1
|
Zhang W, Xu D, Zhao Y, Gao D, Xie Z, Zhang X, Wu B, Huang T, Peng L. Enhancing electricity generation and pollutant degradation in microbial fuel cells using cyanobacteria-derived biochar electrodes. BIORESOURCE TECHNOLOGY 2024; 418:132000. [PMID: 39706306 DOI: 10.1016/j.biortech.2024.132000] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2024] [Revised: 12/16/2024] [Accepted: 12/17/2024] [Indexed: 12/23/2024]
Abstract
Utilizing microbial fuel cells (MFCs) technology to simultaneously achieve efficient biopower generation and pollutant degradation is a persistent pursuit. However, the limited rate of extracellular electron transfer (EET) and the availability of electrode materials remain key factors limiting the practical application of MFCs. In this article, modified carbon derived from cyanobacteria is applied to modify electrodes and assemble MFCs. By outputting voltage, power density, chemical oxygen demand removal rate and Coulombic efficiency the excellent bioelectricity performance of the assembled MFCs is demonstrated. The degradation performance of the assembled MFCs on various typical pollutants represented by tetracycline is illuminated, even up to 95.12%. Moreover, the pollutant removal mechanism by assembled MFCs is elucidated, including biofilm community and degradation pathway analysis. In a word, the enhanced EET process and high accessibility make the proposed MFC anode have fascinating application prospects in achieving efficient biopower generation and pollutant degradation simultaneously.
Collapse
Affiliation(s)
- Wentao Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Daifei Xu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Yue Zhao
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China
| | - Degui Gao
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Zhaotian Xie
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Xinming Zhang
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China
| | - Bingdang Wu
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China.
| | - Tianyin Huang
- School of Environmental Science and Engineering, Suzhou University of Science and Technology, Suzhou, 215002, People's Republic of China; Key Laboratory of Suzhou Sponge City Technology, Suzhou, 215009, People's Republic of China
| | - Lele Peng
- Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, People's Republic of China.
| |
Collapse
|
2
|
Wu M, Ailijiang N, Li N, Zaimire A, Chen H, He C, Zhang Y. Performance of pharmaceutical products removal in a bioelectrochemical system at low temperatures and changes in microbial communities and antibiotic resistance genes. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2024; 31:64493-64508. [PMID: 39102148 DOI: 10.1007/s11356-024-34577-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/09/2024] [Accepted: 07/26/2024] [Indexed: 08/06/2024]
Abstract
Biological methods do not effectively remove pharmaceutical products (PPs) and antibiotic resistance genes (ARGs) from wastewater at low temperatures, leading to environmental pollution. Therefore, anaerobic-aerobic-coupled upflow bioelectrochemical reactors (AO-UBERs) were designed to improve the removal of PPs at low temperatures (10 ± 2 °C). The result shows that diclofenac (DIC) and ibuprofen (IBU) removals in the system with aerobic anodic and anaerobic cathodic chambers were 91.7% and 94.7%, higher than that in the control system (12.2 ± 1.5%, 36.5 ± 5.9%), and aerobic zone favors DIC and IBU removal; fluoroquinolone antibiotics (FQs) removals in the system with aerobic cathodic and anaerobic anodic chambers were 17.5-22.4% higher than that in the control system (9.1-22.4%), and anaerobic zone favors FQs removal. Analysis of microbial community structure and ARGs showed that different electrotrophic microbes (Flavobacterium, Acinetobacter, and Delftia) with cold-resistant ability to degrade PPs were enriched in different electrode combinations, and the aerobic cathodic chambers could remove certain ARGs. These results showed that AO-UBERs under intermittent electrical stimulation mode are an alternative method for the effective removal of PPs and ARGs at low temperatures.
Collapse
Affiliation(s)
- Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China.
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China.
| | - Na Li
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Abudoushalamu Zaimire
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Hailiang Chen
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| | - Yiming Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi, 830017, People's Republic of China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi, 830017, People's Republic of China
| |
Collapse
|
3
|
Zhao X, Xu Y, Yin F, Li Y, Li X, Wei Q. Co-Fe-N@biochar anode for improvment the electricity generation performance of microbial fuel cell. ENVIRONMENTAL TECHNOLOGY 2024; 45:5048-5062. [PMID: 37970847 DOI: 10.1080/09593330.2023.2283797] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2023] [Accepted: 09/26/2023] [Indexed: 11/19/2023]
Abstract
Microbial fuel cells (MFCs) can generate energy while processing organic pollutants, which has a great impact on environmental wastewater treatment applications. In this study, a gel polymer was formed by Co-Fe-N co-doping biochar (Co-Fe-N@BC), which was used as the anode material to improve the electricity generation performance of MFC. The Co-Fe-N@BC material prepared at 900℃ carbonised biomass into more graphitic carbon, and its total resistance (3.56 Ω) was significantly reduced. In the corresponding dual-chamber MFC, the current density was 2.81 A/m2, and the power density reached 1181 mW/m2 at maximum. Among the materials tested, the Co-Fe-N@BC anode MFC had the highest chemical oxygen demand removal rate and coulombic efficiency, reaching 91% and 13%, respectively. It is proved that MFC with Co-Fe-N@BC anode has the best electrochemical performance.
