1
|
Shi L, Li S, Li X, Peng B, Hu Z, Hu H, Luo G, Yao H. Insight into volatile-char interaction mechanisms of biomass torrefaction based on three major components. BIORESOURCE TECHNOLOGY 2024; 408:131109. [PMID: 39009045 DOI: 10.1016/j.biortech.2024.131109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2024] [Revised: 07/07/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Volatile-char interaction is an important phenomenon in biomass thermal conversion process, which significantly contributes to the decomposition, deoxygenation and upgrading of biomass. However, the deep insight into volatile-char interaction mechanisms between hemicellulose, cellulose and lignin is currently unclear. In this work, above mechanism was studied through systematic single-/bi-component torrefactions and the follow-up char analysis. Results demonstrate that only hemicellulose volatile and cellulose char interaction exists during torrefaction at 250 °C, causing over 19.9 wt% of mass loss and 27.3 wt% of O removal for cellulose. This volatile-char interaction causes significant depolymerization and amorphization of cellulose by hydrolysis, acid hydrolysis and esterification reactions. The depolymerized and amorphous cellulose partly thermally decomposes to dehydrated sugars and aromatic compounds through dehydroxylation and aromatization reactions. A volatile-char interaction mechanism model is thus developed. This work provides theoretical insight into biomass thermal conversion and provides basis for the development of new thermochemical method.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shuo Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Key Laboratory of Coal Clean Conversion and Chemical Process Autonomous Region, School of Chemical Engineering and Technology, Xinjiang University, Urumqi 830000, China.
| | - Bing Peng
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenzhong Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Sun S, Wang Q, Wang X, Wu C, Zhang X, Bai J, Sun B. Dry torrefaction and continuous thermochemical conversion for upgrading agroforestry waste into eco-friendly energy carriers: Current progress and future prospect. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 905:167061. [PMID: 37714342 DOI: 10.1016/j.scitotenv.2023.167061] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2023] [Revised: 09/11/2023] [Accepted: 09/11/2023] [Indexed: 09/17/2023]
Abstract
Agroforestry Waste (AW) is seen as a carbon neutral resource. However, the poor quality of AW reduced its potential application value. Even more unfortunately, chlorine in AW led to the formation of organic pollutants such as dioxins under higher temperatures. Alkali and alkaline earth metals (AAEMs) in ash may deepen the reaction degree. Co-pretreatment of dry torrefaction and de-ashing followed by thermochemical conversion is a promising technology, which can improve raw material quality, inhibit the release of organic pollutants and transform AW into eco-friendly energy carriers. In order to better understand the process, theoretical basis such as the structural characteristics, thermal properties and separation methods of structural components of AW are described in detail. In addition, dry torrefaction related reactors, process parameters, kinetic analysis models as well as the evaluation methods of torrefaction degree and environmental impact are systematically reviewed. The problem of ash accumulation caused by dry torrefaction can be well solved by de-ashing pretreatment. This paper provides a comprehensive discussion on the role of the two- and three-stage conversion technologies around dry torrefacion, de-ashing pretreatment and thermochemical conversion in products quality enhancement. Finally, the existing technical challenges, including suppression of gaseous pollutant release, harmless treatment and reuse of torrefaction liquid product (TPL) and reduction of torrefaction operating costs, are summarized and evaluated. The future research directions, such as vitrification of the reused TPL (after de-ashing or acid catalysis) and integration of oxidative torrefaction with thermochemical conversion technologies, are proposed.
