1
|
Khoo YS, Tjong TC, Chew JW, Hu X. Techniques for recovery and recycling of ionic liquids: A review. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 922:171238. [PMID: 38423336 DOI: 10.1016/j.scitotenv.2024.171238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/24/2023] [Revised: 02/16/2024] [Accepted: 02/22/2024] [Indexed: 03/02/2024]
Abstract
Due to beneficial properties like non-flammability, thermal stability, low melting point and low vapor pressure, ionic liquids (ILs) have gained great interest from engineers and researchers in the past decades to replace conventional solvents. The superior characteristics of ILs make them promising for applications in fields as wide-ranging as pharmaceuticals, foods, nanoparticles synthesis, catalysis, electrochemistry and so on. To alleviate the high cost and environmental impact of ILs, various technologies have been reported to recover and purify the used ILs, as well as recycling the ILs. The aim of this article is to overview the state-of-the-art research on the recovery and recycling technologies for ILs including membrane technology, distillation, extraction, aqueous two-phase system (ATPS) and adsorption. In addition, challenges and future perspectives on ILs recovery are discussed. This review is expected to provide valuable insights for developing effective and environmentally friendly recovery methods for ILs.
Collapse
Affiliation(s)
- Ying Siew Khoo
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore
| | - Tommy Chandra Tjong
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore
| | - Jia Wei Chew
- RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore; School of Chemistry, Chemical Engineering and Biotechnology, Nanyang Technological University (NTU), 62 Nanyang Drive, 637459, Singapore; Chemical Engineering, Chalmers University of Technology, 412 96 Gothenburg, Sweden.
| | - Xiao Hu
- School of Materials Science and Engineering, Nanyang Technological University (NTU), 50 Nanyang Ave, Block N4.1, 639798, Singapore; RGE-NTU Sustainable Textile Research Centre, Nanyang Technological University (NTU), 639798, Singapore.
| |
Collapse
|
2
|
Zhou T, Gui C, Sun L, Hu Y, Lyu H, Wang Z, Song Z, Yu G. Energy Applications of Ionic Liquids: Recent Developments and Future Prospects. Chem Rev 2023; 123:12170-12253. [PMID: 37879045 DOI: 10.1021/acs.chemrev.3c00391] [Citation(s) in RCA: 8] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/27/2023]
Abstract
Ionic liquids (ILs) consisting entirely of ions exhibit many fascinating and tunable properties, making them promising functional materials for a large number of energy-related applications. For example, ILs have been employed as electrolytes for electrochemical energy storage and conversion, as heat transfer fluids and phase-change materials for thermal energy transfer and storage, as solvents and/or catalysts for CO2 capture, CO2 conversion, biomass treatment and biofuel extraction, and as high-energy propellants for aerospace applications. This paper provides an extensive overview on the various energy applications of ILs and offers some thinking and viewpoints on the current challenges and emerging opportunities in each area. The basic fundamentals (structures and properties) of ILs are first introduced. Then, motivations and successful applications of ILs in the energy field are concisely outlined. Later, a detailed review of recent representative works in each area is provided. For each application, the role of ILs and their associated benefits are elaborated. Research trends and insights into the selection of ILs to achieve improved performance are analyzed as well. Challenges and future opportunities are pointed out before the paper is concluded.
Collapse
Affiliation(s)
- Teng Zhou
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR 999077, China
- HKUST Shenzhen-Hong Kong Collaborative Innovation Research Institute, Futian, Shenzhen 518048, China
| | - Chengmin Gui
- State Key Laboratory of Chemical Resource Engineering, Beijing University of Chemical Technology, Beijing 100029, China
| | - Longgang Sun
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Yongxin Hu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Hao Lyu
- Sustainable Energy and Environment Thrust, The Hong Kong University of Science and Technology (Guangzhou), Nansha, Guangzhou 511400, China
| | - Zihao Wang
- Department for Process Systems Engineering, Max Planck Institute for Dynamics of Complex Technical Systems, Sandtorstr. 1, D-39106 Magdeburg, Germany
| | - Zhen Song
- State Key Laboratory of Chemical Engineering, School of Chemical Engineering, East China University of Science and Technology, Shanghai 200237, China
| | - Gangqiang Yu
- Faculty of Environment and Life, Beijing University of Technology, 100 Ping Le Yuan, Chaoyang District, Beijing 100124, China
| |
Collapse
|
3
|
Cheirsilp B, Maneechote W, Srinuanpan S, Angelidaki I. Microalgae as tools for bio-circular-green economy: Zero-waste approaches for sustainable production and biorefineries of microalgal biomass. BIORESOURCE TECHNOLOGY 2023; 387:129620. [PMID: 37544540 DOI: 10.1016/j.biortech.2023.129620] [Citation(s) in RCA: 10] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/25/2023] [Revised: 07/31/2023] [Accepted: 08/01/2023] [Indexed: 08/08/2023]
Abstract
Microalgae are promising organisms that are rapidly gaining much attention due to their numerous advantages and applications, especially in biorefineries for various bioenergy and biochemicals. This review focuses on the microalgae contributions to Bio-Circular-Green (BCG) economy, in which zero-waste approaches for sustainable production and biorefineries of microalgal biomass are introduced and their possible integration is discussed. Firstly, overviews of wastewater upcycling and greenhouse gas capture by microalgae are given. Then, a variety of valuable products from microalgal biomass, e.g., pigments, vitamins, proteins/peptides, carbohydrates, lipids, polyunsaturated fatty acids, and exopolysaccharides, are summarized to emphasize their biorefinery potential. Techno-economic and environmental analyses have been used to evaluate sustainability of microalgal biomass production systems. Finally, key issues, future perspectives, and challenges for zero-waste microalgal biorefineries, e.g., cost-effective techniques and innovative integrations with other viable processes, are discussed. These strategies not only make microalgae-based industries commercially feasible and sustainable but also reduce environmental impacts.
