1
|
Lin C, Liang H, Yang X, Zhan J, Yang Q. Voltage recovery from frozen microbial fuel cells in the laboratory and outdoor field reactors. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 942:173751. [PMID: 38839000 DOI: 10.1016/j.scitotenv.2024.173751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Accepted: 06/02/2024] [Indexed: 06/07/2024]
Abstract
Extreme temperature variations are a problem that must be faced in the practical application of microbial fuel cells (MFCs), but MFCs are not extensively described for low and even freezing temperatures. This study assessed the effect of low-temperature shock on the power generation performance and microbial community structure of MFCs. Two scales of MFCs, the small (mL-MFC) and the large (L-MFC), were constructed in the laboratory and their performance was evaluated before and after freezing at -18 °C. The experimental results demonstrate that both MFCs were capable of rapidly restoring their voltage to the previous level after thawing. For the mL-MFC (rGO/Ag), the power density recovered from 194.30 ± 10.84 mW/m2 to 195.57 ± 4.02 mW/m2 after thawing. For L-MFC (carbon felt electrodes), the power density increased significantly from the initial 1.79 mW/m2 to 173.90 mW/m2 after thawing, but the performance degradation problem after reactor amplification still needs to be solved. The sediment microbial fuel cell (SMFC) was successfully constructed and operated in a natural outdoor environment to maintain high voltage output after the period of frost. Microbial analysis indicated after the frost period, psychrotolerant microorganisms enriched on the anode, such as Flavobacterium and Psychrobacter, while the relative abundance of anaerobic methanogenic bacterium decreased. Overall, freeze-thaw operations had a non-negative impact on the performance of MFCs and provided some references for their practical applications.
Collapse
Affiliation(s)
- Chunyang Lin
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Haoran Liang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Xiaojing Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Jingjing Zhan
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China
| | - Qiao Yang
- School of Chemical Engineering, Ocean and Life Sciences, Dalian University of Technology, Panjin 124221, China.
| |
Collapse
|
2
|
Wang H, Zhou Q. Potential application of bioelectrochemical systems in cold environments. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 927:172385. [PMID: 38604354 DOI: 10.1016/j.scitotenv.2024.172385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 03/17/2024] [Accepted: 04/08/2024] [Indexed: 04/13/2024]
Abstract
Globally, more than half of the world's regions and populations inhabit psychrophilic and seasonally cold environments. Lower temperatures can inhibit the metabolic activity of microorganisms, thereby restricting the application of traditional biological treatment technologies. Bioelectrochemical systems (BES), which combine electrochemistry and biocatalysis, can enhance the resistance of microorganisms to unfavorable environments through electrical stimulation, thus showing promising applications in low-temperature environments. In this review, we focus on the potential application of BES in such environments, given the relatively limited research in this area due to temperature limitations. We select microbial fuel cells (MFC), microbial electrolytic cells (MEC), and microbial electrosynthesis cells (MES) as the objects of analysis and compare their operational mechanisms and application fields. MFC mainly utilizes the redox potential of microorganisms during substance metabolism to generate electricity, while MEC and MES promote the degradation of refractory substances by augmenting the electrode potential with an applied voltage. Subsequently, we summarize and discuss the application of these three types of BES in low-temperature environments. MFC can be employed for environmental remediation as well as for biosensors to monitor environmental quality, while MEC and MES are primarily intended for hydrogen and methane production. Additionally, we explore the influencing factors for the application of BES in low-temperature environments, including operational parameters, electrodes and membranes, external voltage, oxygen intervention, and reaction devices. Finally, the technical, economic, and environmental feasibility analyses reveal that the application of BES in low-temperature environments has great potential for development.
Collapse
Affiliation(s)
- Hui Wang
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China
| | - Qixing Zhou
- MOE Key Laboratory of Pollution Processes and Environmental Criteria, Tianjin Key Laboratory of Environmental Remediation and Pollution Control, College of Environmental Science and Engineering, Nankai University, Tianjin 300350, China.