Collapse
Affiliation(s)
- Xia Zhao
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Yumin Xu
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Fei Yin
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Yucheng Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Xinyi Li
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| | - Qian Wei
- College of Petrochemical Engineering, Lanzhou University of Technology, Lanzhou, People's Republic of China
| |
Collapse
|
4
|
Chen S, Wang X, Shi X, Li S, Yang L, Yan W, Xu H. Integrated system of electro-catalytic oxidation and microbial fuel cells for the treatment of recalcitrant wastewater. CHEMOSPHERE 2024; 354:141754. [PMID: 38508464 DOI: 10.1016/j.chemosphere.2024.141754] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/09/2023] [Revised: 02/09/2024] [Accepted: 03/16/2024] [Indexed: 03/22/2024]
Abstract
The emission of recalcitrant wastewater poses serious threats to the environment. In this study, an integrated approach combining electrocatalytic oxidation (EC) for pretreatment and microbial fuel cells (MFC) for thorough pollutant degradation is proposed to ensure efficient degradation of target substances, with low energy input and enhanced bioavailability of refractory organics. When phenol was used as the pollutant, an initial concentration of 2000 mg/L phenol solution underwent EC treatment under constant current-exponential attenuation power supply mode, resulting in a COD removal rate of 54.53%, and a phenol degradation rate of 99.83%. Intermediate products such as hydroquinone and para-diphenol were detected in the solution. After subsequent MFC treatment, only minor amounts of para-diphenol were left, and the degradation rate of phenol and its intermediate products reached 100%, with an output power density of 110.4 mW m-2. When coal chemical wastewater was used as the pollutant, further examination of the EC-MFC system performance showed a COD removal rate of 49.23% in the EC section, and a 76.21% COD removal rate in the MFC section, with an output power density of 181.5 mW m-2. Microbiological analysis revealed typical electrogenic bacteria (such as Pseudomonas and Geobacter), and specific degrading functional bacteria (such as Stenotrophomonas, Delftia, and Brevundimonas). The dominant microbial communities and their proportions adapted to environmental changes in response to the variation of carbon sources.
Collapse
Affiliation(s)
- Shiyu Chen
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xinyu Wang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Xueyao Shi
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Shanshan Li
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China.
| | - Liu Yang
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China
| | - Wei Yan
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, China
| | - Hao Xu
- Department of Environmental Science and Engineering, Xi'an Jiaotong University, Xi'an 710049, Shaanxi, China; Research Institute of Xi'an Jiaotong University, Zhejiang, Hangzhou, 311200, China.
| |
Collapse
|
5
|
Guo W, Chen Y, Cui L, Xu N, Wang M, Sun Y, Yan Y. Nano-hydroxyapatite/carbon nanotube: An excellent anode modifying material for improving the power output and diclofenac sodium removal of microbial fuel cells. Bioelectrochemistry 2023; 154:108523. [PMID: 37478753 DOI: 10.1016/j.bioelechem.2023.108523] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2023] [Revised: 07/06/2023] [Accepted: 07/13/2023] [Indexed: 07/23/2023]
Abstract
Anode material and surface properties have a crucial impact on the performance of MFCs. Designing and fabricating various modified carbon-based anodes with functional materials is an effective strategy to improve anode performance in MFCs. Anode materials with excellent bioaffinity can promote bacterial attachment, growth, and extracellular electron transfer. In this study, positively charged nano hydroxyapatite (nHA) with remarkable biocompatibility combined with carbon nanotubes (CNTs) with unique structure and high conductivity were used as anode modifying material. The nHA/CNTs modified carbon brush (CB) exhibited improved bacteria adsorption capacity, electrochemical activity and reticular porous structure, thus providing abundant sites and biocompatible microenvironment for the attachment and growth of functional microbial and accelerating extracellular electron transfer. Consequently, the nHA/CNTs/CB-MFCs achieved the maximum power density of 4.50 ± 0.23 mW m-2, which was 1.93 times higher than that of the CB-MFCs. Furthermore, diclofenac sodium (DS), which is a widely used anti-inflammatory drug and is also a persistent toxic organic pollutant constituting a serious threat to public health, was used as the model organic pollutant. After 322 days of long-term operation, enhanced diclofenac sodium removal efficiency and simultaneous bioelectricity generation were realized in nHA/CNTs/CB-MFCs, benefiting from the mature biofilm and the diverse functional microorganisms revealed by microbial community analysis. The nHA/CNTs/CB anode with outstanding bioaffinity, electrochemical activity and porous structure presents great potential for the fabrication of high-performance anodes in MFCs.