Collapse
Affiliation(s)
- Benjamas Cheirsilp
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand.
| | - Wageeporn Maneechote
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand
| | - Sirasit Srinuanpan
- Department of Biology, Faculty of Science, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Microbial Diversity and Sustainable Utilization, Chiang Mai University, Chiang Mai 50200, Thailand; Chiang Mai Research Group for Carbon Capture and Storage, Chiang Mai University, Chiang Mai 50200, Thailand; Center of Excellence in Materials Science and Technology, Chiang Mai University, Chiang Mai 50200, Thailand
| | - Irini Angelidaki
- Program of Biotechnology, Center of Excellence in Innovative Biotechnology for Sustainable Utilization of Bioresources, Faculty of Agro-Industry, Prince of Songkla University, Hat Yai, Songkhla 90110, Thailand; Department of Chemical and Biochemical Engineering, Technical University of Denmark, Kgs Lyngby DK-2800, Denmark
| |
Collapse
|
4
|
Zhang Z, Zhang J, Li M, Jin X, Yao L, Wang W, Liu J, Li Z. Combination of switchable hydrophilic solvent liquid-liquid microextraction with QuEChERS for trace determination of triazole fungicide pesticides by GC-MS. ANAL SCI 2023:10.1007/s44211-023-00324-6. [PMID: 36947336 DOI: 10.1007/s44211-023-00324-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2022] [Accepted: 03/09/2023] [Indexed: 03/23/2023]
Abstract
This work first proposed a novel green and efficient method based on Quick, Easy, Cheap, Efficient, Rugged, and Safe pretreatment (QuEChERS) combined with switchable hydrophilic solvent homogeneous liquid-liquid microextraction (SHS-HLLME) for trace determination of triazole fungicides (TFs) in agricultural products such as vegetables and fruits by gas chromatography-mass spectrometry (GC-MS). N,N-Dimethyl benzylamine was used for the synthesis of SHS. Box-Behnken design was applied for the optimization of extraction conditions and a mathematical model was obtained. Ultimately, 0.50 mL SHS, 1.0 mL 10 mol L-1 sodium hydroxide, and 45 s ultrasonic time were determined as optimal conditions for the SHS-HLLME method. The limit of detection and limit of quantification determined using the optimal method (SHS-HLLME/GC-MS) were 0.13-0.27 ng mL-1 and 0.43-0.90 ng mL-1, respectively. In addition, the SHS-HLLME method under optimal conditions was combined with the traditional QuEChERS method to realize the advancement of the SHS-HLLME method from simple to complex matrix analysis, and the QuEChERS-SHS-HLLME method was successfully applied to the analysis of TFs in cucumbers, tomatoes, watermelon and grapes in agricultural products. Matrix-matched calibration standards were used to improve the accuracy of TFs in spiked cucumber samples to obtain recovery results close to 100%. It was shown that the new method is green and rapid, enabling fast and inexpensive sample pretreatment with up to 100-fold enrichment factor and low detection limit compared with the original QuEChERS method.
Collapse
Affiliation(s)
- Zhihui Zhang
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jingyu Zhang
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Mufei Li
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China
| | - Xiangzi Jin
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Liping Yao
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Wenyuan Wang
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China
| | - Jinsong Liu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou, 310012, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, No. 18, Chaowang Road, Xiacheng District, Hangzhou, 310014, Zhejiang, People's Republic of China.
| |
Collapse
|
5
|
Zhu QH, Zhang GH, Zhang L, Wang SL, Fu J, Wang YH, Ma L, He L, Tao GH. Solvent-Responsive Reversible and Controllable Conversion between a Polyimine Membrane and an Organic Molecule Cage. J Am Chem Soc 2023; 145:6177-6183. [PMID: 36857470 DOI: 10.1021/jacs.2c12088] [Citation(s) in RCA: 7] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/03/2023]
Abstract
Adaptive bionic self-correcting behavior offers an attractive property for chemical systems. Here, based on the dynamic feature of imine formation, we propose a solvent-responsive strategy for smart switching between an amorphous ionic polyimine membrane and a crystalline organic molecule cage without the addition of other building blocks. To adapt to solvent environmental constraints, the aldehyde and amine components undergo self-correction to form a polymer network or a molecular cage. Studies have shown that the amorphous film can be switched in acetonitrile to generate a discrete cage with bright birefringence under polarized light. Conversely, the membrane from the cage crystal conversion can be regained in ethanol. Such a membrane-cage interconversion can be cycled continuously at least 5 times by switching the two solvents. This work builds a bridge between the polymer network and crystalline molecules and offers prospects for smart dynamic materials.
Collapse
Affiliation(s)
- Qiu-Hong Zhu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hao Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lei Zhang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | | | - Jie Fu
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Yuan-Hao Wang
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Lijian Ma
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Ling He
- College of Chemistry, Sichuan University, Chengdu 610064, China
| | - Guo-Hong Tao
- College of Chemistry, Sichuan University, Chengdu 610064, China
| |
Collapse
|
6
|
Sneha M, Sowmya S, Premalatha M, Mathivanan K, Muthukumar K, Mathimani T. Multifarious extraction methodologies for ameliorating lipid recovery from algae. ENVIRONMENTAL RESEARCH 2023; 218:114978. [PMID: 36495964 DOI: 10.1016/j.envres.2022.114978] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/28/2022] [Revised: 11/16/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Amongst the current alternatives, algae were proven to be a promising source of biofuel, which is renewable and capable of meeting world demand for transportation fuels. However, a suitable lipid extraction method that efficiently releases the lipids from different algal strains remains a bottleneck. The multifarious pretreatment methods are prevalent in this field of lipid extraction, and therefore, this article has critically reviewed the various lipid extraction methods for ameliorating the lipid yield from algae, irrespective of the strains/species. Physical, mechanical, and chemical are the different types of pretreatment methods. In this review, methodologies such as homogenization, sonication, Soxhlet extraction, microwave treatment, and bead-beating, have been studied in detail and are the most commonly used methods for lipid extraction. Specific advanced/emerging processes such as supercritical CO2 extraction, ionic liquid, and CO2 switchable solvent-based algal lipid extraction are yet to be demonstrated at pilot-scale, though promising. The extraction of lipids has to be financially conducive, environmentally sustainable, and industrially applicable for further conversion into biodiesel. Hence, this paper discusses variable pretreatment for lipid extraction and imparts a comparative analysis to elect an efficient, economically sound lipid extraction method for pilot-scale biodiesel production.
Collapse
Affiliation(s)
- Mohapatra Sneha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - S Sowmya
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - M Premalatha
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India
| | - Krishnamurthy Mathivanan
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Krishnan Muthukumar
- Department of Petrochemical Technology, University College of Engineering, Bharathidasan Institute of Technology Campus, Anna University, Tiruchirappalli, 620 024, Tamil Nadu, India
| | - Thangavel Mathimani
- Department of Energy and Environment, National Institute of Technology Tiruchirappalli, Tamil Nadu, India.
| |
Collapse
|
7
|
Extraction of Bioactive Compounds from C. vulgaris Biomass Using Deep Eutectic Solvents. MOLECULES (BASEL, SWITZERLAND) 2023; 28:molecules28010415. [PMID: 36615604 PMCID: PMC9824854 DOI: 10.3390/molecules28010415] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Revised: 12/22/2022] [Accepted: 12/29/2022] [Indexed: 01/06/2023]
Abstract
C. vulgaris microalgae biomass was employed for the extraction of valuable bioactive compounds with deep eutectic-based solvents (DESs). Particularly, the Choline Chloride (ChCl) based DESs, ChCl:1,2 butanediol (1:4), ChCl:ethylene glycol (1:2), and ChCl:glycerol (1:2) mixed with water at 70/30 w/w ratio were used for that purpose. The extracts' total carotenoid (TCC) and phenolic contents (TPC), as well as their antioxidant activity (IC50), were determined within the process of identification of the most efficient solvent. This screening procedure revealed ChCl:1,2 butanediol (1:4)/H2O 70/30 w/w as the most compelling solvent; thus, it was employed thereafter for the extraction process optimization. Three extraction parameters, i.e., solvent-to-biomass ratio, temperature, and time were studied regarding their impact on the extract's TCC, TPC, and IC50. For the experimental design and process optimization, the statistical tool Response Surface Methodology was used. The resulting models' predictive capacity was confirmed experimentally by carrying out two additional extractions under conditions different from the experimental design.
