accelerating the amount of agro-industrial food waste generated. In the past few decades the potential of these agro-industrial food waste to serve as bio refineries for the extraction of commercially viable products like organic acids, biochemical and biofuels was largely discussed and explored over the conventional method of disposing in landfills. The sustainable development of such strategies largely depends on understanding the techno economic challenges and planning for future strategies to overcome these hurdles. This review work presents a comprehensive outlook on the complex nature of agro-industrial food waste and pretreatment methods for their valorization into commercially viable products along with the challenges in the commercialization of food waste bio refineries that need critical attention to popularize the concept of circular bio economy.
Collapse
Affiliation(s)
- Vinay Kumar
- Department of Community Medicine, Saveetha Medical College, Saveetha Institute of Medical and Technical Sciences, Chennai, India.
| | - Neha Sharma
- School of Biotechnology, Jawaharlal Nehru University, New Delhi, India
| | - Mridul Umesh
- Department of Life Sciences, CHRIST (Deemed to be University), Bengaluru 560029, Karnataka, India
| | - Manickam Selvaraj
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Badria M Al-Shehri
- Department of Chemistry, Faculty of Science, King Khalid University, Abha 61413, Saudi Arabia; Research Center for Advanced Materials Science (RCAMS), King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia; Unit of Bee Research and Honey Production, Faculty of Science, King Khalid University, P.O. Box 9004, Abha, 61413, Saudi Arabia
| | - Pritha Chakraborty
- School of Allied Healthcare and Sciences, Jain (Deemed To Be) University, Bengaluru, Karnataka, India
| | - Lucky Duhan
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Shivali Sharma
- Department of Chemistry, College of Basic Sciences and Humanities, Punjab Agricultural University, Punjab, India
| | - Ritu Pasrija
- Department of Biochemistry, Maharshi Dayanand University, Rohtak, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Yangling 712100, PR China
| | - Siva Ramakrishna Lakkaboyana
- Department of Chemistry, Vel Tech Rangarajan Dr. Sagunthala R&D Institute of Science and Technology, Avadi, Chennai 600062, India
| | - Rodrigo Andler
- Escuela de Ingeniería en Biotecnología, Centro de Biotecnología de los Recursos Naturales (Cenbio), Universidad Católica del Maule
| | - Amit Bhatnagar
- Department of Separation Science, LUT School of Engineering Science, LUT University, Sammonkatu 12, FI-50130, Mikkeli, Finland
| | | |
Collapse
|
9
|
Lei P, Chen H, Ma J, Fang Y, Qu L, Yang Q, Peng B, Zhang X, Jin L, Sun D. Research progress on extraction technology and biomedical function of natural sugar substitutes. Front Nutr 2022; 9:952147. [PMID: 36034890 PMCID: PMC9414081 DOI: 10.3389/fnut.2022.952147] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2022] [Accepted: 07/14/2022] [Indexed: 11/13/2022] Open
Abstract
Improved human material living standards have resulted in a continuous increase in the rate of obesity caused by excessive sugar intake. Consequently, the number of diabetic patients has skyrocketed, not only resulting in a global health problem but also causing huge medical pressure on the government. Limiting sugar intake is a serious problem in many countries worldwide. To this end, the market for sugar substitute products, such as artificial sweeteners and natural sugar substitutes (NSS), has begun to rapidly grow. In contrast to controversial artificial sweeteners, NSS, which are linked to health concepts, have received particular attention. This review focuses on the extraction technology and biomedical function of NSS, with a view of generating insights to improve extraction for its large-scale application. Further, we highlight research progress in the use of NSS as food for special medical purpose (FSMP) for patients.
Collapse
Affiliation(s)
- Pengyu Lei
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Haojie Chen
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Jiahui Ma
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Yimen Fang
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Linkai Qu
- College of Life Sciences, Jilin Agricultural University, Changchun, China
| | - Qinsi Yang
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Bo Peng
- Wenzhou Institute, University of Chinese Academy of Sciences, Wenzhou, China
| | - Xingxing Zhang
- Department of Endocrinology and Metabolism, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Libo Jin
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| | - Da Sun
- Institute of Life Sciences & Biomedical Collaborative Innovation Center of Zhejiang Province, Wenzhou University, Wenzhou, China
| |
Collapse
|
10
|
Ma CY, Xu LH, Sun Q, Sun SN, Cao XF, Wen JL, Yuan TQ. Ultrafast alkaline deep eutectic solvent pretreatment for enhancing enzymatic saccharification and lignin fractionation from industrial xylose residue. BIORESOURCE TECHNOLOGY 2022; 352:127065. [PMID: 35351557 DOI: 10.1016/j.biortech.2022.127065] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2022] [Revised: 03/20/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
An aspirational pretreatment method for efficient fractionation and tailored valorization of large industrial biomass can ensure the realizability of sustainable biorefinery strategies. In this study, an ultrafast alkaline deep eutectic solvents (DES) pretreatment strategy was developed to efficiently extract the lignin nanoparticles and retain cellulose residues that could be readily enzymatic saccharified to obtain fermentative glucose for the bioenergy production from industrial xylose residue. Results showed that the DES pretreatment had excellent delignification performance and the regenerated DES lignin nanoparticles exhibited well-preserved structures and excellent antioxidant activity, as well as low molecular weights and relatively uniform size distribution, which could facilitate downstream catalytic degradation for production of chemicals and preparation of lignin-based materials. Under the optimal condition (DES pretreatment: 80 °C, 10 min; saccharification: 10 FPU/g, 5 wt%, 100 mg/g Tween 80), the glucose yield of 90.12% could be achieved, which was dramatically increased compared to raw materials.