Collapse
Affiliation(s)
- Shipeng Sun
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Qing Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China.
| | - Xinmin Wang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Chunlei Wu
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Xu Zhang
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Jingru Bai
- Engineering Research Centre of Oil Shale Comprehensive Utilization, Ministry of Education, Northeast Electric Power University, Jilin City, Jilin 132012, PR China; School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| | - Baizhong Sun
- School of Energy and Power Engineering, Northeast Electric Power University, Jilin City, Jilin 132012, PR China
| |
Collapse
|
3
|
Shi L, Sun Y, Li X, Li S, Peng B, Hu Z, Hu H, Luo G, Yao H. Gas-Pressurized Torrefaction of Lignocellulosic Solid Wastes: Deoxygenation and Aromatization Mechanisms of Cellulose. Molecules 2023; 28:7671. [PMID: 38005393 PMCID: PMC10675035 DOI: 10.3390/molecules28227671] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2023] [Revised: 11/07/2023] [Accepted: 11/13/2023] [Indexed: 11/26/2023] Open
Abstract
A novel gas-pressurized (GP) torrefaction method at 250 °C has recently been developed that realizes the deep decomposition of cellulose in lignocellulosic solid wastes (LSW) to as high as 90% through deoxygenation and aromatization reactions. However, the deoxygenation and aromatization mechanisms are currently unclear. In this work, these mechanisms were studied through a developed molecular structure calculation method and the GP torrefaction of pure cellulose. The results demonstrate that GP torrefaction at 250 °C causes 47 wt.% of mass loss and 72 wt.% of O removal for cellulose, while traditional torrefaction at atmospheric pressure has almost no impact on cellulose decomposition. The GP-torrefied cellulose is determined to be composed of an aromatic furans nucleus with branch aliphatic C through conventional characterization. A molecular structure calculation method and its principles were developed for further investigation of molecular-level mechanisms. It was found 2-ring furans aromatic compound intermediate is formed by intra- and inter-molecular dehydroxylation reactions of amorphous cellulose, and the removal of O-containing function groups is mainly through the production of H2O. The three-ring furans aromatic compound intermediate and GP-torrefied cellulose are further formed through the polymerization reaction, which enhances the removal of ketones and aldehydes function groups in intermediate torrefied cellulose and form gaseous CO and O-containing organic molecules. A deoxygenation and aromatization mechanism model was developed based on the above investigation. This work provides theoretical guidance for the optimization of the gas-pressurized torrefaction method and a study method for the determination of molecular-level structure and the mechanism investigation of the thermal conversion processes of LSW.
Collapse
Affiliation(s)
| | | | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; (L.S.)
| | | | | | | | | | | | | |
Collapse
|
4
|
Chang YJ, Chang JS, Lee DJ. Gasification of biomass for syngas production: Research update and stoichiometry diagram presentation. BIORESOURCE TECHNOLOGY 2023; 387:129535. [PMID: 37495160 DOI: 10.1016/j.biortech.2023.129535] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/30/2023] [Revised: 07/17/2023] [Accepted: 07/19/2023] [Indexed: 07/28/2023]
Abstract
Gasification is a thermal process that converts organic materials into syngas, bio-oil, and solid residues. This mini-review provides an update on current research on producing high-quality syngas from biomass via gasification. Specifically, the review highlights the effective valorization of feedstocks, the development of novel catalysts for reforming reactions, the configuration of novel integrated gasification processes with an assisted field, and the proposal of advanced modeling tools, including the use of machine learning strategies for process design and optimization. The review also includes examples of using a stoichiometry diagram to describe biomass gasification. The research efforts in this area are constantly evolving, and this review provides an up-to-date overview of the most recent advances and prospects for future research. The proposed advancements in gasification technology have the potential to significantly contribute to sustainable energy production and reduce greenhouse gas emissions.
Collapse
Affiliation(s)
- Ying-Ju Chang
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan
| | - Jo-Shu Chang
- Research Center for Smart Sustainable Circular Economy, Tunghai University, Taiwan; Department of Chemical and Materials Engineering, Tunghai University, Taichung, 407, Taiwan; Department of Chemical Engineering, National Cheng Kung University, Tainan, 701, Taiwan
| | - Duu-Jong Lee
- Department of Chemical Engineering, National Taiwan University, Taipei, 10617, Taiwan; Department of Mechanical Engineering, City University of Hong Kong, Kowloon Tang, Hong Kong; Department of Chemical Engineering & Materials Engineering, Yuan Ze University, Chung-li, 32003, Taiwan.