Collapse
|
8
|
Oh YK, Kim S, Ilhamsyah DPA, Lee SG, Kim JR. Cell disruption and lipid extraction from Chlorella species for biorefinery applications: Recent advances. BIORESOURCE TECHNOLOGY 2022; 366:128183. [PMID: 36307027 DOI: 10.1016/j.biortech.2022.128183] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Revised: 10/18/2022] [Accepted: 10/18/2022] [Indexed: 06/16/2023]
Abstract
Chlorella is a promising microalga for CO2-neutral biorefinery that co-produces drop-in biofuels and multiple biochemicals. Cell disruption and selective lipid extraction steps are major technical bottlenecks in biorefinement because of the inherent robustness and complexity of algal cell walls. This review focuses on the state-of-the-art achievements in cell disruption and lipid extraction methods for Chlorella species within the last five years. Various chemical, physical, and biological approaches have been detailed theoretically, compared, and discussed in terms of the degree of cell wall disruption, lipid extractability, chemical toxicity, cost-effectiveness, energy use, scalability, customer preferences, environment friendliness, and synergistic combinations of different methods. Future challenges and prospects of environmental-friendly and efficient extraction technologies are also outlined for practical applications in sustainable Chlorella biorefineries. Given the diverse industrial applications of Chlorella, this review may provide useful information for downstream processing of the advanced biorefineries of other algae genera.
Collapse
Affiliation(s)
- You-Kwan Oh
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea.
| | - Sangui Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | | | - Sun-Gu Lee
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| | - Jung Rae Kim
- School of Chemical Engineering, Pusan National University (PNU), Busan 46241, Republic of Korea
| |
Collapse
|
9
|
Biodiesel production from wet microalgae: Progress and challenges. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102902] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022]
|
10
|
Ideris F, Zamri MFMA, Shamsuddin AH, Nomanbhay S, Kusumo F, Fattah IMR, Mahlia TMI. Progress on Conventional and Advanced Techniques of In Situ Transesterification of Microalgae Lipids for Biodiesel Production. ENERGIES 2022; 15:7190. [DOI: 10.3390/en15197190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/02/2023]
Abstract
Global warming and the depletion of fossil fuels have spurred many efforts in the quest for finding renewable, alternative sources of fuels, such as biodiesel. Due to its auxiliary functions in areas such as carbon dioxide sequestration and wastewater treatment, the potential of microalgae as a feedstock for biodiesel production has attracted a lot of attention from researchers all over the world. Major improvements have been made from the upstream to the downstream aspects related to microalgae processing. One of the main concerns is the high cost associated with the production of biodiesel from microalgae, which includes drying of the biomass and the subsequent lipid extraction. These two processes can be circumvented by applying direct or in situ transesterification of the wet microalgae biomass, hence substantially reducing the cost. In situ transesterification is considered as a significant improvement to commercially produce biodiesel from microalgae. This review covers the methods used to extract lipids from microalgae and various in situ transesterification methods, focusing on recent developments related to the process. Nevertheless, more studies need to be conducted to further enhance the discussed in situ transesterification methods before implementing them on a commercial scale.
Collapse
|
11
|
Zhang J, Li S, Yao L, Yi Y, Shen L, Li Z, Qiu H. Responsive switchable deep eutectic solvents: A review. CHINESE CHEM LETT 2022. [DOI: 10.1016/j.cclet.2022.107750] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|
12
|
Sun Y, Yao C, Zeng J, Zhang Y, Zhang Y. Eco-friendly deep eutectic solvents skeleton patterned molecularly imprinted polymers for the separation of sinapic acid from agricultural wastes. Colloids Surf A Physicochem Eng Asp 2022. [DOI: 10.1016/j.colsurfa.2022.128441] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
|
13
|
Lv H, Jin X, Zhang Z, Chen Y, Zhu G, Li Z, Lee M. Ultrasound-assisted switchable hydrophilic solvent-based homogeneous liquid-liquid microextraction for the determination of triazole fungicides in environmental water by GC-MS. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2022; 14:1187-1193. [PMID: 35230360 DOI: 10.1039/d1ay02109e] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
A new method was developed for the determination of three triazole fungicides in environmental water samples by gas chromatography-mass spectrometry (GC-MS) based on ultrasonic assisted switchable hydrophilic solvent homogeneous liquid-liquid microextraction. As a switchable hydrophilic solvent, N,N-dimethylcyclohexylamine (DMCHA) does not require a dispersant or centrifugation. Ultrasound assistance is helpful to speed up the extraction of target compounds and can reduce the pretreatment time. The entire pretreatment process of this method only takes 5 minutes. Using the Box-Behnken design as the means of optimization, optimal extraction conditions were obtained through a mathematical model. Good linearity was obtained in the range of 5-500 μg L-1, and the correlation coefficient of target compounds was greater than 0.999. The matrix spiked recoveries were between 81.3% and 111.1% and the detection limit was between 0.46 and 0.99 μg L-1. Intraday relative standard deviation (n = 3) was 13.0-13.9% at 100 μg L-1. Finally, it was concluded that the method is a rapid, efficient and simple method for the analysis of triazole fungicides in water.
Collapse
Affiliation(s)
- Huihao Lv
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Xiangzi Jin
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Zhihui Zhang
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Yao Chen
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Guohua Zhu
- Zhejiang Key Laboratory of Ecological and Environmental Monitoring, Forewarning and Quality Control, Zhejiang Ecological and Environmental Monitoring Center, Hangzhou 310012, China.
| | - Zuguang Li
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou 310014, China.