| |
Collapse
|
3
|
Ishaq A, Said MIM, Azman SB, Abdulwahab MF, Jagun ZT. Optimizing total ammonia-nitrogen concentration for enhanced microbial fuel cell performance in landfill leachate treatment: a bibliometric analysis and future directions. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023; 30:86498-86519. [PMID: 37454007 PMCID: PMC10404197 DOI: 10.1007/s11356-023-28580-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Accepted: 06/29/2023] [Indexed: 07/18/2023]
Abstract
Untreated landfill leachate can harm the environment and human health due to its organic debris, heavy metals, and nitrogen molecules like ammonia. Microbial fuel cells (MFCs) have emerged as a promising technology for treating landfill leachate and generating energy. However, high concentrations of total ammonia-nitrogen (TAN), which includes both ammonia and the ammonium ion, can impede MFC performance. Therefore, maintaining an adequate TAN concentration is crucial, as both excess and insufficient levels can reduce power generation. To evaluate the worldwide research on MFCs using landfill leachate as a substrate, bibliometric analysis was conducted to assess publication output, author-country co-authorship, and author keyword co-occurrence. Scopus and Web of Science retrieved 98 journal articles on this topic during 2011-2022; 18 were specifically evaluated and analysed for MFC ammonia inhibition. The results showed that research on MFC using landfill leachate as a substrate began in 2011, and the number of related papers has consistently increased every 2 years, totaling 4060 references. China, India, and the USA accounted for approximately 60% of all global publications, while the remaining 40% was contributed by 70 other countries/territories. Chongqing University emerged as one of the top contributors among this subject's ten most productive universities. Most studies found that maintaining TAN concentrations in the 400-800 mg L-1 in MFC operation produced good power density, pollution elimination, and microbial acclimatization. However, the database has few articles on MFC and landfill leachate; MFC ammonia inhibition remains the main factor impacting system performance. This bibliographic analysis provides excellent references and future research directions, highlighting the current limitations of MFC research in this area.
Collapse
Affiliation(s)
- Aliyu Ishaq
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
- Department of Water Resources and Environmental Engineering, Ahmadu Bello University, Kaduna, 1045, Zaria, Nigeria
| | - Mohd Ismid Mohd Said
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
| | - Shamila Binti Azman
- Department of Water and Environmental Engineering, School of Civil Engineering, Faculty of Engineering, Universiti Teknologi Malaysia, 81300, Johr Bohr, Malaysia
| | - Mohd Firdaus Abdulwahab
- Department of Biosciences, Faculty of Sciences, Universiti Teknologi Malaysia, Johor Bahru, Malaysia
| | - Zainab Toyin Jagun
- Department of Real Estate, School of Built Environment Engineering and Computing, Leeds Beckett University, City Campus, Leeds, UK.
| |
Collapse
|
4
|
Deng S, Wang C, Ngo HH, Guo W, You N, Tang H, Yu H, Tang L, Han J. Comparative review on microbial electrochemical technologies for resource recovery from wastewater towards circular economy and carbon neutrality. BIORESOURCE TECHNOLOGY 2023; 376:128906. [PMID: 36933575 DOI: 10.1016/j.biortech.2023.128906] [Citation(s) in RCA: 13] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2023] [Revised: 03/03/2023] [Accepted: 03/13/2023] [Indexed: 06/18/2023]
Abstract
Newly arising concepts such as the circular economy and carbon neutrality motivate resource recovery from wastewater. This paper reviews and discusses state-of-the-art microbial electrochemical technologies (METs), specifically microbial fuel cells (MFCs), microbial electrolysis cells (MECs) and microbial recycling cells (MRCs), which enable energy generation and nutrient recovery from wastewater. Mechanisms, key factors, applications, and limitations are compared and discussed. METs are effective in energy conversion, demonstrating advantages, drawbacks and future potential as specific scenarios. MECs and MRCs exhibited greater potential for simultaneous nutrient recovery, and MRCs offer the best scaling-up potential and efficient mineral recovery. Research on METs should be more concerned with lifespan of materials, secondary pollutants reduction and scaled-up benchmark systems. More up-scaled application cases are expected for cost structures comparison and life cycle assessment of METs. This review could direct the follow-up research, development and successful implementation of METs for resource recovery from wastewater.
Collapse
Affiliation(s)
- Shihai Deng
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Chaoqi Wang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Huu Hao Ngo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia.