Collapse
Affiliation(s)
- Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Qian Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Shao-Ni Sun
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Xue-Fei Cao
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, No. 35 Tsinghua East Road, Haidian District, Beijing 100083, China
| |
Collapse
|
11
|
Ma Y, Chen S, Qi Y, Yang L, Wu L, He L, Li P, Qi X, Gao F, Ding Y, Zhang Z. An efficient, green and sustainable potassium hydroxide activated magnetic corn cob biochar for imidacloprid removal. CHEMOSPHERE 2022; 291:132707. [PMID: 34710451 DOI: 10.1016/j.chemosphere.2021.132707] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/19/2021] [Revised: 09/01/2021] [Accepted: 10/24/2021] [Indexed: 06/13/2023]
Abstract
The extensive use of imidacloprid (IMI) has led to its being frequently detected in natural water, also caused the potential damage to the ecosystem. Development of efficient, green and sustainable technique is demanded to eliminate this problem. A novel biochar (KMCBC) derived from agriculture waste of corn cob was first time co-modified by potassium hydroxide (KOH), ferric chloride (FeCl3) and zinc chloride (ZnCl2), which showed the greater adsorption amount (410 mg g-1 at 298 K) for imidacloprid (IMI). Pseudo-second-order kinetic and Langmuir isotherm models fitted well with the experimental data, together with the physicochemical characterization analysis, demonstrating that the adsorption process of IMI by KMCBC might be mainly controlled by micropore filling, π-π electron donor-acceptor and functional groups interactions (H-bonding and complexation). Additionally, the thermodynamics parameters suggested that IMI adsorption in this study was a spontaneous, endothermic and randomly increasing process. Besides, KMCBC owned the easy separation performance and promising environmental safety, also exhibited a high selective adsorption capacity regardless of solution pH (its optimum adsorption performance for IMI was obtained at pH = 5), inorganic ions strength and humic acid (HA) concentrations. The regenerated KMCBC (synergistic ultrasound/ethanol) could sustainably and efficiently adsorb IMI in the reuse cycles. Therefore, this study provided an efficient, green and sustainable adsorbent of KMCBC for IMI removal.
Collapse
Affiliation(s)
- Yongfei Ma
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Siyu Chen
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Yong Qi
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Lie Yang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Li Wu
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Liuyang He
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China
| | - Ping Li
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Xuebin Qi
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Feng Gao
- China-UK Water and Soil Resources Sustainable Utilization Joint Research Centre, Farmland Irrigation Research Institute, Chinese Academy of Agricultural Sciences, Xinxiang, 453002, China
| | - Yongzhen Ding
- Agro-Environmental Protection Institute, Ministry of Agriculture and Rural Affairs, Tianjin, 300191, China
| | - Zulin Zhang
- Hubei Key Laboratory of Mineral Resources Processing and Environment, School of Resources and Environmental Engineering, State Key Laboratory of Silicate Materials for Architectures, Wuhan University of Technology, Wuhan, 430070, China; The James Hutton Institute, Craigiebuckler, Aberdeen, AB15 8QH, UK.
| |
Collapse
|
12
|
Dai L, Jiang W, Jia R, Zhou X, Xu Y. Directional enhancement of 2-keto-gluconic acid production from enzymatic hydrolysate by acetic acid-mediated bio-oxidation with Gluconobacter oxydans. BIORESOURCE TECHNOLOGY 2022; 348:126811. [PMID: 35131459 DOI: 10.1016/j.biortech.2022.126811] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/17/2021] [Revised: 01/30/2022] [Accepted: 01/31/2022] [Indexed: 06/14/2023]
Abstract
An acetic acid-mediated bio-oxidation strategy with Gluconobacter oxydans was developed to produce valuable 2-ketogluconic acid from lignocellulosic biomass. Metabolically, glucose is firstly oxidized to gluconic acid and further oxidized to 2-keto-gluconic acid by Gluconobacter oxydans. As a specific inhibitor for microbial fermentation generated from pretreatment, acetic acid was validated to have a down-regulated effect on bio-oxidizing glucose to gluconic acid. Nevertheless, it significantly facilitated 2-keto-gluconic acid accumulation and improved gluconate dehydrogenase activity. In the presence of 5.0 g/L acetic acid, the yield of 2-keto-gluconic acid increased from 38.0% to 80.5% using pure glucose as feedstock with 1.5 g/L cell loading. Meanwhile, 44.6 g/L 2-keto-gluconic acid with a yield of 83.5% was also achieved from the enzymatic hydrolysate. 2-keto-gluconic acid production, found in this study, laid a theoretical foundation for the industrial production of 2-keto-gluconic acid by Gluconobacter oxydans using lignocellulosic materials.