| |
Collapse
|
5
|
He M, Cao Y, Fan Y, Mašek O, Clark JH, Tsang DCW. Revealing roles of CO 2 and N 2 in pressurized hydrothermal carbonization process for enhancing energy recovery and carbon sequestration. BIORESOURCE TECHNOLOGY 2023; 385:129429. [PMID: 37392964 DOI: 10.1016/j.biortech.2023.129429] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 06/26/2023] [Accepted: 06/28/2023] [Indexed: 07/03/2023]
Abstract
In this study, CO2- and N2-pressurized hydrothermal carbonization processes were investigated to understand the catalytic effects of CO2 on hydrochar production and its quality (e.g., surface properties, energy recovery, and combustion behaviour). Both CO2- and N2-pressurized HTC processes could enhance the energy recovery (from 61.5% to 63.0-67.8%) in hydrochar by enhancing the dehydration reactions. Nonetheless, the two systems exhibited contrasting trends in volatile release, oxygen removal, and combustion performance as a function of increasing pressure. High N2 pressure enhanced deoxygenation reaction, facilitating the release of volatiles and increasing the hydrochar aromaticity and combustion activation energy (172.7 kJ/mol for HC/5N). Without the contribution of CO2, excessively high pressure may cause an adverse impact on the fuel performance owing to higher oxidation resistance. This study presents an important and feasible strategy to utilise CO2-rich flue gas in the HTC process to produce high-quality hydrochar for renewable energy and carbon recovery.
Collapse
Affiliation(s)
- Mingjing He
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yang Cao
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Yinzheng Fan
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China
| | - Ondřej Mašek
- UK Biochar Research Centre, School of Geosciences, University of Edinburgh, Alexander Crum Brown Road, Crew Building, EH9 3FF, Edinburgh, UK
| | - James H Clark
- Circa Renewable Chemistry Institute, Green Chemistry Centre of Excellence, University of York, York YO105DD, UK
| | - Daniel C W Tsang
- Department of Civil and Environmental Engineering, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, China; State Key Laboratory of Clean Energy Utilization, Zhejiang University, Hangzhou 310027, China.
| |
Collapse
|
6
|
Shi L, Hu Z, Li X, Li S, Yi L, Wang X, Hu H, Luo G, Yao H. Gas-pressurized torrefaction of lignocellulosic solid wastes: Low-temperature deoxygenation and chemical structure evolution mechanisms. BIORESOURCE TECHNOLOGY 2023:129414. [PMID: 37390930 DOI: 10.1016/j.biortech.2023.129414] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/22/2023] [Revised: 06/26/2023] [Accepted: 06/27/2023] [Indexed: 07/02/2023]
Abstract
A novel gas-pressurized (GP) torrefaction realizes deeper deoxygenation of lignocellulosic solid wastes (LSW) to as high as 79 % compared to traditional torrefaction (AP) with the oxygen removal of 40 % at the same temperature. However, the deoxygenation and chemical structure evolution mechanisms of LSW during GP torrefaction are currently unclear. In this work, the reaction process and mechanism of GP torrefaction were studied through follow-up analysis of the three-phase products. Results demonstrate gas pressure causes over 90.4 % of cellulose decomposition and the conversion of volatile matter to fixed carbon through secondary polymerization reactions. Above phenomena are completely absent during AP torrefaction. A deoxygenation and structure evolution mechanism model is developed through analysis of fingerprint molecule and C structure. This model not only provides theoretical guidance for optimization of the GP torrefaction, but also contributes to the mechanism understanding of pressurized thermal conversion processes of solid fuel, such as coal and biomass.