| | - Mawrong Lee
- Department of Chemistry, National Chung Hsing University, Taichung 40227, Taiwan
| |
Collapse
|
14
|
Study on the effects of deep eutectic solvents as a reaction media on the micromorphology of hydrogen-substituted graphyne and its adsorption and electrochemical properties. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2021.118177] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
15
|
Cai C, Chen X, Li F, Tan Z. Three-phase partitioning based on CO2-responsive deep eutectic solvents for the green and sustainable extraction of lipid from Nannochloropsis sp. Sep Purif Technol 2021. [DOI: 10.1016/j.seppur.2021.119685] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
|
16
|
He S, Tang W, Row KH. Determination of Thiophanate-Methyl and Carbendazim from Environmental Water by Liquid-Liquid Microextraction (LLME) Using a Terpenoid-Based Hydrophobic Deep Eutectic Solvent and High-Performance Liquid Chromatography (HPLC). ANAL LETT 2021. [DOI: 10.1080/00032719.2021.1993237] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Sile He
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| | - Weiyang Tang
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Education and Research Center for Smart Energy and Materials, Inha University, Incheon, Korea
| |
Collapse
|
17
|
Wang Q, Wang H, Wang L, Bai L, Yang C, Zhu T. Porous graphene oxide functionalized by covalent organic framework for the application in adsorption and electrochemical: The effect of C-F bonds to structure. Microchem J 2021. [DOI: 10.1016/j.microc.2021.106710] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
|
18
|
Wang L, Chen X, Liu J, Tan Z. A LCST-type ionic liquid used as the recyclable extractant for the extraction and separation of liquiritin and glycyrrhizic acid from licorice (Glycyrrhiza uralensis Fisch). J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.117295] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2023]
|
19
|
|
20
|
Leal MA, Monteiro S, Silva MET, Rodrigues FA, Martins MA, Sousa RDCS, Coimbra JSR. Extraction of microalgae oil by organic solvents: experimental determination and modeling of liquid–liquid equilibria using vegetable oils mixture as a model system. BRAZILIAN JOURNAL OF CHEMICAL ENGINEERING 2021. [DOI: 10.1007/s43153-021-00118-1] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
21
|
Application of deep eutectic solvents modified oxidized Hydrogen-substituted graphyne in adsorption and electrochemistry. J Mol Liq 2021. [DOI: 10.1016/j.molliq.2021.116532] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
|
22
|
Jouyban A, Farajzadeh MA, Khodadadeian F, Khoubnasabjafari M, Afshar Mogaddam MR. Development of a deep eutectic solvent-based ultrasound-assisted homogenous liquid-liquid microextraction method for simultaneous extraction of daclatasvir and sofosbuvir from urine samples. J Pharm Biomed Anal 2021; 204:114254. [PMID: 34256327 DOI: 10.1016/j.jpba.2021.114254] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2020] [Revised: 07/05/2021] [Accepted: 07/06/2021] [Indexed: 01/28/2023]
Abstract
An ultrasound-assisted homogenous liquid-liquid microextraction method using a new deep eutectic solvent was proposed for the extraction of daclatasvir and sofosbuvir from urine. The analytes were determined by high performance liquid chromatography-diode array detector. The deep eutectic solvent was prepared by mixing p-aminophenol with tetrabutyl ammonium chloride. It was used in the extraction procedure as an extraction solvent. The amine group in structure of the prepared deep eutectic solvent led to its various solubility in different pHs. In this method, urine sample was placed in a glass test tube and then mixed with sodium chloride and its temperature adjusted at 50 °C. Then, the deep eutectic solvent was dissolved in the solution by manually shaking. In the following, an ammonia solution was added to the solution and the mixture was sonicated for 4 min. After centrifugation, an aliquat of the sedimented phase was injected into the determination system. Low limits of detection (daclatasvir 1.0 and sofosbuvir 1.3 μg/L) and quantification (daclatasvir 3.3 and sofosbuvir 4.0 μg/L), high enrichment factor (daclatasvir 96 and sofosbuvir 90) and extraction recovery (daclatasvir 96 and sofosbuvir 90 %), and good percision (relative standard deviation ≤9.3 %) were obtained. The introduced method was successfully applied in the determination of daclatasvir and sofosbuvir concentrations in urine samples.
Collapse
Affiliation(s)
- Abolghasem Jouyban
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran; Engineering Faculty, Near East University, 99138, Nicosia, North Cyprus, Mersin 10, Turkey
| | - Fariba Khodadadeian
- Department of Inorganic Chemistry, Faculty of Chemistry, Azarbaijan Shahid Madani University, Tabriz, Iran
| | - Maryam Khoubnasabjafari
- Tuberculosis and Lung Diseases Research Center, Tabriz University of Medical Sciences, Tabriz, Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center, Tabriz University of Medical Sciences, Tabriz, Iran; Pharmaceutical Analysis Research Center and Faculty of Pharmacy, Tabriz University of Medical Sciences, Tabriz, Iran.
| |
Collapse
|
23
|
Wang L, Cai C, Liu J, Tan Z. Selective separation of the homologues of baicalin and baicalein from Scutellaria baicalensis Georgi using a recyclable ionic liquid-based liquid-liquid extraction system. Process Biochem 2021. [DOI: 10.1016/j.procbio.2021.02.001] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/22/2022]
|
24
|
Sun G, Lu Y. Polystyrene Immobilized Sol-Gel Ground Silica Monolith Particles Using One-Pot Reaction of Enhanced Separation Efficiency. J Chromatogr Sci 2021; 59:949-955. [PMID: 33778859 DOI: 10.1093/chromsci/bmab032] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2020] [Indexed: 11/14/2022]
Abstract
The stationary phase based on sol-gel ground silica monolith particles has been produced by one-pot polymerization method incorporation of styrene and ethylene dimethacrylate. First, the ground silica monolith particles were prepared by a sol-gel process followed by sedimentation. The particles were then subjected to modify with styrene ligand via one-pot polymerization, whereas ethylene dimethacrylate was used as the cross-linker. The glass lined stainless steel columns (1 mm internal diameter, 150 mm length) were packed with the above phase for estimation of the chromatographic performance in high-performance liquid chromatography. An average number of theoretical plates of as high as 39,300 plates/column was obtained under the optimized elution condition. The column-to-column reproducibility was proved satisfactory in separation efficiency and retention factor. The experimental results indicate that sol-gel ground silica particles prepared by an aid of one-pot modification can provide a better way for preparation of highly efficient stationary phase.
Collapse
Affiliation(s)
- Genlin Sun
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| | - Yao Lu
- Department of Pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang 330004, China
| |
Collapse
|
25
|
Chen L, Yang YY, Zhou RR, Fang LZ, Zhao D, Cai P, Yu R, Zhang SH, Huang JH. The extraction of phenolic acids and polysaccharides from Lilium lancifolium Thunb. using a deep eutectic solvent. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:1226-1231. [PMID: 33605948 DOI: 10.1039/d0ay02352c] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Establishing a fast and effective extraction method for herbs is beneficial for the determination of their main compounds and estimating their quality. In this study, deep eutectic solvents (DESs) were optimized to simultaneously extract three main types of phenolic acids, i.e., regaloside B, regaloside C, and regaloside E, and polysaccharides from the bulbs of Lilium lancifolium Thunb. Based on the optimized extraction conditions, i.e., an extraction temperature of 50 °C, an extraction time of 40 min, a solid-liquid ratio of 1 : 25, and a ratio of water in the DES of 20%, the extracted amounts of regaloside B, regaloside C, and regaloside E reached 0.31 ± 0.06 mg g-1, 0.29 ± 0.03 mg g-1, and 3.04 ± 0.38 mg g-1, respectively. The extraction efficiencies were higher than those obtained using conventional organic solvents. Next, the polysaccharide levels were measured and compared with those obtained using a conventional hot water extraction method, and equivalent extraction efficiencies were obtained with the conventional hot water extraction method. This study provides a new application of deep eutectic solvents (DESs) for simultaneously extracting phenolic acids and polysaccharides from the bulbs of L. lancifolium Thunb. Considering the biodegradability and pharmaceutical acceptability, DESs as a class of green solvents could have wide applications in the extraction of natural products.
