1
|
Mahdavi Z, Esmailpour B, Azarmi R, Panahirad S, Ntatsi G, Gohari G, Fotopoulos V. Fish Waste-A Novel Bio-Fertilizer for Stevia ( Stevia rebaudiana Bertoni) under Salinity-Induced Stress. PLANTS (BASEL, SWITZERLAND) 2024; 13:1909. [PMID: 39065437 PMCID: PMC11280417 DOI: 10.3390/plants13141909] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/03/2024] [Revised: 06/24/2024] [Accepted: 07/04/2024] [Indexed: 07/28/2024]
Abstract
Currently, different strategies, including the application of bio-fertilizers, are used to ameliorate the adverse effects posed by salinity stress as the major global problem in plants. Fish waste is suggested as a novel bio-fertilizer to mitigate the effects of biotic and abiotic stresses. In this investigation, an experiment was conducted to investigate the effects by applying different concentrations (0, 5, 10, and 15% (v/v)) of fish waste bio-fertilizer on stevia plants grown under salt stress conditions (0, 20, 40, and 60 mM of NaCl). Results showed that salinity negatively affected growth parameters, the photosynthetic pigments, the relative water content, and the chlorophyll fluorescence parameters while increased the activity of antioxidant enzymes, total phenol, hydrogen peroxide (H2O2), malondialdehyde (MDA), proline, and total carbohydrates compared with control samples. On the other hand, the application of fish waste bio-fertilizer mitigated the effects of salinity stress by enhancing growth and mitigating stress-relative markers, especially at the highest salinity level (60 mM). Overall, fish waste bio-fertilizer could be considered a sustainable, innovative approach for the alleviation of salinity stress effects in plants and, in addition, fish waste bio-fertilizer did not cause more salinity issues, at least with the applied doses and experiment time, which is an imperative aspect.
Collapse
Affiliation(s)
- Zahra Mahdavi
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Behrouz Esmailpour
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Rasul Azarmi
- Department of Horticulture, Faculty of Agriculture and Natural Resources, Mohaghegh Ardabili University, Ardabil 5619911367, Iran; (Z.M.); (R.A.)
| | - Sima Panahirad
- Department of Horticultural Sciences and Landscape Engineering, Faculty of Agriculture, University of Tabriz, Tabriz 5166616471, Iran;
| | - Georgia Ntatsi
- Laboratory of Vegetable Production, Department of Crop Science, Agricultural University of Athens, Iera Odos 75, 11855 Athens, Greece;
| | - Gholamreza Gohari
- Department of Horticultural Sciences, Faculty of Agriculture, University of Maragheh, Maragheh 551877684, Iran;
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| | - Vasileios Fotopoulos
- Department of Agricultural Sciences, Biotechnology and Food Science, Cyprus University of Technology, Limassol 3036, Cyprus
| |
Collapse
|
2
|
Suárez E, Tobajas M, Mohedano AF, de la Rubia MA. Biowaste management by hydrothermal carbonization and anaerobic co-digestion: Synergistic effects and comparative metagenomic analysis. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 180:1-8. [PMID: 38493518 DOI: 10.1016/j.wasman.2024.03.019] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/27/2023] [Revised: 02/04/2024] [Accepted: 03/12/2024] [Indexed: 03/19/2024]
Abstract
The feasibility of anaerobic co-digestion in semicontinuous mode of two major urban biowaste, food waste (FW) and garden and park waste (GPW) (75 % FW and 25 % GPW) as well as the co-digestion of FW with the process water originated from the hydrothermal carbonization of GPW (95 % FW and 5 % process water), both on a COD basis, has been assessed. The effect of varying organic loading rate (OLR) from 1.5 to 3.5 g COD/L·d on methane yield, gross energy recovery, and microbiome population was evaluated. For comparison, anaerobic digestion of FW was also conducted to determine the best strategy for sustainable biowaste management. This study showed an optimal OLR of 2.5 g COD/L·d. Acetic and propionic acid content increased as OLR raised for each condition studied, while methane yield decreased at the highest OLR tested indicating overloading of the system. The anaerobic co-digestion of FW and process water showed a 10 % increase on methane production compared to anaerobic digestion of FW (324 vs. 294 mL CH4 STP/L·d). Moreover, it enhances the process due to a greater abundance and diversity of hydrolytic and acidogenic bacteria belonging to Bacterioidota, Firmicutes, and Chloroflexi phyla, as well as promotes the hydrogenotrophic pathway under higher propionic concentrations which is not usually favoured for methane production. The integration of hydrothermal carbonization of GPW with the anaerobic co-digestion of 95 % FW and 5 % of process water results in the highest potential energy recovery and could be a good strategy for sustainable management of urban biowaste.