Collapse
Affiliation(s)
- Liu Shi
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Zhenzhong Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Shuo Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Linlin Yi
- School of Safety Science and Emergency Management, Wuhan University of Technology, Wuhan 430070, China
| | - Xiaohua Wang
- Xi'an Thermal Power Research Institute Co, Ltd, Xi'an 710000, China
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
7
|
Wu Q, Zhang L, Ke L, Zhang Q, Cui X, Fan L, Dai A, Xu C, Zhang Q, Bob K, Zou R, Liu Y, Ruan R, Wang Y. Co-torrefaction of corncob and waste cooking oil coupled with fast co-pyrolysis for bio-oil production. BIORESOURCE TECHNOLOGY 2023; 370:128529. [PMID: 36574887 DOI: 10.1016/j.biortech.2022.128529] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 12/21/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
Lignocellulosic biomass is a rich source of fixed renewable carbon and a promising alternative to fossil sources. However, low effective hydrogen to carbon ratio limits its applications. This work studied the influence of oil-bath co-torrefaction of corncob and waste cooking oil for co-pyrolysis. It was compared with dry torrefaction and hydrothermal wet torrefaction firstly. Residual of oil-bath co-torrefaction were the highest of 97.01 %. Oil-bath co-torrefaction could maximize hydrogen atoms retention in corncob, which has a positive significance for deoxygenation during pyrolysis. Oil-bath co-torrefaction could also reduce the average activation energy required for corncob decomposition, while it was increased with dry torrefaction. Oil-bath co-torrefaction coupled with co-pyrolysis was more suitable for hydrocarbon-rich bio-oil production. Oil-bath co-torrefaction temperature had the greatest influence on bio-oil composition. High pressure promoted formation of the CC double bond and degradation of lignin, which further promoted the formation of monocyclic aromatics in bio-oil.
Collapse
Affiliation(s)
- Qiuhao Wu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Letian Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Linyao Ke
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qi Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Xian Cui
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Liangliang Fan
- School of Resources & Environmental, Nanchang University, Nanchang 330031, China
| | - Anqi Dai
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Chuangxin Xu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Qihang Zhang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Krik Bob
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55112, USA
| | - Rongge Zou
- Department of Biological Systems Engineering, Washington State University, Richland, WA 99354-1671, USA
| | - Yuhuan Liu
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China
| | - Roger Ruan
- Center for Biorefining and Department of Bioproducts and Biosystems Engineering University of Minnesota, 1390 Eckles Ave, St. Paul, MN 55112, USA
| | - Yunpu Wang
- State Key Laboratory of Food Science and Technology, Engineering Research Center for Biomass Conversion, Ministry of Education, Nanchang University, Nanchang 330047, China.
| |
Collapse
|
8
|
Zhang D, Han P, Zheng H, Yan Z. Torrefaction of walnut oil processing wastes by superheated steam: Effects on products characteristics. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 830:154649. [PMID: 35307422 DOI: 10.1016/j.scitotenv.2022.154649] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/25/2021] [Revised: 03/14/2022] [Accepted: 03/14/2022] [Indexed: 06/14/2023]
Abstract
Walnut oil production waste (WOPW) is a by-product of walnut oil processing. The organic waste is rich in holocellulose and lignin, showing good potential to be converted by thermal process to valuable products. Superheated steam (SHS) torrefaction is a recently proposed thermal process enabling fast and unformal biomass heating, resulting in high-quality solid products as direct fuel. The potential of SHS to torrefy lipids and proteins (being rich in WOPW) is attractive for broader application of SHS torrefaction to upgrade more biomass wastes. SHS torrefaction was studied in this work to upgrade WOPW for solid products with different reaction temperatures (200, 250, 300 °C) and residence times (20, 40, 60 min). The lowest weight yield was 43.64 wt% under the severest treatment of 300 °C and 60 min, accompanied with the highest energy enhancement of 1.34 (reaching HHV of 27.03 MJ/kg). Response surface method is employed to reveal the effects of temperature and residence time. Residence time of 40 min under 300 °C was supposed to be an ideal condition to upgrade WOPW with HHV of 26.68 MJ/kg and in the range of coal from Van Krevelen diagram. Combustion indices (e.g., fuel ratio, combustion index, and volatile ignitability) indicated that the aforementioned torrefied WOPW had favourable properties as co-firing material. On the other hand, combustion behaviours analysis demonstrated that SHS torrefied WOPW could perform well as direct fuel. Aqueous effluent was also condensed and analyzed, where products from lipids and proteins were massively presented, giving an insight into the decomposition of those two constitutes undergoing SHS torrefaction.