Collapse
Affiliation(s)
- Lin Dai
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Wenfei Jiang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Runqian Jia
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| |
Collapse
|
13
|
Meng Y, Zhang C, Gong X, Lu J, Cheng Y, Tao Y, Wang H. A bio-based elastomer from cornstalk pith scaffold and natural rubber complexing with ferric ions: Preparation and mechanical properties. POLYMER 2022. [DOI: 10.1016/j.polymer.2022.124678] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/22/2023]
|
14
|
|
15
|
Zheng T, Yang L, Ding M, Huang C, Yao J. Metal-organic framework promoting high-solids enzymatic hydrolysis of untreated corncob residues. BIORESOURCE TECHNOLOGY 2022; 344:126163. [PMID: 34688859 DOI: 10.1016/j.biortech.2021.126163] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 10/14/2021] [Accepted: 10/16/2021] [Indexed: 06/13/2023]
Abstract
Metal-organic frameworks (MOFs) could serve as efficient matrixes to immobilize cellulase because of their high stability and porous morphology. Herein, the Zr-based MOFs (UiO-66 and UiO-66-NH2) assisted 20 wt% high-solids hydrolysis of untreated corncob residues (CRs) at low enzyme loading was investigated. Glucan hydrolysis yields increased to 60.55% and 71.47% by separately adding 4 g/L UiO-66 and UiO-66-NH2 at 5 FPU/g-glucan cellulase dosage. The maximum hydrolysis yield reached 90.01% at 10 FPU/g-glucan in the presence of 4 g/L UiO-66-NH2. Analysis of free protein concentration and cellulase activity suggested that MOFs effectively increased cellulase catalytic activity and stability, thus boosted CRs enzymatic hydrolysis efficiency. Additionally, UiO-66-NH2 immobilization gave a high catalytic activity because of the abundant anchor sites of NH2 groups. This research presents the promising future of MOFs' application in lignocellulosic biomass bioconversion and other areas requiring immobilized enzymes.
Collapse
Affiliation(s)
- Tianran Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Luan Yang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Meili Ding
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Chen Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
| | - Jianfeng Yao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
16
|
Long L, Sun L, Liu Z, Lin Q, Wang J, Ding S. Functional characterization of a GH62 family α-L-arabinofuranosidase from Eupenicillium parvum suitable for monosaccharification of corncob arabinoxylan in combination with key enzymes. Enzyme Microb Technol 2021; 154:109965. [PMID: 34933174 DOI: 10.1016/j.enzmictec.2021.109965] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/20/2021] [Accepted: 12/06/2021] [Indexed: 11/30/2022]
Abstract
Corncob rich in arabinoxylan is an important raw material widely used in bio-refinery. Complete saccharification of arabinoxylan depends on the synergism of different enzymes including α-L-arabinofuranosidase (ABF). This study aimed to investigate the functional characteristics of a new ABF EpABF62A belonging to glycoside hydrolase (GH) 62 family from the fungus Eupenicillium parvum, and to explore its potential in the saccharification of corncob arabinoxylan. The recombinant EpABF62A showed high activity against wheat arabinoxylan and rye arabinoxylan, with the optimal temperature of 55 °C and pH of 4.5. The protein contains an N-terminal cellulose-binding domain family 1 (CBM_1) domain, and displayed a 59.5% absorption rate to phosphoric acid swollen cellulose. Regioselectivity analysis indicated that the enzyme selectively removed α-1,2 or α-1,3 linked arabinofuranosyl residues on mono-substituted xylose residues on arabinoxylan. Corncob arabinoxylans (CAX1 or CAX2) with different (low or high) branching degrees were extracted from the raw material by alkaline hydrogen peroxide pretreatment and graded ethanol precipitation. Single EpABF62A removed 69.5% or 67.1% arabinose from CAX1 or CAX2, respectively. EpABF62A combined with a GH10 xylanase, a GH43 β-D-xylosidase and a GH67 α-glucuronidase released 75.0% or 64.5% xylose from CAX1 or CAX2, respectively. The addition of the four hemicellulases enhanced the saccharification the solid fraction of the pretreated corncob by the commercial cellulase Cellic® CTec2, and the conversion ratios of glucose, xylose and arabinose were up to 94.0%, 91.8% and 82.6%, respectively.
Collapse
Affiliation(s)
- Liangkun Long
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China
| | - Lu Sun
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhen Liu
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Qunying Lin
- Nanjing Institute for the Comprehensive Utilization of Wild Plants, Nanjing 211111, China
| | - Jing Wang
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Shaojun Ding
- Jiangsu Co-Innovation Center for Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Jiangsu Key Lab for the Chemistry & Utilization of Agricultural and Forest Biomass, Nanjing 210037, China.
| |
Collapse
|
17
|
Wu R, Liu W, Li L, Ren Q, Jiang C, Hou Q. Combination of hydrothermal and chemi-mechanical pretreatments to enhance enzymatic hydrolysis of poplar branches and insights on cellulase adsorption. BIORESOURCE TECHNOLOGY 2021; 342:126024. [PMID: 34600090 DOI: 10.1016/j.biortech.2021.126024] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/29/2021] [Revised: 09/20/2021] [Accepted: 09/21/2021] [Indexed: 06/13/2023]
Abstract
An integration of different pretreatments is important to overcome recalcitrance and realize efficient bioconversion of lignocellulosic biomass. This study aims at the effects of combination of hydrothermal pretreatment and different chemi-mechanical pretreatments on enzymatic hydrolysis, and understanding the enzymes adsorption mechanism. The combination of hydrothermal and chemi-mechanical pretreatments effectively improved the enzymatic hydrolysis of poplar substrates, in which the enzymatic hydrolysis of substrates pretreated by hydrothermal pretreatment + Fenton pretreatment + mechanical refining (HFM) was the highest (92.39% of glucose conversion yield, and 20.88 g/L of glucose concentration). The substrates' main characteristics were obviously changed after combined pretreatments, such as swelling ability and specific surface area of substrates were increased. The Langmuir adsorption model (R2 > 0.98) and pseudo second-order adsorption kinetic model (R2≈1) were well suitable to describe the adsorption of enzymes on substrates, meanwhile the adsorption mechanism was summarized.