Collapse
Affiliation(s)
- E Suárez
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - M Tobajas
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - A F Mohedano
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| | - M A de la Rubia
- Chemical Engineering Department, Universidad Autonoma de Madrid, 28049 Madrid, Spain.
| |
Collapse
|
3
|
Bermúdez-Penabad N, Rodríguez-Montes A, Alves M, Kennes C, Veiga MC. Optimization of methane production from solid tuna waste: Thermal pretreatment and co-digestion. WASTE MANAGEMENT (NEW YORK, N.Y.) 2024; 177:203-210. [PMID: 38340568 DOI: 10.1016/j.wasman.2024.01.050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 01/24/2024] [Accepted: 01/29/2024] [Indexed: 02/12/2024]
Abstract
Fish canning industries generate large amounts of solid waste during their processing operations, creating a significant environmental challenge. Nonetheless, this waste can be efficiently and sustainably treated through anaerobic digestion. In this study, the potential of biogas production from anaerobic digestion of thermally pretreated and co-digested solid tuna waste was investigated. The thermal pretreatment of raw fish viscera resulted in a 50 % increase in methane yield, with a production of 0.27 g COD-CH4/g COD added. However, this pretreatment did not lead to a significant increase in biogas production for cooked tuna viscera. When non-thermally pretreated raw viscera was tested, a large accumulation of volatile fatty acids and long chain fatty acids was observed, with levels reaching 21 and 6 g COD/L, respectively. On the other hand, anaerobic co-digestion of cooked tuna viscera with fat waste significantly enhanced methane production, achieving 0.87 g COD-CH4/g COD added. In contrast, co-digestion of cooked tuna viscera with dairy waste and sewage sludge resulted in notably lower yields of 0.36 and 0.46 g COD-CH4/g COD added, respectively. These results may be related to the C/N ratio, which was found to be within the optimal range for anaerobic digestion only in the tuna and fat waste co-digestion assay.
Collapse
Affiliation(s)
- Noela Bermúdez-Penabad
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008 A Coruña, Spain; Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Andrea Rodríguez-Montes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008 A Coruña, Spain
| | - Madalena Alves
- Institute for Biotechnology and Bioengineering (IBB), Centre of Biological Engineering, University of Minho, 4710-057 Braga, Portugal
| | - Christian Kennes
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008 A Coruña, Spain
| | - María C Veiga
- Chemical Engineering Laboratory, Faculty of Sciences and Interdisciplinary Center for Chemistry and Biology (CICA), University of A Coruña, Rúa da Fraga, 10, 15008 A Coruña, Spain.
| |
Collapse
|
4
|
Alvarado-Ramírez L, Santiesteban-Romero B, Poss G, Sosa-Hernández JE, Iqbal HMN, Parra-Saldívar R, Bonaccorso AD, Melchor-Martínez EM. Sustainable production of biofuels and bioderivatives from aquaculture and marine waste. FRONTIERS IN CHEMICAL ENGINEERING 2023. [DOI: 10.3389/fceng.2022.1072761] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/05/2023] Open
Abstract
The annual global fish production reached a record 178 million tonnes in 2020, which continues to increase. Today, 49% of the total fish is harvested from aquaculture, which is forecasted to reach 60% of the total fish produced by 2030. Considering that the wastes of fishing industries represent up to 75% of the whole organisms, the fish industry is generating a large amount of waste which is being neglected in most parts of the world. This negligence can be traced to the ridicule of the value of this resource as well as the many difficulties related to its valorisation. In addition, the massive expansion of the aquaculture industry is generating significant environmental consequences, including chemical and biological pollution, disease outbreaks that increase the fish mortality rate, unsustainable feeds, competition for coastal space, and an increase in the macroalgal blooms due to anthropogenic stressors, leading to a negative socio-economic and environmental impact. The establishment of integrated multi-trophic aquaculture (IMTA) has received increasing attention due to the environmental benefits of using waste products and transforming them into valuable products. There is a need to integrate and implement new technologies able to valorise the waste generated from the fish and aquaculture industry making the aquaculture sector and the fish industry more sustainable through the development of a circular economy scheme. This review wants to provide an overview of several approaches to valorise marine waste (e.g., dead fish, algae waste from marine and aquaculture, fish waste), by their transformation into biofuels (biomethane, biohydrogen, biodiesel, green diesel, bioethanol, or biomethanol) and recovering biomolecules such as proteins (collagen, fish hydrolysate protein), polysaccharides (chitosan, chitin, carrageenan, ulvan, alginate, fucoidan, and laminarin) and biosurfactants.