| | - Wenshan Guo
- Centre for Technology in Water and Wastewater, School of Civil and Environmental Engineering, University of Technology Sydney, Sydney, NSW 2007, Australia
| | - Na You
- Department of Civil and Environmental Engineering, Faculty of Engineering, National University of Singapore, Singapore 117576, Singapore
| | - Hao Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Hongbin Yu
- Southern Branch of China National Gold Engineering Corporation, Guangzhou 440112, PR China
| | - Long Tang
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| | - Jie Han
- School of Human Settlements and Civil Engineering, Xi'an Jiaotong University, Xi'an 710049, PR China
| |
Collapse
|
5
|
Nguyen HT, Choi W, Kim EJ, Cho K. Microbial community niches on microplastics and prioritized environmental factors under various urban riverine conditions. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 849:157781. [PMID: 35926609 DOI: 10.1016/j.scitotenv.2022.157781] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/12/2022] [Revised: 07/28/2022] [Accepted: 07/29/2022] [Indexed: 06/15/2023]
Abstract
Microplastics (MPs) provide habitats to microorganisms in aquatic environments; distinct microbial niches have recently been elucidated. However, there is little known about the microbial communities on MPs under urban riverine conditions, in which environmental factors fluctuate. Therefore, this study investigated MP biofilm communities under various urban riverine conditions (i.e., organic content, salinity, and dissolved oxygen (DO) concentration) and evaluated the prioritized factors affecting plastisphere communities. Nine biofilm-forming reactors were operated under various environmental conditions. Under all testing conditions, biofilms grew on MPs with decreasing bacterial diversity. Interestingly, biofilm morphology and bacterial populations were driven by the environmental parameters. We found that plastisphere community structures were grouped according to the environmental conditions; organic content in the water was the most significant factor determining MP biofilm communities, followed by salinity and DO concentration. The principal plastisphere communities were Proteobacteria, Bacteroidetes, Cyanobacteria, and Firmicutes phyla. In-depth analyses of plastisphere communities revealed that biofilm-forming and plastic-degrading bacteria were the predominant microbes. In addition, potential pathogens were majorly discovered in the riverine waters with high organic content. Our results suggest that distinct plastisphere communities coexist with MP particles under certain riverine water conditions, implying that the varied MP biofilm communities may affect urban riverine ecology in a variety of ways.
Collapse
Affiliation(s)
- Hien Thi Nguyen
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Woodan Choi
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Eun-Ju Kim
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea
| | - Kyungjin Cho
- Center for Water Cycle Research, Korea Institute of Science and Technology, Seoul 02792, Republic of Korea; Division of Energy & Environment Technology, KIST school, Korea University of Science and Technology (UST), Seoul 02792, Republic of Korea.
| |
Collapse
|
6
|
Zhu Q, Hu J, Liu B, Liang S, Xiao K, Yu W, Yuan S, Yang J, Hou H. Potassium channel blocker selectively enriched Geobacter from mixed-cultured electroactive biofilm: Insights from microbial community, functional prediction and gene expressions. BIORESOURCE TECHNOLOGY 2022; 364:128109. [PMID: 36244602 DOI: 10.1016/j.biortech.2022.128109] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/22/2022] [Revised: 10/03/2022] [Accepted: 10/07/2022] [Indexed: 06/16/2023]
Abstract
This study investigated the effects of electrical signaling disruption induced by adding tetraethylammonium (TEA, a potassium channel blocker) on the formation of mixed-cultured electroactive biofilms, especially the relative abundance of Geobacter over time. Results showed that TEA addition decelerated the biofilm formation, but selectively enriched Geobacter over time (45.8% on Day 32, 67.7% on Day 60 and 78.1% on Day 90), thus resulting in higher final extracellular electron transfer (EET) efficiency. Redundancy analysis (RDA) confirmed that TEA and operation time were significant factors for the selective enrichment of Geobacter. Moreover, increase in cellular processes and signal processing by PICRUSt analysis indicated adaptive responses of electrogenic biofilms to electrical signaling disruption. Furthermore, qRT-PCR indicated the compensatory roles of key cytochromes and pilA in electrochemical communication, which induced Geobacter enrichment. This work provided a broader understanding of electroactive biofilm regulation and potential applications for electricity generation and biosensor in the future.
Collapse
Affiliation(s)
- Qian Zhu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jingping Hu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Bingchuan Liu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Sha Liang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Keke Xiao
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Wenbo Yu
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Shushan Yuan
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China
| | - Jiakuan Yang
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China; State Key Laboratory of Coal Combustion, Huazhong University of Science and Technology, Wuhan, Hubei 430074, China
| | - Huijie Hou
- School of Environmental Science and Engineering, Huazhong University of Science and Technology, Wuhan 430074, China; Hubei Provincial Engineering Laboratory of Solid Waste Treatment, Disposal and Recycling, 1037 Luoyu Road, Wuhan, Hubei 430074, China.