Collapse
Affiliation(s)
- Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Long Li
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chuang Jiang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| |
Collapse
|
18
|
Yu Q, Baroutian S, Xie J. Hydrothermal co-hydrolysis of corncob/sugarcane bagasse/Broussonetia papyrifera blends: Kinetics, thermodynamics and fermentation. BIORESOURCE TECHNOLOGY 2021; 342:125923. [PMID: 34555749 DOI: 10.1016/j.biortech.2021.125923] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2021] [Revised: 09/04/2021] [Accepted: 09/07/2021] [Indexed: 06/13/2023]
Abstract
Biorefinery of biomass blends can achieve sustainable development of biofuel production. Herein, three lignocellulosic wastes with significant differences in chemical composition-namely corncob (CC), sugarcane bagasse (SB), and Broussonetia papyrifera (BP)-were selected to investigate their hydrothermal co-hydrolysis kinetics and thermodynamics of different biomass blends. Activation energies of hemicellulose decomposition (Ea1, 90.59 kJ/mol) for CC/SB were lower than those for CC (126.12 kJ/mol) and CC/SB/BP (153.62 kJ/mol). BP (having a high content of nitrogen sources) loading weakened the acidic autohydrolysis of CC/SB hemicellulose, but yielded stable products as indicated by the negative entropy value for CC/SB/BP hydrolysis. Cumulative feedback inhibition occurred among different biomass, and it could be minimized by controlling the blending ratio. The highest total xylose yield was 83.64% for CC/SB with a mass ratio of 2:1. Moreover, biomass blend of CC/SB/BP enabled complete utilization of hexose, pentose and amino acids by co-production of ethanol and microalga biomass.
Collapse
Affiliation(s)
- Qiang Yu
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, PR China.
| | - Saeid Baroutian
- Department of Chemical & Materials Engineering, Faculty of Engineering, The University of Auckland, Auckland 1010, New Zealand
| | - Jun Xie
- Institute of Biomass Engineering, Key Laboratory of Energy Plants Resource and Utilization, Ministry of Agriculture and Rural Affairs, Guangdong Engineering Technology Research Center of Agricultural and Forestry Biomass, South China Agricultural University, Guangzhou 510642, PR China
| |
Collapse
|
19
|
Li X, Ning C, Li L, Liu W, Ren Q, Hou Q. Fabricating lignin-containing cellulose nanofibrils with unique properties from agricultural residues with assistance of deep eutectic solvents. Carbohydr Polym 2021; 274:118650. [PMID: 34702469 DOI: 10.1016/j.carbpol.2021.118650] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/03/2021] [Revised: 09/01/2021] [Accepted: 09/03/2021] [Indexed: 12/27/2022]
Abstract
Lignocellulosic biomass-derived nanocellulose has been attracting more and more attentions due to its distinguished advantages and various applications, but its development has been restricted by the preparation especially with environmental friendly approach. Herein, lignin-containing cellulose nanofibrils (LCNF) was prepared from corncob via the combined pretreatment of choline chloride-based DES (ChCl-DES) and enzymatic hydrolysis followed by high-pressure homogenization. The effects of different types of ChCl-DES on the properties of LCNF were investigated and compared. The results showed that LCNF can be successfully fabricated through the combined pretreatments; the LCNF had an average diameter of 60-90 nm, exhibited good fluorescence, high thermal stability (up to 353 °C of Tmax), hydrophobicity, stability, and redispersibility in organic solvent; AC-LCNF showed well oriented arrangement, the highest hydrophobicity and fluorescence, and distinguished redispersibility especially in DMSO. ChCl-DES as one green and sustainable approach would realize efficient separation and high value-added utilization of agricultural residues.
Collapse
Affiliation(s)
- Xiaoyu Li
- Tianjin University of Science & Technology, Tianjin 300457, China
| | - Chenxi Ning
- Tianjin University of Science & Technology, Tianjin 300457, China
| | - Long Li
- Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Wei Liu
- Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Qian Ren
- Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin University of Science & Technology, Tianjin 300457, China.
| |
Collapse
|
20
|
Ji Q, Yu X, Yagoub AEGA, Chen L, Fakayode OA, Zhou C. Synergism of sweeping frequency ultrasound and deep eutectic solvents pretreatment for fractionation of sugarcane bagasse and enhancing enzymatic hydrolysis. ULTRASONICS SONOCHEMISTRY 2021; 73:105470. [PMID: 33535160 PMCID: PMC7851343 DOI: 10.1016/j.ultsonch.2021.105470] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2020] [Revised: 10/28/2020] [Accepted: 01/11/2021] [Indexed: 05/25/2023]
Abstract
Sugarcane bagasse (SCB) is an abundant agricultural waste in China and the conversion of the waste into plethora of useful resources is very vital. To achieve this, fractionation of the waste is highly important in the biomass biorefinery. The present study aims at investigating the synergistic role of deep eutectic solvents (DES) with sweeping frequency ultrasound (SFUS) and fixed frequency ultrasound (FFUS) in the fractionation of SCB to enhance the enzymatic saccharification process. Therefore, the effects of ultrasound (US) and DES conditions on the pretreatment efficiency were investigated. Under optimum SCB pretreatment conditions, FFUS (40 kHz, 60 min) + DES (choline chloride (ChCl)-lactic acid (LA), 120 °C, 3 h) and SFUS (40 kHz, 60 min) + DES (ChCl-LA, 120 °C, 3 h), the lignin removal rates were 80.13 and 85.62%, respectively. The hemicellulose removal rates were 78.08 and 90.46%, respectively; and the contents of glucose, xylose and arabinose in the liquid fractions after FFUS + DES pretreatment were 7.07, 17.95 and 3.01%, respectively. However, the yield of glucose, xylose, and cellobiose after enzymatic hydrolysis of the SFUS + DES pretreated SCB were 86.76, 38.68, and 20.76%. Analytical studies revealed that the SFUS + DES pretreatment can effectively destroy the ultrastructure of SCB and reduce the crystallinity of cellulose. Furthermore, the mechanism of pretreatment with SFUS + DES was proposed, which confirmed the excellent performance of SFUS + DES. Thus, the application of SFUS + DES pretreatment was able to improve the removal of lignin and hemicellulose from SCBs.