Collapse
|
5
|
Choudhury A, Lepine C, Witarsa F, Good C. Anaerobic digestion challenges and resource recovery opportunities from land-based aquaculture waste and seafood processing byproducts: A review. BIORESOURCE TECHNOLOGY 2022; 354:127144. [PMID: 35413421 DOI: 10.1016/j.biortech.2022.127144] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/22/2022] [Revised: 04/06/2022] [Accepted: 04/07/2022] [Indexed: 06/14/2023]
Abstract
The unprecedented demand for seafood has resulted in land-based recirculating aquaculture systems (RAS), a highly intensive but sustainable fish farming method. However, intensification also results in concentrated waste streams of fecal matter and uneaten feed. Harvesting and processing vast quantities of fish also leads to the production of byproducts, further creating disposal challenges for fish farms. Recent research indicates that anaerobic digestion (AD), often used for waste treatment in agricultural and wastewater industries, may provide a viable solution. Limited research on AD of freshwater, brackish, and saline wastewater from RAS facilities and co-digestion of seafood byproducts has shown promising results but with considerable operational and process stability issues. This review discusses challenges to AD due to low solid concentrations, salinity, low carbon/nitrogen ratio, and high lipid content in the waste streams. Opportunities for recovering valuable biomolecules and nutrients through microbial treatment, aquaponics, microalgae, and polyhydroxyalkanoate production are also discussed.
Collapse
Affiliation(s)
- Abhinav Choudhury
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA.
| | - Christine Lepine
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| | - Freddy Witarsa
- Colorado Mesa University, Department of Environmental Science and Technology, Wubben Hall and Science Center, Grand Junction, CO 81501, USA
| | - Christopher Good
- The Conservation Fund Freshwater Institute, Shepherdstown, WV 25443, USA
| |
Collapse
|
6
|
Korkmaz K, Tokur B. Investigation of the quality parameters of hydrolysates obtained from fish by‐products using response surface methodology. J FOOD PROCESS PRES 2022. [DOI: 10.1111/jfpp.16296] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/19/2022]
Affiliation(s)
- Koray Korkmaz
- Department of Fisheries Engineering Technology Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey
| | - Bahar Tokur
- Department of Fisheries Engineering Technology Fatsa Faculty of Marine Sciences Ordu University Ordu Turkey
| |
Collapse
|
7
|
Ali MM, Mustafa AM, Zhang X, Zhang X, Danhassaan UA, Lin H, Choe U, Wang K, Sheng K. Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 344:126244. [PMID: 34732374 DOI: 10.1016/j.biortech.2021.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Tofu processing residues (TPR) have received more attention as a source of bioenergy. However, their low solubility has hindered biohythane generation. Consequently, the ultrasonic and H2SO4 pretreatments were combined and compared for the first time to improve the hydrolysis of organic matter and carbohydrate and increase free amino nitrogen generation from TPR. Besides, the impact of pretreatments on biohythane generation was investigated. Under the optimal conditions of 7.54% substrate level, 8% H2SO4 concentration, 80 °C and 50 min, the coincident ultrasonic-H2SO4 pretreatment enriched the contents of soluble chemical oxygen demand, reducing sugar, and free amino nitrogen to 49675 mg/L, 26 g/L, and 1721 mg/L, respectively, greater than individual pretreatments. Also, Biohythane yield increased by 4.24-13.61% over control (389.42 ± 23.7 ml/g-VSfed). Furthermore, hydrogen yield at 42.5 ± 2.08 and 28.1 ± 1.07 ml/g-VSfed and sulfate removal efficiency at 93 and 92% were significantly improved with ultrasonic-H2SO4 and H2SO4 pretreatments, respectively, indicating acidogenic and sulfidogenic activity enhancement.