Collapse
Affiliation(s)
- Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Peilin Han
- College of Chemical Engineering, Fuzhou University, Fujian 350116, China
| | - Huidong Zheng
- College of Chemical Engineering, Fuzhou University, Fujian 350116, China
| | - Zuoyi Yan
- College of Chemical Engineering, Fuzhou University, Fujian 350116, China.
| |
Collapse
|
9
|
Wang F, Gao N, Magdziarz A, Quan C. Co-pyrolysis of biomass and waste tires under high-pressure two-stage fixed bed reactor. BIORESOURCE TECHNOLOGY 2022; 344:126306. [PMID: 34780903 DOI: 10.1016/j.biortech.2021.126306] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/02/2021] [Accepted: 11/04/2021] [Indexed: 06/13/2023]
Abstract
The distribution of biomass pyrolysis products under high pressure have rarely been reported. In this study, the effect of pressure on the product distribution of pine sawdust (PS) pyrolysis was studied. The synergistic effect of the side wall rubber (SWR) and PS was confirmed under pressurized conditions. Calcined bottom ash (CBA) and SWR char (SWRC) were used to enhance the quality of the pressurized co-pyrolysis products. The PS and SWR pyrolysis chars obtained under high pressure conditions exhibited serious melting and cross-linking problem. The CO2 content decreased to 19.96 vol% in co-pyrolysis gas with the CBA/SWRC7/3 catalyst. The water content decreased by 85.71% after the SWRC catalyst in the pressurized co-pyrolysis process. Compared with the concentration of benzene in PS and SWR oil, the concentration of benzene in SWR/PS7/3 oil without catalysts increased by 9.57 times and 0.25 times, respectively.
Collapse
Affiliation(s)
- Fengchao Wang
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| | - Ningbo Gao
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China.
| | - Aneta Magdziarz
- AGH University of Science and Technology, 30 Mickiewicza Av, PL-30059 Krakow, Poland
| | - Cui Quan
- School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an 710049, China
| |
Collapse
|
10
|
Ivanovski M, Petrovic A, Ban I, Goricanec D, Urbancl D. Determination of the Kinetics and Thermodynamic Parameters of Lignocellulosic Biomass Subjected to the Torrefaction Process. MATERIALS (BASEL, SWITZERLAND) 2021; 14:7877. [PMID: 34947472 PMCID: PMC8703714 DOI: 10.3390/ma14247877] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/10/2021] [Revised: 12/02/2021] [Accepted: 12/11/2021] [Indexed: 01/16/2023]
Abstract
The torrefaction process upgrades biomass characteristics and produces solid biofuels that are coal-like in their properties. Kinetics analysis is important for the determination of the appropriate torrefaction condition to obtain the best utilization possible. In this study, the kinetics (Friedman (FR) and Kissinger-Akahira-Sunose (KAS) isoconversional methods) of two final products of lignocellulosic feedstocks, miscanthus (Miscanthus x giganteus) and hops waste (Humulus Lupulus), were studied under different heating rates (10, 15, and 20 °C/min) using thermogravimetry (TGA) under air atmosphere as the main method to investigate. The results of proximate and ultimate analysis showed an increase in HHV values, carbon content, and fixed carbon content, followed by a decrease in the VM and O/C ratios for both torrefied biomasses, respectively. FTIR spectra confirmed the chemical changes during the torrefaction process, and they corresponded to the TGA results. The average Eα for torrefied miscanthus increased with the conversion degree for both models (25-254 kJ/mol for FR and 47-239 kJ/mol for the KAS model). The same trend was noticed for the torrefied hops waste samples; the values were within the range of 14-224 kJ/mol and 60-221 kJ/mol for the FR and KAS models, respectively. Overall, the Ea values for the torrefied biomass were much higher than for raw biomass, which was due to the different compositions of the torrefied material. Therefore, it can be concluded that both torrefied products can be used as a potential biofuel source.
