1
|
Shen H, Zhang Q, Li M, Tan X, Dong X, Wang H. Research on intensive nitrogen removal of municipal sewage by mainstream anaerobic ammonia oxidation process. CHEMOSPHERE 2024; 367:143622. [PMID: 39461438 DOI: 10.1016/j.chemosphere.2024.143622] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/12/2024] [Revised: 10/19/2024] [Accepted: 10/23/2024] [Indexed: 10/29/2024]
Abstract
The anaerobic ammonia oxidation (anammox) process is a pivotal nitrogen removal technique, playing a significant role in the field of wastewater treatment. The paper commences by delineating the merits of the anammox process in comparison to conventional nitrification-denitrification techniques. Subsequently, it delves into the characteristics of different sludge morphologies process of the behavior of anammox bacteria and their reactions to environmental factors. Revising the issues associated with managing urban sewage in mainstream areas., it discusses the issues faced by the anammox process under reduced nitrogen loads, such as restricted activity due to decreased the levels of ammonia nitrogen and nitrite concentrations, as well as the impact of environmental factors like low temperature, organic matter, and sulfur ions. Following this, a comprehensive review of various types of coupled anammox processes is provided, highlighting the advantages and characteristics of partial nitrification (PN), partial denitrification (PD), methane-dependent nitrite/nitrate reduction (DAMO), sulfur-driven autotrophic denitrification (SAD), iron ammonia oxidation (feammox) and algae photoautotrophy coupling techniques, emphasizing their significance in system stability and resource utilization efficiency. Future research directions include exploring the applicability of the anammox process under various temperature conditions and addressing NO3--N issues in effluent. The findings from these studies will offer valuable insights for further enhancing the optimization of the anammox process in mainstream urban wastewater treatment.
Collapse
Affiliation(s)
- Haonan Shen
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Qian Zhang
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China.
| | - Meng Li
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xibei Tan
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Xiaoqian Dong
- School of Civil Engineering & Architecture, Wuhan University of Technology, Wuhan, 430070, China
| | - Hongyu Wang
- School of Civil Engineering, Wuhan University, Wuhan, 430072, China
| |
Collapse
|
2
|
Wu H, Bai X, Li L, Li Z, Wang M, Zhang Z, Zhu C, Xu Y, Xiong H, Xie X, Tian X, Li J. Two-stage partial nitrification-denitrification and anammox process for nitrogen removal in vacuum collected toilet wastewater at ambient temperature. ENVIRONMENTAL RESEARCH 2024; 262:119917. [PMID: 39251178 DOI: 10.1016/j.envres.2024.119917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/06/2024] [Revised: 08/21/2024] [Accepted: 09/01/2024] [Indexed: 09/11/2024]
Abstract
Vacuum collected toilet wastewater (VCTW) contains high and fluctuating contents of organics and nitrogen, which exerts technological challenges to biological treatment processes. A partial nitrification-denitrification and anammox (PND-AMX) process was developed in sequencing batch reactor (SBR) and moving bed biofilm reactor (MBBR) to achieve effective nitrogen removal in VCTW at low ambient temperature. Stable PND was achieved, and nitrogen removal efficiency in SBR could be manipulated by adjusting influent COD/N ratios. As temperature ≥18 °C, 91.0% nitrogen was removed in PND-AMX process. In spite of the decreased anammox activity at 13-18 °C, more than 90% nitrogen removal could be obtained by adjusting SBR influent COD/N to 2.43 ± 0.32 with methanol. In MBBR reactor, Candidatus Kuenenia was the dominant anammox bacteria and contributed to more than 90% nitrogen removal capacity. Co-existing anammox and denitrifying bacteria synergistically contributed to the removal of ammonium, nitrite, nitrate, and COD in MBBR.