Collapse
Affiliation(s)
- Wei Guo
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| | - Yingying Chen
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Liang Cui
- Audit affairs Department, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Na Xu
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China
| | - Mengmeng Wang
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Yahui Sun
- School of Pharmacy, Xinxiang Medical University, Xinxiang 453003, People's Republic of China
| | - Yunhui Yan
- School of Basic Medical Sciences, Xinxiang Medical University, Xinxiang, Henan 453003, People's Republic of China.
| |
Collapse
|
6
|
Zhang Q, Wu M, Ailijiang N, Mamat A, Chang J, Pu M, He C. Impact of Voltage Application on Degradation of Biorefractory Pharmaceuticals in an Anaerobic-Aerobic Coupled Upflow Bioelectrochemical Reactor. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2022; 19:15364. [PMID: 36430083 PMCID: PMC9690855 DOI: 10.3390/ijerph192215364] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/14/2022] [Revised: 11/12/2022] [Accepted: 11/17/2022] [Indexed: 06/16/2023]
Abstract
Diclofenac, ibuprofen, and carbamazepine are frequently detected in the environment, where they pose a threat to organisms and ecosystems. We developed anaerobic-aerobic coupled upflow bioelectrochemical reactors (AO-UBERs) with different voltages, hydraulic retention times (HRTs), and types of electrode conversion, and evaluated the ability of the AO-UBERs to remove the three pharmaceuticals. This study showed that when a voltage of 0.6 V was applied, the removal rate of ibuprofen was slightly higher in the system with aerobic cathodic and anaerobic anodic chambers (60.2 ± 11.0%) with HRT of 48 h than in the control systems, and the removal efficiency reached stability faster. Diclofenac removal was 100% in the 1.2 V system with aerobic anodic and anaerobic cathodic chambers, which was greater than in the control system (65.5 ± 2.0%). The contribution of the aerobic cathodic-anodic chambers to the removal of ibuprofen and diclofenac was higher than that of the anaerobic cathodic-anodic chambers. Electrical stimulation barely facilitated the attenuation of carbamazepine. Furthermore, biodegradation-related species (Methyloversatilis, SM1A02, Sporomusa, and Terrimicrobium) were enriched in the AO-UBERs, enhancing pharmaceutical removal. The current study sheds fresh light on the interactions of bacterial populations with the removal of pharmaceuticals in a coupled system.
Collapse
Affiliation(s)
- Qiongfang Zhang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Mei Wu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Nuerla Ailijiang
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Anwar Mamat
- School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830017, China
| | - Jiali Chang
- Division of Environmental Engineering, School of Chemistry, Resources and Environment, Leshan Normal University, Leshan 614000, China
| | - Miao Pu
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| | - Chaoyue He
- Key Laboratory of Oasis Ecology of Education Ministry, College of Ecology and Environment, Xinjiang University, Urumqi 830017, China
- Xinjiang Jinghe Observation and Research Station of Temperate Desert Ecosystem, Ministry of Education, Urumqi 830017, China
| |
Collapse
|
7
|
Liu Y, Xi Y, Xie T, Liu H, Su Z, Huang Y, Xu W, Wang D, Zhang C, Li X. Enhanced removal of diclofenac via coupling Pd catalytic and microbial processes in a H 2-based membrane biofilm reactor: Performance, mechanism and biofilm microbial ecology. CHEMOSPHERE 2022; 307:135597. [PMID: 35817179 DOI: 10.1016/j.chemosphere.2022.135597] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2022] [Revised: 06/29/2022] [Accepted: 07/01/2022] [Indexed: 06/15/2023]
Abstract
Diclofenac (DCF) is a most widely used anti-inflammatory drug, which has attracted worldwide attention given its low biodegradability and ecological damage, especially toxic effects on mammals including humans. In this study, a H2-based membrane biofilm reactor (H2-MBfR) was constructed with well-dispersed Pd nanoparticles generated in situ. The Pd-MBfR was applied for catalytic reductive dechlorination of DCF. In batch tests, DCF concentration had significantly effect on the rate and extent DCF removal, and NO3- had negative impact on DCF reductive dechlorination. Over 67% removal of 0.5 mg/L DCF and 99% removal of 10 mg/L NO3--N were achieved in 90 min, and the highest removal of 97% was obtained at 0.5 mg/L DCF in the absence of NO3-. Over 78 days of continuous operation, the highest steady-state removal flux of DCF was 0.0097 g/m2/d. LC-MS analysis indicated that the major product was 2-anilinephenylacetic acid (APA). Dechlorination was the main removal process of DCF mainly owing to the catalytic reduction by PdNPs, microbial reduction, and the synergistic reduction of microbial and PdNPs catalysis using direct delivery of H2. Moreover, DCF reductive Dechlorination shifted the microbial community in the biofilms and Sporomusa was responsible for DCF degradation. In summary, this work expands a remarkable feasibility of sustainable catalytic removal of DCF.