Collapse
Affiliation(s)
- Qinghua Ji
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Xiaojie Yu
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, China
| | - Abu El-Gasim A Yagoub
- Department of Food Science and Nutrition, College of Food and Agricultural Sciences, King Saud University, P.O. Box 2460, Riyadh 11451, Saudi Arabia
| | - Li Chen
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | | | - Cunshan Zhou
- School of Food and Biological Engineering, Jiangsu University, Zhenjiang 212013, China; School of Biological and Food Engineering, Chuzhou University, Chuzhou 239000, China; Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China.
| |
Collapse
|
21
|
Zheng Y, Yu Y, Lin W, Jin Y, Yong Q, Huang C. Enhancing the enzymatic digestibility of bamboo residues by biphasic phenoxyethanol-acid pretreatment. BIORESOURCE TECHNOLOGY 2021; 325:124691. [PMID: 33461121 DOI: 10.1016/j.biortech.2021.124691] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 05/09/2023]
Abstract
The high content of lignin in bamboo is considered as the major obstacle for its biorefining. In this work, a green, lignin-selective, and recyclable solvent of phenoxyethanol was coupled with acid solution to deconstruct recalcitrant structure of bamboo residues (BR) to boost its enzymatic digestibility. Results showed phenoxyethanol has excellent lignin-removal ability from 29.4% to 91.6% when phenoxyethanol:acid ratios increased from 0:1 to 4:1 at 120 °C. 82.5%-87.8% of cellulose was preserved in pretreated BR. The enzymatic digestibility of BR significantly improved from 20.0% to 91.3% when it was pretreated under optimized conditions. With lower enzyme dosages (10 FPU/g) and 5 recycled using of pretreatment liquor, pretreated BR still showed a good enzymatic digestibility of 67.4%-93.7% and 67.1-76.8%, respectively. Examination of physicochemical changes revealed that improvements to accessibility, reduction of crystallite size, decrease of surface lignin and hydrophobicity for pretreated BR showed positive correlations (R2 > 0.7) with their enzymatic digestibility.
Collapse
Affiliation(s)
- Yayue Zheng
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yuxin Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
22
|
Yang L, Ru Y, Xu S, Liu T, Tan L. Features correlated to improved enzymatic digestibility of corn stover subjected to alkaline hydrogen peroxide pretreatment. BIORESOURCE TECHNOLOGY 2021; 325:124688. [PMID: 33472126 DOI: 10.1016/j.biortech.2021.124688] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/19/2020] [Revised: 01/04/2021] [Accepted: 01/05/2021] [Indexed: 06/12/2023]
Abstract
As one of the leading pretreatment approaches, alkaline hydrogen peroxide (AHP) pretreatment can enhance the enzymatic digestibility of lignocellulose significantly. In this study, the glucan conversion of AHP pretreated corn stover (CS) without and with water-wash were 28.4% and 50.0% higher than that of raw material, respectively. In order to systematically understand its mechanism, analyses of the features of AHP pretreated and raw CS, such as specific surface area, crystallinity, zeta potential, water holding capacity and swelling capacity and others were performed. The weight-average molecular weight (Mw) of the sugars in the hydrolysate and the particle size distribution of the hydrolysis residue were also analyzed. These results explained why AHP-CS was more conducive to enzymatic hydrolysis. The deeper reason was that the removal of lignin and the destruction of hydrogen bonds within cellulose and hemicellulose increased the accessibility of cellulose and reduced the non-productive adsorption of cellulase, which significantly improved the enzymatic digestibility.
Collapse
Affiliation(s)
- Li Yang
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Yue Ru
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Shuai Xu
- Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| | - Tongjun Liu
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Jinan 250353, China.