Collapse
Affiliation(s)
- Haoyuan Wu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiaolei Bai
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhaoxin Li
- Beijing Key Laboratory of Watershed Water Environment and Ecological Technology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Mengyu Wang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Cheng Zhu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Yuanmin Xu
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China; Tianheshui Environmental Technology Co., Ltd., Nanjing, 210017, China
| | - Huiqin Xiong
- Nanjing Jianye District Water Bureau, Nanjing, 210017, China
| | - Xin Xie
- Nanjing Jianye District Water Facilities Comprehensive Maintenance Center, Nanjing, 210017, China
| | - Xiujun Tian
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
3
|
Wu H, Wang G, Li L, Gao Z, Wang M, Wang J, Zhang Z, Wang A, Tian X, Li J. Partial nitritation and nitrogen removal of vacuum toilet wastewater from high-speed trains in a sequential batch reactor. CHEMOSPHERE 2023; 329:138657. [PMID: 37040837 DOI: 10.1016/j.chemosphere.2023.138657] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 03/14/2023] [Accepted: 04/08/2023] [Indexed: 05/03/2023]
Abstract
Owing to the high contents of organics and nitrogen in vacuum toilet wastewater (VTW) generated from high-speed trains, onsite pretreatment is usually required before VTW can be discharged into municipal sewers. In this study, a partial nitritation process was stably established in a sequential batch reactor to efficiently utilize the organics in synthetic and real VTWs for nitrogen removal and to produce an effluent suitable for anaerobic ammonia oxidation. In spite of the high fluctuations of COD and nitrogen in VTW, the organics used for nitrogen removal stabilized at 1.97 ± 0.18 mg COD mg N-1 removed, and the effluent NO2--N/NH4+-N ratios were maintained at 1.26 ± 0.13. The removal efficiencies of nitrogen and COD were 31.8 ± 3.5% and 65.2 ± 5.3% under the volumetric loading rates of 1.14 ± 0.15 kg N m-3 d-1 and 1.03 ± 0.26 kg COD m-3 d-1 for real VTW, respectively. Microbial community analysis revealed that Nitrosomonas (0.95%-1.71%) was the dominant autotrophic ammonium-oxidizing bacterial genus, but nitrite-oxidizing bacteria, Nitrolancea, was severely inhibited, with a relative abundance less than 0.05%. The relative abundance of denitrifying bacteria increased by 7.34% when the influent was switched to real VTW. Functional profile predictions of the biomass showed that the decrease in the COD/N ratio and the switch of reactor influent from synthetic to real VTW increased the relative abundance of enzymes and modules involved in carbon and nitrogen metabolisms.
Collapse
Affiliation(s)
- Haoyuan Wu
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Guotian Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Lei Li
- Institute of Watershed and Ecology, Beijing Water Science and Technology Institute, Beijing, 100048, China
| | - Zhenchao Gao
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Mengyu Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Zhongguo Zhang
- Institute of Resources and Environment, Beijing Academy of Science and Technology, Beijing, 100089, China
| | - Aimin Wang
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Xiujun Tian
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China
| | - Jiuyi Li
- Beijing Key Laboratory of Aqueous Typical Pollutants Control and Water Quality Safeguard, School of Environment, Beijing Jiaotong University, Beijing, 100044, China.
| |
Collapse
|
4
|
Huang J, Wang C, Zhang S, Han X, Feng R, Li Y, Huang X, Wang J. Optimizing nitrogenous organic wastewater treatment through integration of organic capture, anaerobic digestion, and anammox technologies: sustainability and challenges. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2023:10.1007/s11356-023-27410-6. [PMID: 37261686 DOI: 10.1007/s11356-023-27410-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 04/30/2023] [Indexed: 06/02/2023]
Abstract
With China's recent commitment to reducing carbon emissions and achieving carbon neutrality, anaerobic digestion and anaerobic ammonium oxidation (anammox) have emerged as promising technologies for treating nitrogenous organic wastewater. Anaerobic digestion can convert organic matter into volatile fatty acids (VFAs), methane, and other chemicals, while anammox can efficiently remove nitrogen with minimal energy consumption. This study evaluates the principles and characteristics of enhanced chemical flocculation and bioflocculation, as well as membrane separation, for capturing organic matter. Additionally, the paper evaluates the production of acids and methane from anaerobic digestion, exploring the influence of various factors and the need for control strategies. The features, challenges, and concerns of partial nitrification-anammox (PN/A) and partial denitrification-anammox (PD/A) are also outlined. Finally, an integrated system that combined organic capture, anaerobic digestion, and anammox is proposed as a sustainable and effective solution for treating nitrogenous organic wastewater and recovering energy and resources.