Collapse
Affiliation(s)
- Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Biological Engineering Department, Agricultural Engineering Research Institute, Giza, Egypt
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Recourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Umar A Danhassaan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ungyong Choe
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Science, University of Science, Yusheng Scientist Road, Unjong 13 District, Pyongyang 00850, Democratic People's Republic of Korea
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
8
|
Greggio N, Serafini A, Balugani E, Carlini C, Contin A, Marazza D. Quantification and mapping of fish waste in retail trade and restaurant sector: Experience in Emilia-Romagna, Italy. WASTE MANAGEMENT (NEW YORK, N.Y.) 2021; 135:256-266. [PMID: 34555687 DOI: 10.1016/j.wasman.2021.09.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/02/2021] [Revised: 09/08/2021] [Accepted: 09/11/2021] [Indexed: 06/13/2023]
Abstract
The circular economy approach imposes the complete recovery of components, materials and energy from waste. Many active compounds with biomedical and nutraceutical applications can be extracted by Fish Waste (FW), but few are the operating industrial plants. Quantification and mapping of the potential FW availability along the entire fish value-chain is crucial in fostering its actual valorisation. Apart at industrial processing, in the distribution segment the estimation of FW availability is absent. This paper aimed to quantify and locate FW generated by point sources such as supermarkets, fishmongers and restaurants as well as to establish the diffuse domestic FW production in a 4,5M inhabitants region. The study provides an exportable method and indications for comparable worldwide areas. A simplified valorisation scenario for equivalent biomethane production is also presented. Direct interviews and indirect approach based on fish consumption have been adopted and compared. Large supermarkets and medium-large restaurants are the main FW producers (239 and 125 kg/week, respectively) followed medium-large fishmongers and medium supermarkets (63 and 86 kg/week, respectively). In the investigated region the larger FW point sources are supermarkets (average 3000 Mg/y), while fishmongers are the smaller (average 750 Mg/y). Restaurants (average 1400 Mg/y) show the wider range of variability between 460 and 8000 Mg/y. The indirect methodology reveals that domestic FW production ranges from 2376 to 3961 Mg/y. Per capita estimations of FW ranged from 0.5 - 3 kg/y. The economic value of FW (biomethanation route) is 68 EUR/Mg. A qualification as "highly potential waste" would promote FW valorization.
Collapse
Affiliation(s)
- Nicolas Greggio
- University of Bologna, Department of Biological, Geological, and Environmental Sciences, Piazza S. Donato 1, 40100 Bologna, Italy; University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy.
| | - Alba Serafini
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Enrico Balugani
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Carlotta Carlini
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy
| | - Andrea Contin
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Physics and Astronomy, Via Irnerio, 46, 40126 Bologna, Italy
| | - Diego Marazza
- University of Bologna, CIRSA - Interdepartmental Research Centre for Environmental Sciences, Via Sant'Alberto 163, 48123 Ravenna, Italy; University of Bologna, Department of Physics and Astronomy, Via Irnerio, 46, 40126 Bologna, Italy
| |
Collapse
|
9
|
Choe U, Mustafa AM, Zhang X, Sheng K, Zhou X, Wang K. Effects of hydrothermal pretreatment and bamboo hydrochar addition on anaerobic digestion of tofu residue for biogas production. BIORESOURCE TECHNOLOGY 2021; 336:125279. [PMID: 34038842 DOI: 10.1016/j.biortech.2021.125279] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/31/2021] [Revised: 05/06/2021] [Accepted: 05/09/2021] [Indexed: 06/12/2023]
Abstract
The effect of hydrothermal pretreatment (HTP) of tofu residue (TR) and co-digestion of TR with hydrochar (HC) and a liquid fraction (LF) of hydrothermal pretreatment on biogas production was studied. The highest biogas and methane yield observed with the pretreated TR at HTP temperature of 140 °C reached 288 and 207 L/Kg VS, 24 and 37% above than the raw TR (control), respectively, and the highest content of methane 72%. Adding 4 g/L of HC (produced at 200 °C) enhanced the methane and biogas yield by 18 and 19% compared to untreated TR, respectively. It was found that HTP at temperature 140 °C and additive HC-200 (4 g/L) was the most efficient for biogas production from tofu residue and significantly reduced the digestion time needed from 20 to 10-13 days to reach 95% of biogas yield, which may result in substantial economic benefits.