Collapse
Affiliation(s)
- Lin Chen
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Yang-Yu Yang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Rong-Rong Zhou
- College of Pharmacy, Changchun University of Chinese Medcine, Changchun, China
| | - Liang-Zi Fang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Di Zhao
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Ping Cai
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Rong Yu
- Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| | - Shui-Han Zhang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China.
| | - Jian-Hua Huang
- Hunan Academy of Chinese Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410013, China. and Hunan Key Laboratory of TCM Prescription and Syndromes Translational Medicine, Hunan University of Chinese Medicine, Changsha, Hunan 410208, P. R. China
| |
Collapse
|
26
|
Nemati M, Farajzadeh MA, Afshar Mogaddam MR. Development of a surfactant-assisted dispersive solid phase extraction using deep eutectic solvent to extract four tetracycline antibiotics residues in milk samples. J Sep Sci 2021; 44:2121-2130. [PMID: 33720499 DOI: 10.1002/jssc.202001218] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2020] [Revised: 03/03/2021] [Accepted: 03/07/2021] [Indexed: 11/09/2022]
Abstract
In this study, a new floating dispersive solid phase extraction method based on deep eutectic solvents has been developed in a home-made extraction device for the extraction of four tetracycline antibiotics from milk samples. In this approach, the sorbent (activated carbon) was dispersed in whole parts of solution with the aid of air stream and floated on top of the solution with the aid of the surfactant (lauryl betaine) and air bubbles. After collection of the sorbent, the adsorbed analytes were eluted with tetrabutyl ammonium chloride-propionic acid deep eutectic solvent under sonication. In this method, there was no need of organic dispersive and extraction solvents and the used sorbent was collected on top of the solution and collected without centrifugation. The validation parameters showed that low limits of detection (0.1-0.3 μg/kg) and quantification (0.6-1.0 μg/kg), acceptable enrichment factors (52-60), efficient extraction recoveries (80-91%), and satisfactory relative standard deviations (≤9.8%) were obtained. Eventually, the method was successfully applied on different milk samples and tetracycline was determined in them.
Collapse
Affiliation(s)
- Mahboob Nemati
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran.,Halal Research Center, Ministry of Health and Medical Education, Tehran, Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry, Faculty of Chemistry, University of Tabriz, Tabriz, Iran.,Engineering Faculty, Near East University, North Cyprus, Mersin, Turkey
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research, Tabriz University of Medical Sciences, Tabriz, Iran.,Pharmaceutical Analysis Research Center, Tabriz University of Medical Science, Tabriz, Iran.,Drug Applied Research Center, Tabriz University of Medical Science, Tabriz, Iran
| |
Collapse
|
27
|
Atsever N, Borahan T, Girgin A, Selali Chormey D, Bakırdere S. A simple and effective determination of methyl red in wastewater samples by UV–Vis spectrophotometer with matrix matching calibration strategy after vortex assisted deep eutectic solvent based liquid phase extraction and evaluation of green profile. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105850] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
|
28
|
Tang W, An Y, Row KH. Emerging applications of (micro) extraction phase from hydrophilic to hydrophobic deep eutectic solvents: opportunities and trends. Trends Analyt Chem 2021. [DOI: 10.1016/j.trac.2021.116187] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022]
|
29
|
Ebadnezhad H, Afshar Mogaddam MR, Mohebbi A, Farajzadeh MA, Nemati M, Torbati M. Combination of temperature‐assisted ternary phase homogenous liquid–liquid extraction with deep eutectic solvent–based dispersive liquid–liquid microextraction for the extraction of phytosterols from cow milk and cream samples. J Sep Sci 2021; 44:1482-1489. [DOI: 10.1002/jssc.202001012] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2020] [Revised: 12/10/2020] [Accepted: 12/30/2020] [Indexed: 12/27/2022]
Affiliation(s)
- Hassan Ebadnezhad
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammad Reza Afshar Mogaddam
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
- Pharmaceutical Analysis Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Ali Mohebbi
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical Chemistry Faculty of Chemistry University of Tabriz Tabriz Iran
- Engineering Faculty Near East University North Cyprus Turkey
| | - Mahboob Nemati
- Food and Drug Safety Research Center Tabriz University of Medical Sciences Tabriz Iran
| | - Mohammadali Torbati
- Department of Food Science and Technology Faculty of Nutrition Tabriz University of Medical Sciences Tabriz Iran
| |
Collapse
|
30
|
Wu B, Guo Z, Li X, Huang X, Teng C, Chen Z, Jing X, Zhao W. Analysis of pyrethroids in cereals by HPLC with a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets. ANALYTICAL METHODS : ADVANCING METHODS AND APPLICATIONS 2021; 13:636-641. [PMID: 33491682 DOI: 10.1039/d0ay02121k] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
This work presents a novel and green analytical procedure involving a deep eutectic solvent-based dispersive liquid-liquid microextraction with solidification of floating organic droplets (DES-DLLME-SFOD) followed by HPLC to measure three pyrethroids (bifenthrin, β-cypermethrin, and deltamethrin) in cereal samples. Firstly, a low-density hydrophobic DES was synthesized from thymol and octanoic acid in the molar ratio of 1/4 and this was applied as a green extraction solvent in the DLLME procedure to avoid the use of a toxic extractant. After centrifugation and placing it on an ice bath, it is transformed into a solid phase on the top of the sample solution to reduce the loss of extractant, conducive to convenient collection thereafter. This procedure required the optimal conditions (including the type, proportion, and amount of DES as the extractant, the volume of the dispersant acetonitrile, the amount of salt, and the pH value) to be evaluated. Under optimized variates, the proposed method provided good linearity with a correlation coefficient greater than 0.997 and limits of quantification within the range of 6.6-8.9 μg kg-1. The recoveries of pyrethroids in corn, wheat, barley, and oats were 75.6-87.2%, and the relative standard deviation was less than 3.6%. The method, therefore, offers a green, efficient, and convenient approach for the determination of pesticides in cereals.