| | - Liping Tan
- State Key Laboratory of Biobased Material and Green Papermaking, Qilu University of Technology, Shandong Academy of Sciences, Jinan 250353, China; Department of Bioengineering, Qilu University of Technology, Jinan 250353, China
| |
Collapse
|
23
|
Meng Y, Song F, Chen H, Cheng Y, Lu J, Wang H. Composited Gels from Nature Growing Scaffold: Synthesis, Properties, and Application. ACS APPLIED MATERIALS & INTERFACES 2021; 13:5498-5507. [PMID: 33475354 DOI: 10.1021/acsami.0c18504] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
As a nature ultralight, well-aligned porous and anisotropy feedstock, cornstalk pith (CSP) has not been exploited for material design. Herein, we use CSP as substrate to prepare multifunctional elastic composite gels. First, CSP is pretreated by ferric chloride then immersed in an unsaturated monomer solution, following by a polymerization to form enhanced networks. The ferric ions act as junction sites for the combination between the polymer chains and the CSP matrix, therefore, dynamically reversible bonds are constructed. The bonds dissipate the compression force by breaking the dynamic bonds and reconstruct when the loading is removed. The reconstructed dynamic bonds endow an antifatigue performance of the prepared gels, in the cyclic compression test conducting 100 times with a 50% strain, and the gel holds a 94% elastic recovery. Furtherly, oil/water separation, cushioning system and biobased sensor are developed on the basis of what the matrix endows and what the reversible bonds exhibit. The preparation method in this study enriches a simply and high value-added method to utilize biobased material.
Collapse
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Fuyu Song
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Hang Chen
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning China
| |
Collapse
|
24
|
Qin X, Duan C, Feng X, Zhang Y, Dai L, Xu Y, Ni Y. Integrating phosphotungstic acid-assisted prerefining with cellulase treatment for enhancing the reactivity of kraft-based dissolving pulp. BIORESOURCE TECHNOLOGY 2021; 320:124283. [PMID: 33120062 DOI: 10.1016/j.biortech.2020.124283] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/09/2020] [Revised: 10/13/2020] [Accepted: 10/14/2020] [Indexed: 06/11/2023]
Abstract
Viscosity control and reactivity enhancement are of practical importance for high-quality dissolving pulp manufacturing. In this work, we demonstrate a two-step activating process consisting of a phosphotungstic acid (PTA)-assisted prerefining (PTA/R pretreatment), followed by cellulase treatment for this purpose. The cellulase adsorption can increase from 29.1% to 49.7% as a result of PTA/R pretreatment (8000 r at 90 °C). The viscosity of the resultant pulp decreases from 665 to 430 mL/g, while its Fock reactivity increases from 31.5% to 74.4% under a low-loading cellulase treatment (0.5 mg cellulase /g odp), which mainly due to the fact that the PTA/R pretreatment can increase fiber accessibility and viscosity control, thus facilitating cellulase adsorption and reaction efficiency. Moreover, PTA also shows a high recyclability/ reusability (more than 86%) during the PTA/R pretreatment. Therefore, the new proposed two-step activating process provides a green, and efficient pathway for large-scale manufacturing of high-quality dissolving pulp.
Collapse
Affiliation(s)
- Xiaoyu Qin
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Chao Duan
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Xiaomeng Feng
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yanling Zhang
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| | - Lei Dai
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yongjian Xu
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China
| | - Yonghao Ni
- College of Bioresources Chemical and Materials Engineering, Shaanxi Provincial Key Laboratory of Papermaking Technology and Specialty Paper Development, Shaanxi University of Science and Technology, Xi'an 710021, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
25
|
Li K, Zhao L, He B. Probing Effect of Papirindustriens Forskningsinstitut (PFI) Refining on Aggregation Structure of Cellulose: Crystal Packing and Hydrogen-Bonding Network. Polymers (Basel) 2020; 12:E2912. [PMID: 33291740 PMCID: PMC7761889 DOI: 10.3390/polym12122912] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Revised: 12/02/2020] [Accepted: 12/02/2020] [Indexed: 11/17/2022] Open
Abstract
Supramolecular structure is the critical factor that affects the properties of cellulosic fibers. This article studied the action of Papirindustriens forskningsinstitut (PFI) refining on the molecular aggregation and hydrogen bonding network, and tried to explore the relationship between the crystal packing and hydrogen-bonding network in cellulosic fibers. The results showed that the polymorph, H-bonding distance, and H-bonding energy of various H-bonds remained almost unchanged, while the crystalline index, crystallite size, and content of various H-bonds changed with refining. Therein, the content of the inter-molecular O(6)H⋯O(3') H-bonds was significantly correlated with the crystalline index that was obtained in intensities of the XRD peaks. The Pearson correlation coefficient between them was 0.888 (p < 0.05) for softwood fibers and 0.889 (p < 0.05) for hardwood fibers, respectively. It can be concluded that the variations of accessibility, swelling, and fibrillation were closely related to the supramolecular structure and the intermolecular H-bonds play an important role in the crystal packing of cellulose.
Collapse
Affiliation(s)
| | - Lihong Zhao
- State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, 381 Wushan Rd., Tianhe District, Guangzhou 510640, China; (K.L.); (B.H.)