Collapse
Affiliation(s)
- Maja Ivanovski
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (M.I.); (A.P.); (I.B.); (D.G.)
- Department for Environment, Milan Vidmar Electric Power Research Institute, Hajdrihova Ulica 2, 1000 Ljubljana, Slovenia
| | - Aleksandra Petrovic
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (M.I.); (A.P.); (I.B.); (D.G.)
| | - Irena Ban
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (M.I.); (A.P.); (I.B.); (D.G.)
| | - Darko Goricanec
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (M.I.); (A.P.); (I.B.); (D.G.)
| | - Danijela Urbancl
- Faculty of Chemistry and Chemical Engineering, University of Maribor, Smetanova Ulica 17, 2000 Maribor, Slovenia; (M.I.); (A.P.); (I.B.); (D.G.)
| |
Collapse
|
11
|
Setkit N, Li X, Yao H, Worasuwannarak N. Torrefaction under mechanical pressure of 10-70 MPa at 250 °C and its effect on pyrolysis behaviours of leucaena wood. BIORESOURCE TECHNOLOGY 2021; 338:125503. [PMID: 34274585 DOI: 10.1016/j.biortech.2021.125503] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/01/2021] [Revised: 06/29/2021] [Accepted: 06/30/2021] [Indexed: 06/13/2023]
Abstract
In this study, torrefaction under mechanical pressure of 10-70 MPa at 250 °C was proposed as a pretreatment method and its effect on pyrolysis behaviours of Leucaena (LC) was examined at 900 °C. It was found that the mechanical pressure applied during torrefaction could significantly increase the char yield at 900 °C. The char yield increased from 18.7% for Raw to 26.4% and 27.5% for MP40 and MP70, respectively. The %C of biochar prepared from MP40 (MP40-900) was 86.5%, whereas the %C of biochar prepared from raw (Raw-900) was 82.6%. From TG-MS analyses during the pyrolysis of MP, a large amount of oxygen was removed as H2O and CO2. The analyses of tars produced from MP showed higher fraction of acids and furans compared with tar produced from Raw. Furthermore, the mechanism of the pyrolysis of LC torrefied under mechanical pressure was discussed.
Collapse
Affiliation(s)
- Nattawut Setkit
- The Joint Graduate School of Energy and Environment, Center of Excellence on Energy Technology and Environment, King Mongkut's University of Technology Thonburi, Bangmod, Tungkru, Bangkok 10140, Thailand
| | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nakorn Worasuwannarak
- The Joint Graduate School of Energy and Environment, Center of Excellence on Energy Technology and Environment, King Mongkut's University of Technology Thonburi, Bangmod, Tungkru, Bangkok 10140, Thailand.
| |
Collapse
|
12
|
Zhang D, Chen X, Qi Z, Wang H, Yang R, Lin W, Li J, Zhou W, Ronsse F. Superheated steam as carrier gas and the sole heat source to enhance biomass torrefaction. BIORESOURCE TECHNOLOGY 2021; 331:124955. [PMID: 33774570 DOI: 10.1016/j.biortech.2021.124955] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/05/2021] [Revised: 03/03/2021] [Accepted: 03/04/2021] [Indexed: 06/12/2023]
Abstract
Superheated steam (SHS) has been used as a carrier gas for pressurized steam torrefaction, steam explosion or pyrolysis, but is barely used as a heat source. However, SHS is superior in thermal capacity and heat transfer coefficient resulting in even heating and fast heating rates. Therefore, this work applied SHS as the sole heat source for torrefaction at ambient pressure. A setup was specially designed and capable of heating wood shavings at a rate >120 °C•min-1. Solid products were analyzed in many aspects and demonstrated the enhanced organics conversion owing to SHS torrefaction. Torrefied biomass was comparable to slow pyrolysis char in fuel quality and superior to that of conventional torrefactions. Moreover, SHS torrefaction was super-timesaving. A coal-like product (HHV of 27.84 MJ•kg-1) was achieved in only 15 min at 350 °C. Overall, SHS torrefaction boosted biomass densification and gaveriseto greater production efficiency.