Collapse
Affiliation(s)
- Yanfen Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yanni Xi
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Tanghuan Xie
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Huinian Liu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Zhu Su
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Yicai Huang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Weihua Xu
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Dongbo Wang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China
| | - Chang Zhang
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| | - Xin Li
- College of Environmental Science and Engineering, Hunan University, Changsha 410082, PR China; Key Laboratory of Environmental Biology and Pollution Control (Hunan University), Ministry of Education, Changsha 410082, PR China.
| |
Collapse
|
8
|
Han W, Chen S, Tan X, Li X, Pan H, Ma P, Wu Z, Xie Q. Microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge composting. Front Microbiol 2022; 13:1015949. [PMID: 36274704 PMCID: PMC9581145 DOI: 10.3389/fmicb.2022.1015949] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2022] [Accepted: 08/29/2022] [Indexed: 11/13/2022] Open
Abstract
This study researched microbial community succession in response to sludge composting efficiency and heavy metal detoxification during municipal sludge co-composting with spent mushroom and spent bleaching. The change law of key physicochemical properties, the heavy metals contents and forms during composting were analyzed, and the passivation of heavy metals after composting was explored. High-throughput sequencing was used to analyze the microbial community structure of treat 2 during composting, and the correlation analysis of microbial community structure with heavy metal contents and forms were carried out. The results showed that the sludge of each treatment reached composting maturity after 26 days of composting. Organic matter content, electrical conductivity, pH and seed germination index of treat 2 were all in line with the standard limit of agricultural sludge. Because of the presence of compost bacteria addition, the passivating heavy metals performance of treat 2 satisfied the standard limit of agricultural sludge after composting, which was superior to that of treat 1 and treat 3. The diversity of microbial communities in treat 2 decreased during composting. Extensive bacteria such as Bacillus, Geobacter, Lactobacillus, and Pseudomonas, which possessed the abilities of heavy metal passivation and organic oxidizing, were dominant in treat 2 during the heating stage. However, as composting proceeded, Tuberibacillus with ability of organic oxidizing gradually became the most dominant species at the thermophilic and cooling stages. Changes in microbial function varied from changes of microbial community in treat 2, subsequently affected the performances of heavy metal passivation and organic oxidizing during composting.
Collapse
Affiliation(s)
- Weijiang Han
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Shuona Chen
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
| | - Xiao Tan
- South China Institute of Environmental Sciences, Ministry of Ecology and Environment, Guangzhou, China
| | - Xin Li
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
| | - Hua Pan
- Nanhai Branch of Foshan Ecological Environment Bureau, Foshan, China
| | - Peijian Ma
- Qingyuan Solid Waste Treatment Center, Qingyuan, China
| | - Zhihua Wu
- Qingyuan Solid Waste Treatment Center, Qingyuan, China
| | - Qilai Xie
- College of Natural Resources and Environment, South China Agricultural University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Agricultural and Rural Pollution Abatement and Environmental Safety, Guangzhou, China
- *Correspondence: Qilai Xie,
| |
Collapse
|
9
|
Bio-electrocatalyst Fe3O4/Fe@C derived from MOF as a high-performance bioanode in single-chamber microbial fuel cell. Biochem Eng J 2022. [DOI: 10.1016/j.bej.2022.108611] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2022]
|
10
|
Zheng J, Wang S, Varrone C, Zhou A, Kong X, Li H, Yu L, Yue X. Mechanism, electrochemistry and biotoxicity analysis of the biodegradation of sulfadiazine on Nickel(Ⅱ)/Manganese(Ⅱ)-modified graphite felt bioanode. ENVIRONMENTAL RESEARCH 2022; 210:112928. [PMID: 35151658 DOI: 10.1016/j.envres.2022.112928] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/01/2021] [Revised: 01/19/2022] [Accepted: 02/07/2022] [Indexed: 06/14/2023]