| | | |
Collapse
|
26
|
Liu W, Ren Q, Wu R, Wang B, Hu Y, Hou Q, Ni Y. Insight on adsorption of cellulase on wet ground corncob residues and its evaluation by multivariate linear analysis. BIORESOURCE TECHNOLOGY 2020; 318:124107. [PMID: 32942091 DOI: 10.1016/j.biortech.2020.124107] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2020] [Revised: 09/03/2020] [Accepted: 09/04/2020] [Indexed: 06/11/2023]
Abstract
Understanding the adsorption behavior and the interaction between substrates and enzymes are critical to improving enzymatic hydrolysis efficiency and reducing bioconversion cost. Herein, the adsorption of cellulase on wet ground corncob residues was studied, and the effects of main characteristics of wet ground corncob residues on adsorption capacity were quantitatively analyzed with the combination of principal component analysis and multiple linear regression models. The results showed that the adsorption of cellulase on wet ground corncob residues was fitted well with Langmuir isotherm adsorption and pseudo second-order kinetics model, the adsorption rate and adsorption capacity were greatly enhanced with increasing grinding time; the multiple linear regression models describing the relationship between main characteristics of corncob residues and adsorption capacity to cellulase were established; the significance of these characteristics were in the following order: average particle size, crystallinity index, specific surface area, surface lignin concentration, water retention value, and surface charge density.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Bing Wang
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Hu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
27
|
Preparation of porous conductive cellulose nanofibril based composite aerogels and performance comparison with films. REACT FUNCT POLYM 2020. [DOI: 10.1016/j.reactfunctpolym.2020.104748] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022]
|
28
|
Liu W, Wu R, Hu Y, Ren Q, Hou Q, Ni Y. Improving enzymatic hydrolysis of mechanically refined poplar branches with assistance of hydrothermal and Fenton pretreatment. BIORESOURCE TECHNOLOGY 2020; 316:123920. [PMID: 32763803 DOI: 10.1016/j.biortech.2020.123920] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Revised: 07/22/2020] [Accepted: 07/24/2020] [Indexed: 06/11/2023]
Abstract
The combination of different pretreatment methods can effectively overcome recalcitrance of lignocellulosic biomass to ensure its highly efficient conversion into bio-based products. In this study, the combined pretreatments of chemical methods (hydrothermal treatment and Fenton treatment) with mechanical refining were used to improve the enzymatic hydrolysis efficiency of poplar branches. The results indicated that hydrothermal pretreatment and Fenton pretreatment can effectively improve the enzymatic hydrolysis of poplar substrates, e.g., the maximum glucose conversion yield and glucose concentration reached 92.4% and 20.8 g/L, respectively. The pre-hydrolysates contained some valuable components such as monosaccharides, oligosaccharides, acetic acid, furfural, and hydroxymethylfurfural. The main characteristics (specific surface area, water retention value, fines content, and surface lignin concentration) of poplar substrates were obviously changed by the combined pretreatment, which benefit the enzymatic hydrolysis.
Collapse
Affiliation(s)
- Wei Liu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China; Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada.
| | - Ruijie Wu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Yingying Hu
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qian Ren
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China
| | - Qingxi Hou
- Tianjin Key Laboratory of Pulp & Paper, Tianjin University of Science & Technology, Tianjin 300457, China; State Key Laboratory of Pulp and Paper Engineering, South China University of Technology, Guangzhou 510640, China.
| | - Yonghao Ni
- Department of Chemical Engineering, University of New Brunswick, Fredericton, New Brunswick E3B 5A3, Canada
| |
Collapse
|
29
|
Teo HL, Wahab RA. Towards an eco-friendly deconstruction of agro-industrial biomass and preparation of renewable cellulose nanomaterials: A review. Int J Biol Macromol 2020; 161:1414-1430. [PMID: 32791266 DOI: 10.1016/j.ijbiomac.2020.08.076] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2020] [Revised: 08/05/2020] [Accepted: 08/08/2020] [Indexed: 12/21/2022]
Abstract
There is an array of methodologies to prepare nanocellulose (NC) and its fibrillated form (CNF) with enhanced physicochemical characteristics. However, acids, bases or organosolv treatments on biomass are far from green, and seriously threaten the environment. Current approach to produce NC/CNF from biomass should be revised and embrace the concept of sustainability and green chemistry. Although hydrothermal process, high-pressure homogenization, ball milling technique, deep eutectic solvent treatment, enzymatic hydrolysis etc., are the current techniques for producing NC, the route designs remain imperfect. Herein, this review highlights the latest methodologies in the pre-processing and isolating of NC/CNF from lignocellulose biomass, by largely focusing on related papers published in the past two years till date. This article also explores the latest advancements in environmentally friendly NC extraction techniques that cooperatively use ball milling and enzymatic hydrolytic routes as an eco-efficient way to produce NC/CNF, alongside the potential applications of the nano-sized celluloses.
Collapse
Affiliation(s)
- Hwee Li Teo
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia
| | - Roswanira Abdul Wahab
- Department of Chemistry, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia; Enzyme Technology and Green Synthesis Group, Faculty of Science, Universiti Teknologi Malaysia, 81310 UTM Johor Bahru, Johor, Malaysia.
| |
Collapse
|
30
|
Han J, Cao R, Zhou X, Xu Y. An integrated biorefinery process for adding values to corncob in co-production of xylooligosaccharides and glucose starting from pretreatment with gluconic acid. BIORESOURCE TECHNOLOGY 2020; 307:123200. [PMID: 32222689 DOI: 10.1016/j.biortech.2020.123200] [Citation(s) in RCA: 46] [Impact Index Per Article: 11.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2020] [Revised: 03/14/2020] [Accepted: 03/14/2020] [Indexed: 06/10/2023]
Abstract
Increasing attention has been paid to the production of high value-added products from lignocellulosic biomass. This study aims to valorize corncob, utilizing it as feedstock for a multi-biorefinery framework, using gluconic acid in the pretreatment. In attempts to maximize yield of xylooligosaccharides, corncob was first subjected to hydrolysis by gluconic acid using response surface methodology, from which the maximum xylooligosaccharides yield of 56.2% was achieved using 0.6 mol/L gluconic acid at 154 °C for 47 min. Results indicated that gluconic acid was an effective solvent for xylooligosaccharides production: a total of 180 g of xylooligosaccharides was obtained from 1 kg corncob as a result of hydrolysis. Moreover, 86.3% conversion of cellulose was achieved from enzymatic hydrolysis of gluconic acid-treated corncob at 10% solids loading. This study presents a strategy for valorizing corncob using it to produce xylooligosaccharides and glucose, which should pave the way for valorizing other agriculture wastes.