Collapse
Affiliation(s)
- Dongdong Zhang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Xuejiao Chen
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Zhiyong Qi
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Hong Wang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Rui Yang
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Wei Lin
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Jie Li
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China
| | - Wanlai Zhou
- Institute of Urban Agriculture, Chinese Academy of Agricultural Sciences, Chengdu, China.
| | - Frederik Ronsse
- Thermochemical Conversion of Biomass Research Group, Ghent University, Coupure Links 653, 9000 Ghent, Belgium
| |
Collapse
|
13
|
Tong S, Sun Y, Li X, Hu Z, Worasuwannarak N, Liu H, Hu H, Luo G, Yao H. Gas-pressurized torrefaction of biomass wastes: Co-gasification of gas-pressurized torrefied biomass with coal. BIORESOURCE TECHNOLOGY 2021; 321:124505. [PMID: 33316697 DOI: 10.1016/j.biortech.2020.124505] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 12/01/2020] [Accepted: 12/02/2020] [Indexed: 06/12/2023]
Abstract
Co-gasification of coal and biomass offers a relatively cleaner utilization way of fossil fuel. The fuel property improvement of biomass can not only improve the property of syngas but also enhance the synergistic effect during the co-gasification. In our previous work, a novel gas-pressurized (abbreviated as GP) torrefaction was proposed to effectively upgrade the biomass under mild condition. In this work, the co-gasification of GP torrefied biomass and coal were conducted to explore the synergistic effect and kinetics. Significant synergistic effect during the co-gasification was proved. The CO yield of co-gasification increased to as high as 70.70 mol/kg, resulting from the promotion of carbon in coal converting into CO by GPRS. Furthermore, the kinetic model of RPM was most fitting for the co-gasification, and the activation energy of co-gasification was reduced. Thus, the coal gasification was promoted significantly by GP torrefied biomass through obvious synergistic effect during the co-gasification.
Collapse
Affiliation(s)
- Shan Tong
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiming Sun
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xian Li
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China.
| | - Zhenzhong Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Nakorn Worasuwannarak
- The Joint Graduate School of Energy and Environment, Center of Excellence on Energy Technology and Environment, King Mongkut's University of Technology Thonburi, 126 Pracha-Uthit Rd., Bangmod, Tungkru, Bangkok 10140, Thailand
| | - Huan Liu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hongyun Hu
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guangqian Luo
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Hong Yao
- State Key Laboratory of Coal Combustion, School of Energy and Power Engineering, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
14
|
Proof-of-Concept of High-Pressure Torrefaction for Improvement of Pelletized Biomass Fuel Properties and Process Cost Reduction. ENERGIES 2020. [DOI: 10.3390/en13184790] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/16/2022]
Abstract
This paper provides a comprehensive description of the new approach to biomass torrefaction under high-pressure conditions. A new type of laboratory-scale high-pressure reactor was designed and built. The aim of the study was to compare the high-pressure torrefaction with conventional near atmospheric pressure torrefaction. Specifically, we investigated the torrefaction process influence on the fuel properties of wooden-pellet for two different pressure regimes up to 15 bar. All torrefaction processes were conducted at 300 °C, at 30 min of residence time. The initial analysis of the increased pressure impact on the torrefaction parameters: mass yields, energy densification ratio, energy yield, process energy consumption, the proximate analysis, high heating value, and energy needed to grind torrefied pellets was completed. The results show that high-pressure torrefaction needed up to six percent less energy, whereas energy densification in the pellet was ~12% higher compared to conventional torrefaction. The presence of pressure during torrefaction did not have an impact on the energy required for pellet grinding (p < 0.05).
Collapse
|