Abstract
Sulfadiazine (SDZ) is one of the most representative sulfonamides antibiotics, and its biodegradation has become a research hotspot in recent years. The present study innovatively adopted a microbial fuel cells with a Nickel (Ⅱ) and Manganese (Ⅱ)-decorated graphite felt bioanode (Ni(Ⅱ)/Mn (Ⅱ)-MFCs) to remove SDZ. The results demonstrated that the Ni(Ⅱ)/Mn (Ⅱ)-MFCs exhibited improved electrochemical performance, with a higher power density (742.98 ± 58.33 mW/m2) compared to the control MFCs (678.34 ± 52.87 mW/m2), an overall lower anode potential, and a larger double layer area (cyclic voltammetry). After 5 months of operation, approximately 97.95% of 30 mg/L SDZ was degraded within 120 h, which was 11.46% higher than that of the control MFCs. Moreover, SDZ and its byproducts could be better mineralized in the Ni(Ⅱ)/Mn (Ⅱ)-MFCs than the control, and the biotoxicity of SDZ towards Escherichia coli and Vibro qinghaiensis sp. Q67 could be greatly decreased after treatment with the modified MFCs. Based on the metabolites, we hypothesized that the chemical reactions hydroxylation, ammoxidation, SO2-extrusion, sulfur-reduction, etc. played a significant role in SDZ biodegradation. A microbial community analysis revealed that Dechloromonas (2.37%), Denitratisoma (5.32%) and Lentimicrobium (26.35%) were the dominant functional microbes in the Ni(Ⅱ)/Mn (Ⅱ)-MFCs. This study may provide insights and a theoretical basis for the biodegradation of sulfonamides and thus may facilitate further investigations and relevant findings.
Collapse
Affiliation(s)
- Jierong Zheng
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Sufang Wang
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| | - Cristiano Varrone
- Department of Chemistry and BioScience, Aalborg University, A.C. Meyer Vænge 15, 2450, Copenhagen, Denmark
| | - Aijuan Zhou
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xin Kong
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Houfen Li
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Li Yu
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China
| | - Xiuping Yue
- College of Environmental Science and Engineering, Taiyuan University of Technology, Taiyuan, 030024, PR China.
| |
Collapse
|
11
|
Agrahari R, Bayar B, Abubackar HN, Giri BS, Rene ER, Rani R. Advances in the development of electrode materials for improving the reactor kinetics in microbial fuel cells. CHEMOSPHERE 2022; 290:133184. [PMID: 34890618 DOI: 10.1016/j.chemosphere.2021.133184] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 11/24/2021] [Accepted: 12/03/2021] [Indexed: 06/13/2023]
Abstract
Microbial fuel cells (MFCs) are an emerging technology for converting organic waste into electricity, thus providing potential solution to energy crises along with eco-friendly wastewater treatment. The electrode properties and biocatalysts are the major factors affecting electricity production in MFC. The electrons generated during microbial metabolism are captured by the anode and transferred towards the cathode via an external circuit, causing the flow of electricity. This flow of electrons is greatly influenced by the electrode properties and thus, much effort has been made towards electrode modification to improve the MFC performance. Different semiconductors, nanostructured metal oxides and their composite materials have been used to modify the anode as they possess high specific surface area, good biocompatibility, chemical stability and conductive properties. The cathode materials have also been modified using metals like platinum and nano-composites for increasing the redox potential, electrical conductivity and surface area. Therefore, this paper reviews the recent developments in the modification of electrodes towards improving the power generation capacity of MFCs.
Collapse
Affiliation(s)
- Roma Agrahari
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India
| | - Büşra Bayar
- Faculty of Sciences, University of A Coruña, E-15008, A Coruña, Spain
| | | | - Balendu Shekher Giri
- Aquatic Toxicology Division, CSIR-Indian Institute of Toxicology Research (IITR), Lucknow, Uttar Pradesh, 226001, India
| | - Eldon R Rene
- Department of Water Supply Sanitation and Environmental Engineering, IHE Delft Institute for Water Education, Westvest, 2601DA Delft 7, Delft, the Netherlands
| | - Radha Rani
- Department of Biotechnology, Motilal Nehru National Institute of Technology Allahabad, Teliyarganj, Prayagraj, 211004, Uttar Pradesh, India.