| |
Collapse
|
7
|
Electricity production and key exoelectrogens in a mixed-culture psychrophilic microbial fuel cell at 4 °C. Appl Microbiol Biotechnol 2022; 106:4801-4811. [PMID: 35759034 DOI: 10.1007/s00253-022-12042-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 06/20/2022] [Accepted: 06/21/2022] [Indexed: 11/02/2022]
Abstract
The electricity production via psychrophilic microbial fuel cell (PMFC) for wastewater treatment in cold regions offers an alternative to avoid the unwanted methane dissolution of traditional anaerobic fermentation. But, it is seldom reported by mixed-culture, especially closed to 0 °C. Thus, a two-chamber mixed-culture PMFC at 4 °C was successfully operated in this study using acetate as an electron donor. The main results demonstrated a good performance of PMFC, including the maximum voltage of 513 mV at 1000 Ω, coulombic efficiency of 53%, and power density of 689 mW/m2. The cyclic voltammetry curves of enriched biofilm showed a direct electron transfer pathway. These good performances of mixed-culture PMFC were due to the high psychrophilic activity of enriched biofilm, including exoelectrogens genera of Geobacter (6.1%), Enterococcus (17.5%), and Clostridium_sensu_stricto_12 (3.8%). Consequently, a mixed-culture PMFC provides a reasonable strategy to enrich exoelectrogens with high activity. For low-temperature regions, the mixed-culture PMFC involved biotechnologies shall benefit energy generation and valuable chemical production in the future. KEY POINTS: • PMFC showed a maximum voltage of around 513 mV under a resistance of 1000 Ω. • The coulombic efficiency was 53% and the max power density was 689 mW/m2. • Geobacter, Enterococcus, and Clostridium_sensu_stricto_12 were key exoelectrogens.
Collapse
|
8
|
Li X, Lee HS, Wang Z, Lee J. State-of-the-art management technologies of dissolved methane in anaerobically-treated low-strength wastewaters: A review. WATER RESEARCH 2021; 200:117269. [PMID: 34091220 DOI: 10.1016/j.watres.2021.117269] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/15/2020] [Revised: 05/12/2021] [Accepted: 05/14/2021] [Indexed: 06/12/2023]
Abstract
The recent advancement in low temperature anaerobic processes shows a great promise for realizing low-energy-cost, sustainable mainstream wastewater treatment. However, the considerable loss of the dissolved methane from anaerobically-treated low-strength wastewater significantly compromises the energy potential of the anaerobic processes and poses an environmental risk. In this review, the promises and challenges of existing and emerging technologies for dissolved methane management are examined: its removal, recovery, and on-site reuse. It begins by describing the working principles of gas-stripping and biological oxidation for methane removal, membrane contactors and vacuum degassers for methane recovery, and on-site biological conversion of dissolved methane into electricity or value-added biochemicals as direct energy sources or energy-compensating substances. A comparative assessment of these technologies in the three categories is presented based on methane treating efficiency, energy-production potential, applicability, and scalability. Finally, current research needs and future perspectives are highlighted to advance the future development of an economically and technically sustainable methane-management technology.
Collapse
Affiliation(s)
- Xuesong Li
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Hyung-Sool Lee
- Department of Civil and Environmental Engineering, University of Waterloo, Waterloo, ON, N2L 3G1, Canada
| | - Zhiwei Wang
- State Key Laboratory of Pollution Control and Resource Reuse, Shanghai Institute of Pollution Control and Ecological Security, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Jongho Lee
- Department of Civil Engineering, University of British Columbia, Vancouver, British Columbia, Canada, V6T 1Z4.
| |
Collapse
|
9
|
Izadi P, Gey MN, Schlüter N, Schröder U. Bidirectional electroactive microbial biofilms and the role of biogenic sulfur in charge storage and release. iScience 2021; 24:102822. [PMID: 34337365 PMCID: PMC8313490 DOI: 10.1016/j.isci.2021.102822] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2021] [Revised: 06/09/2021] [Accepted: 07/02/2021] [Indexed: 11/18/2022] Open
Abstract
The formation of combined electrogenic/electrotrophic biofilms from marine sediments for the development of microbial energy storage systems was studied. Sediment samples from the German coasts of the Baltic and the North Sea were used as inocula for biofilm formation. Anodic biofilm cultivation was applied for a fast and reproducible biofilm formation. North-Sea- and Baltic-Sea-derived biofilms yielded comparable anodic current densities of about 7.2 A m−2. The anodic cultivation was followed by a potential reversal regime, transitioning the electrode potential from 0.2 V to −0.8 V every 2 h to switch between anodic and cathodic conditions. The charge-discharge behavior was studied, revealing an electrochemical conversion of biogenic elemental sulfur as major charge-discharge mechanism. The microbial sequencing revealed strong differences between North- and Baltic-Sea-derived biofilms; however with a large number of known sulfur-converting and electrochemically active bacteria in both biofilms. Bidirectional electroactive biofilms are cultivated from marine sediments Cultivation is based on anodic growth followed by periodic potential reversal Combined electrogenic and electrotrophic activity is shown Biogenic, elemental sulfur plays a key role in charge storage and release