Collapse
Affiliation(s)
- Ungyong Choe
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Science, University of Science, Yusheng Scientist Road, Unjong District, Pyongyang 00850, Democratic People's Republic of Korea
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xuefei Zhou
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
10
|
Ahmed M, Andreottola G, Elagroudy S, Negm MS, Fiori L. Coupling hydrothermal carbonization and anaerobic digestion for sewage digestate management: Influence of hydrothermal treatment time on dewaterability and bio-methane production. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2021; 281:111910. [PMID: 33401118 DOI: 10.1016/j.jenvman.2020.111910] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2020] [Revised: 12/07/2020] [Accepted: 12/24/2020] [Indexed: 06/12/2023]
Abstract
Hydrothermal carbonization (HTC) technology is addressed in the framework of sewage digestate management. HTC converts digestate into a stabilized and sterilized solid (the hydrochar) and a liquor (HTCL) rich in organic carbon. This study aims to optimize the HTC operating parameters, namely the treatment time, in terms of hydrochar production, HTC slurry dewaterability, HTCL bio-methane yields in anaerobic digestion (AD), and process energy consumption. Digestate slurry was processed through HTC at different treatment times (0.5, 1, 2 and 3 h) at 190 °C, and the dewaterability of the treated slurries was addressed through capillary suction time and centrifuge lab-testing. In addition, biochemical methane potential (BMP) tests were conducted for HTCL under mesophilic conditions. Results show that by increasing the HTC treatment time the dewaterability was further improved, ammonium concentration in HTCL increased, and methane potential of HTCL decreased. 0.5 h HTCL had the highest bio-methane potential of 142 ± 3 mL CH4/g COD yet the treatment time was not sufficient for improving the slurry's dewaterability. HTC treatment time of 1 h at 190 °C was identified as the optimum trade-off for improved dewaterability and utilisation of HTCL for biogas production. 1 h HTCL bio-methane potential can cover around 25% of the HTC and AD thermal and electrical energy needs without considering the eventual use of the hydrochar as a biofuel.
Collapse
Affiliation(s)
- Mostafa Ahmed
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy; Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Gianni Andreottola
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy
| | - Sherien Elagroudy
- Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt; Egypt Solid Waste Management Center of Excellence, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Mohamed Shaaban Negm
- Public Works Department, Faculty of Engineering, Ain Shams University, 1 ElSarayat St., Abassia, Cairo, Egypt
| | - Luca Fiori
- Department of Civil, Environmental and Mechanical Engineering, University of Trento, Via Mesiano 77, 38123, Trento, Italy.
| |
Collapse
|
11
|
Ahuja I, Dauksas E, Remme JF, Richardsen R, Løes AK. Fish and fish waste-based fertilizers in organic farming - With status in Norway: A review. WASTE MANAGEMENT (NEW YORK, N.Y.) 2020; 115:95-112. [PMID: 32736033 DOI: 10.1016/j.wasman.2020.07.025] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2020] [Revised: 07/08/2020] [Accepted: 07/28/2020] [Indexed: 06/11/2023]
Abstract
This paper reviews relevant knowledge about the production and uses of fertilizers from fish and fish waste (FW) that may be applicable for certified organic farming, with a focus on crop and horticultural plants. Fish industries generate a substantial amount of FW. Depending on the level of processing or type of fish, 30-70% of the original fish is FW. Circular economy and organic farming concepts were used to evaluate the potential of production of fertilizers from captured fish. Fertilizers produced from captured fish promote the recycling of nutrients from the sea and back to terrestrial environments. Nutritional composition of FW is assessed to determine the potential to supply plant nutrients such as nitrogen, or a combination of nitrogen and phosphorous, or to enrich a compost. Methods used in processing of FW to produce fish- emulsion, fish hydrolysate/fish silage, fish-compost and digestate from anaerobic digestion/co-digestion are presented. Using information about commercially available fish-based fertilizers listed by the Organic Materials Review Institute (OMRI), we present a scenario for establishing fish/FW-based fertilizers industry and research in Europe. With Norway's 9th position among top ten global capture producers and focus in Norway on developing organic farming, we brief how FW is currently utilized and regulated, and discuss its availability for possible production of FW-based organic fertilizers. The amount of FW available in Norway for production of fertilizers may facilitate the establishment of an industrial product that can replace the currently common use of dried poultry manure from conventional farming in organic farming.
Collapse
Affiliation(s)
- Ishita Ahuja
- Norwegian Centre for Organic Agriculture (NORSØK), NO-6630 Tingvoll, Norway.
| | - Egidijus Dauksas
- Department of Biological Sciences, Norwegian University of Science and Technology (NTNU), Ålesund, Norway
| | | | | | - Anne-Kristin Løes
- Norwegian Centre for Organic Agriculture (NORSØK), NO-6630 Tingvoll, Norway
| |
Collapse
|