Collapse
Affiliation(s)
- Beiqi Wu
- Faculty of Veterinary and Agricultural Sciences, The University of Melbourne, Parkville, Victoria 3010, Australia
| | | | | | | | | | | | | | | |
Collapse
|
31
|
Ali Redha A. Review on Extraction of Phenolic Compounds from Natural Sources Using Green Deep Eutectic Solvents. JOURNAL OF AGRICULTURAL AND FOOD CHEMISTRY 2021; 69:878-912. [PMID: 33448847 DOI: 10.1021/acs.jafc.0c06641] [Citation(s) in RCA: 69] [Impact Index Per Article: 23.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/14/2023]
Abstract
For more sustainable and environmentally friendly scientific research, it is essential to apply green chemistry principles in all areas of science. A possible area in which green chemistry principles can significantly influence the productivity and the quality of the outcome is extraction of natural products. The conventional toxic solvents can be replaced by environmentally friendly solvents known as deep eutectic solvents, which fortunately, due to their unique properties, can significantly improve extraction efficiency. In this literature review, the extraction of a specific class of natural products, phenolic compounds, using different types of green deep eutectic solvents has been reviewed. Within this review, the composition of those solvents used to extract different types of phenolic compounds has been discussed. In addition, the factors affecting their extraction, extracting solvent component structure, molar ratio of extracting solvent components, extraction temperature, solid to extraction solvent ratio, and water content, have been evaluated.
Collapse
Affiliation(s)
- Ali Ali Redha
- Chemistry Department, School of Science, Loughborough University, Loughborough LE11 3TU, United Kingdom
| |
Collapse
|
32
|
Ma W, Row KH. pH-induced deep eutectic solvents based homogeneous liquid-liquid microextraction for the extraction of two antibiotics from environmental water. Microchem J 2021. [DOI: 10.1016/j.microc.2020.105642] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
33
|
Nguyen VT, Nguyen HT, Tran PH. One-pot three-component synthesis of 1-amidoalkyl naphthols and polyhydroquinolines using a deep eutectic solvent: a green method and mechanistic insight. NEW J CHEM 2021. [DOI: 10.1039/d0nj05687a] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The multicomponent synthesis of 1-amidoalkyl naphthols and polyhydroquinolines has been developed as an atom-economic procedure catalyzed by a deep eutectic solvent ([CholineCl][ZnCl2]3).
Collapse
Affiliation(s)
- Vu Thanh Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| | - Hai Truong Nguyen
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| | - Phuong Hoang Tran
- Department of Organic Chemistry, Faculty of Chemistry, University of Science, Ho Chi Minh City
- Vietnam
- Vietnam National University
- Ho Chi Minh City 721337
- Vietnam
| |
Collapse
|
34
|
Lu Y, Sun G. Hydroxypropyl-β-cyclodextrin encapsulated stationary phase based on silica monolith particles for enantioseparation in liquid chromatography. J Sep Sci 2020; 44:735-743. [PMID: 33253443 DOI: 10.1002/jssc.202000978] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2020] [Revised: 11/21/2020] [Accepted: 11/26/2020] [Indexed: 01/13/2023]
Abstract
Hydroxypropyl-β-cyclodextrin-encapsulated stationary phase incorporated on silica monolith particles was prepared by physical embedding, providing a new method for the development of chiral stationary phase for enantioseparation in liquid chromatography. Ground silica monolith particles of about 2.0 μm were prepared via sol-gel reaction followed by differential sedimentation. Initially, the silica monolith particles were pretreated with 3-trimethoxysilyl propyl methacrylate to attach double-bonded ligands onto the surface, then a network structure was formed onto the surface of the particle using N-isopropyl acrylamide as functional monomer. Hydroxypropyl-β-cyclodextrin was encapsulated inside N-isopropyl acrylamide copolymerized layer on the surface of silica monolith particles. The effect of the amount of chiral selector on the chromatographic efficiency of the chiral stationary phase was examined. The glass lined stainless steel columns (1 mm internal diameter, 300 mm length) were packed with the stationary phase for estimation of the efficiency by separation of phenylsuccinic acid, oxybutynin, equol, and naproxen enantiomers in high-performance liquid chromatography, with the resolutions of 1.54, 1.72, 2.54, and 2.31, respectively. The column to column repeatabilities through relative standard deviation were found better than 3%. The experimental results indicate that the sol-gel ground silica particles modified with β-cyclodextrin provide a promising way for the separation of chiral enantiomers.
Collapse
Affiliation(s)
- Yao Lu
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| | - Genlin Sun
- Department of pharmacy, Jiangxi University of Traditional Chinese Medicine, Nanchang, P. R. China
| |
Collapse
|
35
|
Abstract
Deep eutectic solvents (DESs)—a promising class of alternatives to conventional ionic liquids (ILs) that have freezing points lower than the individual components—are typically formed from two or more components through hydrogen bond interactions. Due to the remarkable advantages of biocompatibility, economical feasibility and environmental hospitality, DESs show great potentials for green production and manufacturing. In terms of the processing of functional composite resins, DESs have been applied for property modifications, recyclability enhancement and functionality endowment. In this review, the applications of DESs in the processing of multiple functional composite resins such as epoxy, phenolic, acrylic, polyester and imprinted resins, are covered. Functional composite resins processed with DESs have attracted much attention of researchers in both academic and industrial communities. The tailored properties of DESs for the design of functional composite resins—as well as the effects of hydrogen bond on the current polymeric systems—are highlighted. In addition to the review of current works, the future perspectives of applying DESs in the processing of functional composite resins are also presented.
Collapse
|
36
|
High effective extraction of selected anthraquinones from Polygonum multiflorum using ionic liquids with ultrasonic assistance. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113342] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
37
|
Cheng J, Guo H, Qiu Y, Zhang Z, Mao Y, Qian L, Yang W, Park JY. Switchable solvent N, N, N', N'-tetraethyl-1, 3-propanediamine was dissociated into cationic surfactant to promote cell disruption and lipid extraction from wet microalgae for biodiesel production. BIORESOURCE TECHNOLOGY 2020; 312:123607. [PMID: 32504947 DOI: 10.1016/j.biortech.2020.123607] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Revised: 05/28/2020] [Accepted: 05/29/2020] [Indexed: 06/11/2023]
Abstract
Switchable solvent N, N, N', N'-tetraethyl-1,3-propanediamine (TEPDA) was proposed to extract lipids from wet Nannochloropsis oceanica with a 5% higher extraction efficiency than chloroform-methanol. It was found that TEPDA acted mainly as an organic solvent to soften and dissolve lipids, while a small amount of TEPDA was dissociated into tertiary amine ion, i.e.,(C2H5)2N-(CH2)3-NH+(C2H5)2. This cation acted as a surfactant to promote cell disruption and lipid separation. With moisture increasing from 0 to 84 wt%, more TEPDA was dissociated into cationic surfactant to induce local rearrangement of phospholipid bilayers in cell membranes through electrostatic interaction, resulting in the fractal dimension of disrupted cells increased from 1.49 to 1.66. Accordingly, the yield of fatty acid methyl ester (FAME) through transesterification of lipids extracted with TEPDA increased by 9%, while FAME yield from lipids extracted with chloroform and n-hexane decreased by 41% and 65%, respectively.