Collapse
Affiliation(s)
- Paniz Izadi
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Marten Niklas Gey
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Nicolas Schlüter
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
| | - Uwe Schröder
- Institute of Environmental and Sustainable Chemistry, Technische Universität Braunschweig, Hagenring 30, 38106 Braunschweig, Germany
- Corresponding author
| |
Collapse
|
10
|
Patel D, Bapodra SL, Madamwar D, Desai C. Electroactive bacterial community augmentation enhances the performance of a pilot scale constructed wetland microbial fuel cell for treatment of textile dye wastewater. BIORESOURCE TECHNOLOGY 2021; 332:125088. [PMID: 33839511 DOI: 10.1016/j.biortech.2021.125088] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2021] [Revised: 03/23/2021] [Accepted: 03/25/2021] [Indexed: 06/12/2023]
Abstract
This study evaluated the effect of bioaugmentation of a newly enriched electroactive bacterial community DC5 on the performance of a pilot scale sequential two-step Horizontal Sub-surface flow Constructed Wetland-Microbial Fuel Cell (HSCW-MFC) system treating textile dye wastewater. The system consisted of CW-MFC-1 planted with Fimbristylis ferruginea and CW-MFC-2 planted with consortium of Fimbristylis ferruginea and Elymus repens plant species. Before bioaugmentation, HSCW-MFC system showed 62 ± 2% Chemical Oxygen Demand (COD) and 90 ± 1.5% American Dye Manufacturer's Institute (ADMI) removal and 177.3 mW/m2 maximum power density (CW-MFC-1). After bioaugmentation of DC5 into the HSCW-MFC, COD and ADMI removal was enhanced to 74.10 ± 1.75% and 97.32 ± 1.90% with maximum power density of 197.94 mW/m2 (CW-MFC-1). The genera Exiguobacterium, Desulfovibrio and Macellibacteroides of DC5 were significantly enriched at the electrodes of HSCW-MFC after bioaugmentation. These results demonstrate that the performance of the CW-MFC treating textile dye wastewater can be improved by bioaugmentation of electroactive bacterial community.
Collapse
Affiliation(s)
- Dishant Patel
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Sweta L Bapodra
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Datta Madamwar
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India
| | - Chirayu Desai
- P. D. Patel Institute of Applied Sciences, Charotar University of Science and Technology, CHARUSAT Campus, Changa 388 421, Anand, Gujarat, India.
| |
Collapse
|
11
|
Jatoi AS, Akhter F, Mazari SA, Sabzoi N, Aziz S, Soomro SA, Mubarak NM, Baloch H, Memon AQ, Ahmed S. Advanced microbial fuel cell for waste water treatment-a review. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2021; 28:5005-5019. [PMID: 33241504 DOI: 10.1007/s11356-020-11691-2] [Citation(s) in RCA: 19] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/29/2020] [Accepted: 11/16/2020] [Indexed: 06/11/2023]
Abstract
Petroleum, coal, and natural gas reservoir were depleting continuously due to an increase in industrialization, which enforced study to identify alternative sources. The next option is the renewable resources which are most important for energy purpose coupled with environmental problem reduction. Microbial fuel cells (MFCs) have become a promising approach to generate cleaner and more sustainable electrical energy. The involvement of various disciplines had been contributing to enhancing the performance of the MFCs. This review covers the performance of MFC along with different wastewater as a substrate in terms of treatment efficiencies as well as for energy generation. Apart from this, effect of various parameters and use of different nanomaterials for performance of MFC were also studied. From the current study, it proves that the use of microbial fuel cell along with the use of nanomaterials could be the waste and energy-related problem-solving approach. MFC could be better in performances based on optimized process parameters for handling any wastewater from industrial process.
Collapse
Affiliation(s)
- Abdul Sattar Jatoi
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan.
| | - Faheem Akhter
- Department of Chemical Engineering, Quaid-E-Awam University of Engineering, Science & Technology, Nawabshah, Pakistan
| | - Shaukat Ali Mazari
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan.
| | | | - Shaheen Aziz
- Chemical Engineering Department, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Suhail Ahmed Soomro
- Chemical Engineering Department, Mehran University of Engineering and Technology, Jamshoro, Pakistan
| | - Nabisab Mujawar Mubarak
- Department of Chemical Engineering, Faculty of Engineering and Science, Curtin University, 98009, Miri Sarawak, Malaysia.
| | - Humair Baloch
- School of Engineering, RMIT University, Melbourne, 3000, Australia
| | - Abdul Qayoom Memon
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan
| | - Shoaib Ahmed
- Chemical Engineering Department, Dawood University of Engineering and Technology, Karachi, Pakistan
| |
Collapse
|