| |
Collapse
|
12
|
Qiu B, Hu Y, Tang C, Chen Y, Cheng J. Degradation of diclofenac via sequential reduction-oxidation by Ru/Fe modified biocathode dual-chamber bioelectrochemical system: Performance, pathways and degradation mechanisms. CHEMOSPHERE 2022; 291:132881. [PMID: 34774907 DOI: 10.1016/j.chemosphere.2021.132881] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2021] [Revised: 10/26/2021] [Accepted: 11/10/2021] [Indexed: 06/13/2023]
Abstract
A sequential reduction-oxidation for DCF degradation was proposed by alternating anaerobic/aerobic conditions at Ru/Fe-biocathode in a dual-chamber bioelectrochemical system (BES). Results showed that Ru/Fe-electrode was successfully fabricated by in-situ electro-deposition, which was rough and uniformly distributed with Ru0 and Fe0 particles. The morphologic changing and biocompatibility were favorable to increase the surface area and enhance microbial adhesion on Ru/Fe-electrode. At an applied voltage of 0.6 V, the potential and impedance of Ru/Fe-biocathode were -0.80 V and 26 Ω, respectively, lower than that of carbon-felt-biocathode. It led to a higher DCF degradation efficiency of 93.2% under anaerobic conditions, which was superior to that of 88.0% under aerobic conditions. Using NaHCO3 as carbon source, DCF removal efficiency increased with increasing applied voltage, but decreased with increasing initial DCF concentration. Thirteen intermediates were measured, and two degradation pathways were proposed, among which sequential reduction-oxidation of DCF was the main pathway, dechlorination intermediates were first generated by [H] attacked under anaerobic conditions, further oxidized by microbes and OH attacked under aerobic conditions, achieving 69.6% of mineralization. After 4 d of reaction, microcystis aeruginosa growth inhibition rate decreased from 22.9 to 8.0%, signifying a significant reduction in biotoxicity. Bacteria (e.g. Nitrobacter, Nitrosomonas, Pseudofulvimonas, Aquamicrobium, Sulfurvermis, Lentimicrobiaceae, Anaerobineaceae, Bacteroidales, Hydrogenedensaceae, Dethiosulfatibacter and Azoarcus) for DCF degradation were enriched in Ru/Fe-biocathode. Microbes in Ru/Fe-biocathode had established defense mechanisms to acclimate to the unfriendly environment, while Ru/Fe-biocathode possessed higher nitrification and denitrification activities than carbon-felt-biocathode, and Ru/Fe-biocathode might be of aerobic and anaerobic biodegradation activities. DCF could be mineralized by the synergistic reaction between Ru/Fe and bacteria under sequential anaerobic/aerobic conditions.
Collapse
Affiliation(s)
- Bing Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China.
| | - Chaoyang Tang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou, 510006, PR China
| |
Collapse
|
13
|
Ren L, Lu J, Liu H. Activated carbon supported Fe–Cu–NC as an efficient cathode catalyst for a microbial fuel cell. NEW J CHEM 2022. [DOI: 10.1039/d2nj03939g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Abstract
Herein, the output power density produced by Fe–Cu–NC-x as the cathode catalyst of a MFC was higher than that of the AC control.
Collapse
Affiliation(s)
- Linde Ren
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Jinrong Lu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| | - Hua Liu
- Chemical Science and Engineering College, North Minzu University, Yinchuan, 750021, P. R. China
| |
Collapse
|
14
|
Wang L, Liang D, Shi Y. Profiling of co-metabolic degradation of tetracycline by the bio-cathode in microbial fuel cells. RSC Adv 2022; 12:509-516. [PMID: 35424472 PMCID: PMC8978701 DOI: 10.1039/d1ra07600k] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/14/2021] [Accepted: 12/10/2021] [Indexed: 11/21/2022] Open
Abstract
In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed. Overall, the co-metabolic degradation performance of TEC was studied through single factor experiments and the ecological risk was evaluated using the E. coli growth inhibition rate and resistance genes. High throughput sequencing (HTS) was utilized to profile the biofilm community structure of the bio-cathode. Results showed that the degradation rate of TEC reached greater than 90% under optimal conditions, which was 10 mg L−1 initial TEC concentration, 0.2–0.7 g L−1 sodium acetate concentration and 12–18 L h−1 aeration. Furthermore, compared with the aerobic biodegradation of TEC, the degradation efficiency of the MFC bio-cathode for TEC was significantly increased by 50% and the eco-toxicity of TEC after 36 hour degradation was reduced by 60.9%, and TEC ARGs in effluent were cut down. HTS results showed that electrochemically active bacteria Acetobacter and TEC-resistant degradation bacteria Hyphomicrobium, Clostridium and Rhodopseudomonas were the main dominant bacteria in the cathode biofilm. Besides, based on 5 intermediates, degradation pathways involving deamidation, denitro dimethylation, dedimethylation and dehydroxylation of TEC were proposed. The degradation of TEC on the bio-cathode was mainly caused by microbial co-metabolism action. This study would enrich the study of MFC bio-cathodic degradation of antibiotics in water. In this paper, a system of tetracycline (TEC) degradation by the bio-cathode in a microbial fuel cell (MFC) was constructed.![]()