Collapse
Affiliation(s)
- Jun Cheng
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| | - Hao Guo
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yi Qiu
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ze Zhang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Yuxiang Mao
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Lei Qian
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Weijuan Yang
- State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China
| | - Ji-Yeon Park
- Biomass and Wastes to Energy Laboratory, Korea Institute of Energy Research, 152 Gajeong-ro, Daejeon 34129, Republic of Korea
| |
Collapse
|
38
|
An Y, Row KH. Evaluation of Menthol-Based Hydrophobic Deep Eutectic Solvents for the Extraction of Bisphenol A from Environment Water. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1811716] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/01/2023]
Affiliation(s)
- Yena An
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Republic of Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Republic of Korea
| |
Collapse
|
39
|
Zuo L, Ao X, Guo Y. Study on the synthesis of dual-chain ionic liquids and their application in the extraction of flavonoids. J Chromatogr A 2020; 1628:461446. [PMID: 32822985 DOI: 10.1016/j.chroma.2020.461446] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2020] [Revised: 07/13/2020] [Accepted: 07/31/2020] [Indexed: 01/19/2023]
Abstract
Ionic liquids, as tuneable, highly soluble, non-flammable, non-volatile and reusable extractants, have attracted extensive attention in the extraction of flavonoids from plants. In the present work, novel dual-chain imidazolium-derived ionic liquids were synthesized by a simple and efficient method and characterized (NMR spectroscopy, thermal stability, viscosity, conductivity, and polarity). Then, the imidazolium ionic liquids with different cation were used in the microwave-assisted extraction of flavonoids from Pinus massoniana Lamb. The results showed that the ionic liquid [Bmbim]Br, with a relatively low viscosity, conductivity and π* as well as a relatively large β, offered the best extraction efficiency and selectivity for flavonoids. Subsequently, the parameters of the extraction procedure for flavonoids were optimized as follows: extraction temperature of 80 °C, extraction time of 60 min, microwave power of 300 W, solid-liquid ratio of 1:20, and [Bmbim]Br solution concentration of 1.0 mol/L. The extraction yield of total flavonoids was 41.07 mg/g. Finally, a recovery method of the ionic liquid had been demonstrated, and the recovery rate of ionic liquid was 73.14%.
Collapse
Affiliation(s)
- Lin Zuo
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Xianquan Ao
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China
| | - Yu Guo
- College of Chemistry and Chemical Engineering, Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
40
|
Liquid Polymer Eutectic Mixture for Integrated Extractive-Oxidative Desulfurization of Fuel Oil: An Optimization Study via Response Surface Methodology. Processes (Basel) 2020. [DOI: 10.3390/pr8070848] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/07/2023] Open
Abstract
Hydrodesulfurization (HDS) has been commercially employed for the production of ultra-low sulfur fuel oil. However, HDS is unable to remove sterically hindered sulfur-containing compounds such as dibenzothiophene (DBT) and benzothiophene (BT). An alternative way to remove sulfur is via extractive desulfurization system (EDS) using deep eutectic solvents (DES) as sustainable extractant. In this work, liquid polymer DES was synthesized using tetrabutylammonium chloride (TBAC) and poly(ethylene glycol) 400 (PEG) with different molar ratios. Response surface methodology (RSM) was applied to study the effect of independent variables toward extraction efficiency (EE). Three significant operating parameters, temperature (25–70 °C), DES molar ratio (1–3), and DES volume ratio (0.2–2.0), were varied to study the EE of sulfur from model oil. A quadratic model was selected based on the fit summary test, revealing that the extraction efficiency was greatly influenced by the amount of DES used, followed by the extraction temperature and PEG ratio. Although molar ratio of DES was less sensitive towards EDS performance, the EE was much higher at lower PEG ratio. For the realization of an energy-efficient EDS system, optimization of EDS parameters and EE was carried out via a desirability tool. At 25 °C, 1:1 molar ratio of TBAC to PEG, and DES-to-model-oil-volume ratio of 1, removal of DBT reached as high as 79.01%. The present findings could provide valuable insight into the development of practicable EDS technology as a substitute to previous HDS process.
Collapse
|
41
|
Yue Y, Huang Q, Fu Y, Chang J. A quick selection of natural deep eutectic solvents for the extraction of chlorogenic acid from herba artemisiae scopariae. RSC Adv 2020; 10:23403-23409. [PMID: 35520333 PMCID: PMC9054731 DOI: 10.1039/d0ra03786a] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2020] [Accepted: 06/01/2020] [Indexed: 12/03/2022] Open
Abstract
Natural deep eutectic solvents (NADES) were successfully employed as green alternatives to the traditional ones for the extraction of chlorogenic acid from herba artemisiae scopariae. Significantly, the method of solvent effect theory chemical calculation assistance to guide the NADES selection for the extraction was proposed. Proline-malic acid was successfully screened as the suitable solvent using the calculation results and it gave the best chlorogenic acid yield of 3.77 mg g-1 among the NADES tested with a solvation free energy of -5.86 × 106 kJ mol-1 from the calculation. The calculation-assisted method saves costs and material resources for the applications of the green alternative NADES and provides a research route that can be used for the extraction of target active molecules in the traditional Chinese medicine and food industry.
Collapse
Affiliation(s)
- Yingying Yue
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Qingwen Huang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Yan Fu
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| | - Jie Chang
- School of Chemistry and Chemical Engineering, South China University of Technology Guangzhou 510640 PR China
| |
Collapse
|
42
|
Tuned extraction and regeneration process for separation of hydrophobic compounds by aqueous ionic liquid. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.113032] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
|
43
|
Tang W, An Y, Row KH. Recoverable deep eutectic solvent-based aniline organic pollutant separation technology using choline salt as adsorbent. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112910] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/01/2022]
|
44
|
Xu X, Li A, Zhang T, Zhang L, Xu D, Gao J, Wang Y. Efficient extraction of phenol from low-temperature coal tar model oil via imidazolium-based ionic liquid and mechanism analysis. J Mol Liq 2020. [DOI: 10.1016/j.molliq.2020.112911] [Citation(s) in RCA: 29] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
|
45
|
Sun L, Wang S, Zhu T. 1,3,5-Triethynylbenzene and melamine as monomers to synthesize three-dimensional network porous aromatic frameworks based silica/florisil for determination of carbendazim and thiabendazole in spinach. J Sep Sci 2020; 43:2842-2849. [PMID: 32320521 DOI: 10.1002/jssc.202000083] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/23/2020] [Revised: 04/17/2020] [Accepted: 04/17/2020] [Indexed: 11/10/2022]
Abstract
In this study, the new and efficient three-dimensional network porous aromatic frameworks materials called Silica-PAFs-a, Florisil-PAFs-a, Silica-PAFs-b, and Florisil-PAFs-b were first synthesized. The properties of materials were analyzed by five characterization methods. The materials were used as adsorbents in pipette-tip solid-phase extraction for the effective determination of carbendazim and thiabendazole in spinach sample. Meanwhile, the obtained materials were tested by static adsorption and dynamic adsorption. The result showed that the specific surface area of materials greatly increased after introducing three-dimensional network porous aromatic frameworks. Microstructural modification exposed a large number of amino reactive groups that made them have a better adsorption amount for the two targets. The calibration graphs of carbendazim and thiabendazole in methanol were linear over 0.10-300.0 µg/mL, and the limits of detection and quantification were 0.00546 and 0.0182 µg/mL, and 0.00741 and 0.0247µg/mL respectively. A reliable analytical method was developed for recognition targets in spinach sample by Silica-PAFs-b with satisfactory extraction recoveries (96.25 and 100.51%). The proposed method using the material was applied for trace analysis of the carbendazim and thiabendazole residue.