Collapse
Affiliation(s)
- Jian Han
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Rou Cao
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Xin Zhou
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China
| | - Yong Xu
- Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, People's Republic of China; Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, People's Republic of China; Jiangsu Province Key Laboratory of Green Biomass-based Fuels and Chemicals, Nanjing 210037, People's Republic of China.
| |
Collapse
|
31
|
Lin W, Xing S, Jin Y, Lu X, Huang C, Yong Q. Insight into understanding the performance of deep eutectic solvent pretreatment on improving enzymatic digestibility of bamboo residues. BIORESOURCE TECHNOLOGY 2020; 306:123163. [PMID: 32182471 DOI: 10.1016/j.biortech.2020.123163] [Citation(s) in RCA: 104] [Impact Index Per Article: 26.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/02/2020] [Revised: 03/05/2020] [Accepted: 03/06/2020] [Indexed: 05/12/2023]
Abstract
Deep eutectic solvent (DES) is a promising pretreatment for improving enzymatic digestibility of lignocellulosic material by altering the physicochemical properties. However, few work has been done to quantitatively analysis the physicochemical properties changes of lignocellulosic material with enzymatic digestibility. In this work, DES pretreatment with different molar ratios of choline chloride/lactic acid was carried out on bamboo residues and respective enzymatic digestibility was investigated and linearly fitted with corresponding physicochemical features changes of the pretreated bamboo residues. Results showed that enzymatic digestibility of DES-pretreated bamboo residues was enhanced with the increasing molar ratio of choline chloride/lactic acid, which was due to DES pretreatment's ability to remove lignin and xylan, reduce the degree of polymerization of cellulose, enhance the crystallite size of cellulose, and improve cellulose accessibility. Several compelling linear correlations (R2 = 0.6-0.9) were observable between enzymatic digestibility and these changes of physicochemical properties, demonstrating how DES pretreatment improve the enzymatic digestibility.
Collapse
Affiliation(s)
- Wenqian Lin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Sheng Xing
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Yongcan Jin
- Department of Paper Science and Technology, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomin Lu
- Department of Forest Biomaterials, North Carolina State University, Campus Box 8005, Raleigh, NC 27695-8005, USA
| | - Caoxing Huang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China.
| | - Qiang Yong
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
32
|
Lu ZY, Zhong JJ. Effect of furfural addition on validamycin-A production in fermentation of Streptomyces hygroscopicus 5008. Process Biochem 2020. [DOI: 10.1016/j.procbio.2020.03.002] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
|
33
|
Meng Y, Liu T, Yu S, Cheng Y, Lu J, Yuan X, Wang H. Biomimic-Inspired and Recyclable Nanogel for Contamination Removal from Water and the Application in Treating Bleaching Effluents. Ind Eng Chem Res 2020. [DOI: 10.1021/acs.iecr.9b07039] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
Affiliation(s)
- Yi Meng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Tanglong Liu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Shanshan Yu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Yi Cheng
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Jie Lu
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| | - Xianzheng Yuan
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science and Engineering, Shandong University, Qingdao, Shandong 266237, P. R. China
| | - Haisong Wang
- School of Light Industry and Chemical Engineering, Dalian Polytechnic University, Dalian 116034, Liaoning, China
| |
Collapse
|
34
|
Lu X, Ma X, Chen X, Yao Z, Zhang C. Co-hydrothermal carbonization of polyvinyl chloride and corncob for clean solid fuel production. BIORESOURCE TECHNOLOGY 2020; 301:122763. [PMID: 31972403 DOI: 10.1016/j.biortech.2020.122763] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/25/2019] [Revised: 01/04/2020] [Accepted: 01/06/2020] [Indexed: 06/10/2023]
Abstract
The improvement of dechlorination efficiency remains an important challenge during co-hydrothermal carbonization (co-HTC) of polyvinyl chloride (PVC). In this work, co-HTC of biomass and PVC at different mixing ratios (30%-70%) and feed-water pH (3-11) was proposed to further improve the dechlorination efficiency. In terms of water solvent, the dechlorination efficiency of co-HTC process (87.83%-93.63%) was higher than that of individual HTC of polyvinyl chloride (87.44%). In case of organic acid/alkali solvents, the dechlorination efficiency further increased to 95.20% at pH = 5. Particularly, the hydrochars derived from co-HTC showed high fuel ratio (0.71-0.99) and their higher heating value reached approximately 29.16-32.83 MJ/kg. The TGA results showed that the combustion behaviors of hydrochars derived from co-HTC got better compared with that of hydrochar derived from PVC. Therefore, co-HTC can realize sustainable utilization of PVC towards clean solid fuels. This work also sheds light on the potential of organic acid in dechlorination treatment.
Collapse
Affiliation(s)
- Xiaoluan Lu
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| | - Xiaoqian Ma
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China.
| | - Xinfei Chen
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| | - Zhongliang Yao
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| | - Chaoyue Zhang
- Guangdong Province Key Laboratory of Efficient and Clean Energy Utilization, School of Electric Power, South China University of Technology, Guangzhou 510640, China
| |
Collapse
|