Collapse
Affiliation(s)
- Luxiang Wang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Dongmin Liang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| | - Yunqi Shi
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
- The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, Guangzhou Higher Education Mega Centre, Guangzhou 510006, P. R China
| |
Collapse
|
15
|
Qiu B, Hu Y, Tang C, Chen Y, Cheng J. Simultaneous mineralization of 2-anilinophenylacetate and denitrification by Ru/Fe modified biocathode double-chamber microbial fuel cell. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 792:148446. [PMID: 34465036 DOI: 10.1016/j.scitotenv.2021.148446] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/05/2021] [Revised: 05/21/2021] [Accepted: 06/09/2021] [Indexed: 06/13/2023]
Abstract
A double-chamber microbial fuel cell (MFC) with Ru/Fe-modified-biocathode was constructed for simultaneous mineralization of 2-anilinophenylacetate (APA) and denitrification. The factors on performance of simultaneous APA degradation and denitrification were explored. The contributions of ROS to APA degradation were evaluated by EPR and quenching experiments. The microbial community of Ru/Fe-modified-biocathode was determined by high-throughput sequencing. Results showed that low resistance accelerated APA degradation by Ru/Fe-modified-biocathode, while higher initial APA concentration inhibited microbial activity of the biocathode. The optimum ammonia concentration was 50 mg L-1, while too high or too low ammonia concentration did not favor APA degradation. The APA degradation efficiency of Ru/Fe-modified-biocathode-MFC was higher than that of other modified-cathode-MFCs. The APA degradation process confirmed to the pseudo-first-order kinetic model, and APA degradation kinetic constant, the maximum removal efficiency of TOC, ammonia and TN were 2.15d-1, 59.70%, 99.20% and 44.56% respectively, signifying a simultaneous APA mineralization and denitrification performance of Ru/Fe-modified-biocathode-MFC. The coulombic efficiency decreased with APA concentration increase. OH was the primary radical in APA degradation progress. Eight kinds of intermediates were measured, and two APA degradation pathways were proposed, among which APA hydroxylation was the main pathway. The microbial community of Ru/Fe-modified-biocathode was dominated with Nitrosomonas at genus level, and enriched with various APA-degraders, nitrifiers, and denitrifiers such as Pseudomonas, Nitrospira, Nitrobacter, Paracoccus, Thermomonas, Dechloromonas, and Clostridium_Sutra_stricto_1. COG analysis showed the redox reaction of Ru/Fe might affect signal transduction and environment adaptation, while FAPROTAX analysis suggested that Ru/Fe-modified-biocathode exhibited higher nitrification activity than that of carbon-felt-biocathode. The synergistic mechanism of simultaneous APA mineralization and denitrification was mainly redox reaction of Ru/Fe and supplemented by aerobic biodegradation.
Collapse
Affiliation(s)
- Bing Qiu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yongyou Hu
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China.
| | - Chaoyang Tang
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Yuancai Chen
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| | - Jianhua Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China; The Key Lab of Pollution Control and Ecosystem Restoration in Industry Clusters, Ministry of Education, South China University of Technology, Guangzhou Higher Education Mega Centre, Guangzhou 510006, China
| |
Collapse
|
16
|
Gao X, Qiu S, Lin Z, Xie X, Yin W, Lu X. Carbon-Based Composites as Anodes for Microbial Fuel Cells: Recent Advances and Challenges. Chempluschem 2021; 86:1322-1341. [PMID: 34363342 DOI: 10.1002/cplu.202100292] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/28/2021] [Revised: 07/29/2021] [Indexed: 11/11/2022]
Abstract
Owing to the low price, chemical stability and good conductivity, carbon-based materials have been extensively applied as the anode in microbial fuel cells (MFCs). In this review, apart from the charge storage mechanism and anode requirements, the major work focuses on five categories of carbon-based anode materials (traditional carbon, porous carbon, nano-carbon, metal/carbon composite and polymer/carbon composite). The relationship is demonstrated in depth between the physicochemical properties of the anode surface/interface/bulk (porosity, surface area, hydrophilicity, partical size, charge, roughness, etc.) and the bioelectrochemical performances (electron transfer, electrolyte diffusion, capacitance, toxicity, start-up time, current, power density, voltage, etc.). An outlook for future work is also proposed.