Collapse
Affiliation(s)
- Liping Sun
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| | - Sufang Wang
- Environment Analysis and Testing Laboratory, Chinese Research Academy of Environmental Sciences, Beijing, P.R. China
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, P.R. China
| |
Collapse
|
46
|
Sun L, Tang W, Zhu T, Row KH. Efficient Adsorptive Separation and Determination of Phenolic Acids from Orange Peels Using Hyper-Crosslinked Polymer Based Zeolitic Imidazolate Framework-8 (ZIF-8) Composites. ANAL LETT 2020. [DOI: 10.1080/00032719.2020.1751180] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Affiliation(s)
- Liping Sun
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Weiyang Tang
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| | - Tao Zhu
- Tianjin Key Laboratory of Organic Solar Cells and Photochemical Conversion, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin, China
| | - Kyung Ho Row
- Department of Chemistry and Chemical Engineering, Inha University, Incheon, Korea
| |
Collapse
|
47
|
Sun Z, Lian C, Li C, Zheng S. Investigations on organo-montmorillonites modified by binary nonionic/zwitterionic surfactant mixtures for simultaneous adsorption of aflatoxin B 1 and zearalenone. J Colloid Interface Sci 2020; 565:11-22. [PMID: 31931295 DOI: 10.1016/j.jcis.2020.01.013] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2019] [Revised: 12/30/2019] [Accepted: 01/04/2020] [Indexed: 11/16/2022]
Abstract
To solve the problem of simultaneous adsorption of polar and weak polar mycotoxins, organo-montmorillonites modified by binary surfactant mixtures (NZMts), including polyoxyethylene ether (OP-10) and lauramidopropyl betaine (LAB-35), were synthesized for the simultaneous removal of aflatoxin B1 (AFB1) and zearalenone (ZER). The microstructure, interface and pore structure characteristics of NZMts were investigated through different technologies. The results show that the obtained NZMts modified by binary surfactant mixtures have different structural configurations, higher carbon content and stronger hydrophobicity compared with organo-montmorillonites modified by single surfactant. More importantly, the obtained adsorbents show significant improvements on the detoxification efficiency of both AFB1 and ZER. The pH has less effect on the adsorption of NZMts compared with the control samples modified by single surfactant, suggesting that NZMts are more stable in different pH environments. In addition, the adsorption mechanisms of NZMts to AFB1 and ZER were proposed based on the characterizations and adsorption isotherms. It is indicated that NZMts combines with AFB1 mainly through the hydrophobic interaction and ion dipole action, while with ZER mainly through hydrophobic interaction. The as-received NZMts with more hydrophobic property effectively enhance the adsorption capacities of weak polar and non-polar mycotoxins, providing a new orientation for multifunctional mycotoxin adsorbents.
Collapse
Affiliation(s)
- Zhiming Sun
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Chi Lian
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| | - Chunquan Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China.
| | - Shuilin Zheng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Beijing 100083, PR China
| |
Collapse
|
48
|
Choline Chloride Based Natural Deep Eutectic Solvents as Extraction Media for Extracting Phenolic Compounds from Chokeberry ( Aronia Melanocarpa). Molecules 2020; 25:molecules25071619. [PMID: 32244757 PMCID: PMC7181262 DOI: 10.3390/molecules25071619] [Citation(s) in RCA: 22] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/28/2020] [Revised: 03/27/2020] [Accepted: 03/30/2020] [Indexed: 01/12/2023] Open
Abstract
For the isolation of selected phenolic compounds from dried chokeberries, natural deep eutectic solvents (NADESs) were investigated as a green alternative to conventionally used extraction solvents. Four types of NADESs were synthesised, with choline chloride as the hydrogen bond acceptor in combination with different hydrogen bond donors (sugars, organic acid and urea). Ultrasound-assisted extraction was used to improve the extractability of the phenolic compounds and the results were compared to those obtained with 80% methanol as the extraction media. The highest values of total phenols and total flavonoids were found in the extract obtained with choline chloride–fructose NADES (36.15 ± 3.39 mg gallic acid g−1 dry weight (DW) and 4.71 ± 0.33 mg rutin g−1 DW, respectively). The extraction recoveries for the individual phenolic compounds depended strongly on the phenolic compound’s structure, with relative mean values between 70% and 97%.
Collapse
|
49
|
Nemati M, Farajzadeh MA, Mohebbi A, Khodadadeian F, Afshar Mogaddam MR. Development of a stir bar sorptive extraction method coupled to solidification of floating droplets dispersive liquid–liquid microextraction based on deep eutectic solvents for the extraction of acidic pesticides from tomato samples. J Sep Sci 2020; 43:1119-1127. [DOI: 10.1002/jssc.201901000] [Citation(s) in RCA: 54] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2019] [Revised: 12/13/2019] [Accepted: 12/14/2019] [Indexed: 11/11/2022]
Affiliation(s)
- Mahboob Nemati
- Pharmaceutical Analysis Research Center and Faculty of PharmacyTabriz University of Medical Sciences Tabriz Iran
| | - Mir Ali Farajzadeh
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Tabriz Tabriz Iran
- Engineering FacultyNear East University Nicosia Turkey
| | - Ali Mohebbi
- Department of Analytical ChemistryFaculty of ChemistryUniversity of Tabriz Tabriz Iran
| | - Fariba Khodadadeian
- Department of Inorganic ChemistryFaculty of ChemistryAzarbaijan Shahid Madani University Tabriz Iran
| | | |
Collapse
|
50
|
Li G, Row KH. Deep eutectic solvents skeleton typed molecularly imprinted chitosan microsphere coated magnetic graphene oxide for solid‐phase microextraction of chlorophenols from environmental water. J Sep Sci 2020; 43:1063-1070. [DOI: 10.1002/jssc.201901159] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/13/2019] [Revised: 12/16/2019] [Accepted: 12/18/2019] [Indexed: 12/13/2022]
Affiliation(s)
- Guizhen Li
- Department of Chemistry and Chemical EngineeringInha University Incheon Korea
| | - Kyung Ho Row
- Department of Chemistry and Chemical EngineeringInha University Incheon Korea
| |
Collapse
|