Collapse
Affiliation(s)
- Xingyuan Gao
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China.,MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| | - Shuxian Qiu
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Ziting Lin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xiangjuan Xie
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Wei Yin
- Faculty of Chemistry and Material Science, Engineering Technology Development Center of Advanced Materials &, Energy Saving and Emission Reduction, in Guangdong Colleges and Universities, Guangdong University of Education, Guangzhou, 510303, P. R. China
| | - Xihong Lu
- MOE of the Key Laboratory of Bioinorganic and Synthetic Chemistry, The Key Lab of Low-carbon Chem &, Energy Conservation of Guangdong Province, School of Chemistry, Sun Yat-Sen University, Guangzhou, 510275, P. R. China
| |
Collapse
|
17
|
Fernández-Sanromán Á, Lama G, Pazos M, Rosales E, Sanromán MÁ. Bridging the gap to hydrochar production and its application into frameworks of bioenergy, environmental and biocatalysis areas. BIORESOURCE TECHNOLOGY 2021; 320:124399. [PMID: 33220547 DOI: 10.1016/j.biortech.2020.124399] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/22/2020] [Revised: 11/02/2020] [Accepted: 11/06/2020] [Indexed: 06/11/2023]
Abstract
Hydrothermal carbonization (HTC) is a facile, low-cost and eco-friendly thermal conversion process that has recently gained attention with a growing number of publications (lower 50 in 2000 to over 1500 in 2020). Despite being a promising technology, problems such as operational barriers, complex reaction mechanisms and scaling have to be solved to make it a commercial technology. To bridge this current gap, this review elaborates on the chemistry of the conversion of lignocellulosic biomass. Besides, a comprehensive overview of the influence of the HTC operational conditions (pH, temperature, water:biomass ratio, residence time and water recirculation) are discussed to better understand how hydrochar with desired properties can be efficiently produced. Large-scale examples of the application of HTC are also presented. Current applications of hydrochar in the fields of energy, biocatalysis and environment are reviewed. Finally, economic cost and future prospects are analyzed.
Collapse
Affiliation(s)
- Ángel Fernández-Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Gabriela Lama
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Marta Pazos
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Emilio Rosales
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain
| | - Maria Ángeles Sanromán
- CINTECX, Universidade de Vigo, Grupo de Bioingeniería y Procesos Sostenibles, Departamento de Ingeniería Química, Campus As Lagoas-Marcosende, 36310 Vigo, Spain.
| |
Collapse
|
18
|
Aguilar-Romero I, Romero E, Wittich RM, van Dillewijn P. Bacterial ecotoxicity and shifts in bacterial communities associated with the removal of ibuprofen, diclofenac and triclosan in biopurification systems. THE SCIENCE OF THE TOTAL ENVIRONMENT 2020; 741:140461. [PMID: 32886990 DOI: 10.1016/j.scitotenv.2020.140461] [Citation(s) in RCA: 16] [Impact Index Per Article: 3.2] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/09/2020] [Revised: 05/17/2020] [Accepted: 06/21/2020] [Indexed: 06/11/2023]
Abstract
The proliferation and possible adverse effects of emerging contaminants such as pharmaceutical and personal care products (PPCPs) in waters and the environment is a cause for increasing concern. We investigated the dissipation of three PPCPs: ibuprofen (IBP), diclofenac (DCF) and triclosan (TCS), separately and in mixtures, in the ppm range in biopurification system (BPS) microcosms, paying special attention to their effect on bacterial ecotoxicity, as well as bacterial community structure and composition. The results reveal that BPS microcosms efficiently dissipate IBP and DCF with 90% removed after 45 and 84 days of incubation, respectively. However, removal of TCS required a longer incubation period of 127 days for 90% removal. Furthermore, dissipation of the PPCPs was slower when a mixture of all three was applied to BPS microcosms. TCS had an initial negative effect on bacterial viability by a decrease of 34-43% as measured by live bacterial cell counts using LIVE/DEAD® microscopy; however, this effect was mitigated when the three PPCPs were present simultaneously. The bacterial communities in BPS microcosms were more affected by incubation time than by the PPCPs used. Nonetheless, the PPCPs differentially affected the composition and relative abundance of bacterial taxa. IBP and DCF initially increased bacterial diversity and richness, while exposure to TCS generally provoked an opposite effect without full recovery at the end of the incubation period. TCS, which negatively affected the relative abundance of Acidobacteria, Methylophilales, and Legionellales, had the largest impact on bacterial groups. Biomarker OTUs were identified in the BPS microcosms which were constrained to higher concentrations of the PPCPs and thus are likely to harbour degradation and/or detoxification mechanisms. This study reveals for the first time the effect of PPCPs on bacterial ecotoxicity and diversity in biopurification system microcosms and also facilitates the design of further applications of biomixtures to eliminate PPCPs.
Collapse
Affiliation(s)
- Inés Aguilar-Romero
- Department of Environmental Protection, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Esperanza Romero
- Department of Environmental Protection, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Regina-Michaela Wittich
- Department of Environmental Protection, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain
| | - Pieter van Dillewijn
- Department of Environmental Protection, Estación Experimental del Zaidín - Consejo Superior de Investigaciones Científicas (EEZ-CSIC), Calle Profesor Albareda 1, 18008 Granada, Spain..
| |
Collapse
|