Collapse
Affiliation(s)
- Jianming Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Chunrong Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China.
| | - Shujun Zhang
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Xiaoyu Han
- Beijing Drainage Group Co. Ltd (BDG), Beijing, 100022, China
| | - Rongfei Feng
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Yang Li
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Xiaoyan Huang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| | - Jianbing Wang
- School of Chemical and Environmental Engineering, China University of Mining and Technology (Beijing), Ding 11#, Xueyuan Road, Haidian District, Beijing, 100083, People's Republic of China
| |
Collapse
|
5
|
Wang L, Li Y, Yi X, Yang F, Wang D, Han H. Dissimilatory manganese reduction facilitates synergistic cooperation of hydrolysis, acidogenesis, acetogenesis and methanogenesis via promoting microbial interaction during anaerobic digestion of waste activated sludge. ENVIRONMENTAL RESEARCH 2023; 218:114992. [PMID: 36463988 DOI: 10.1016/j.envres.2022.114992] [Citation(s) in RCA: 9] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/16/2022] [Revised: 11/20/2022] [Accepted: 11/30/2022] [Indexed: 06/17/2023]
Abstract
Anaerobic digestion (AD) of waste activated sludge (WAS) is commonly limited to poor synergistic cooperation of four stages including hydrolysis, acidogenesis, acetogenesis and methanogenesis. Dissimilatory metal reduction that induced by metal-based conductive materials is promising strategy to regulate anaerobic metabolism with the higher metabolic driving force. In this study, MnO2 as inducer of dissimilatory manganese reduction (DMnR) was added into WAS-feeding AD system for mediating complicated anaerobic metabolism. The results demonstrated that main operational performances including volatile solid (VS) degradation efficiency and cumulative CH4 production with MnO2 dosage of 60 mg/g·VS reached up to maximum 53.6 ± 3.4% and 248.2 ± 10.1 mL/g·VS while the lowest operational performances in control group (38.5 ± 2.8% and 183.5 ± 8.5 mL/g·VS) was originated from abnormal operation of four stages. Furthermore, high-throughput 16 S rRNA pyrosequencing revealed that enrichment of dissimilatory manganese-reducing contributors and methanogens such as Thermovirga, Christensenellaceae_R_7_group and Methanosaeta performed the crucial role in short-chain fatty acids (SCFAs) oxidation and final methanogenesis, which greatly optimized operational environment of hydrolysis, acidogenesis and acetogenesis. More importantly, analysis of functional genes expression proved that abundances of genes encoding enzymes participated in acetate oxidation, direct interspecies electron transfer (DIET) and CO2 reduction pathway were simultaneously up-regulated with the optimum MnO2 dosage, suggesting that DMnR with SCFAs oxidation as electron sink could benefit stable operation of four stages via triggering effective DIET-based microbial interaction mode.
Collapse
Affiliation(s)
- Linli Wang
- Department of Environmental Science, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Yangyang Li
- Operation Services Division of Hospital Wastewater Treatment, General Affairs Department, Sanya Central Hospital (Hainan Third People's Hospital), Sanya, 572000, China
| | - Xuesong Yi
- Department of Environmental Science, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Fei Yang
- Department of Environmental Science, College of Ecology and Environment, Hainan University, Haikou, 570228, China
| | - Dexin Wang
- Department of Environmental Science, College of Ecology and Environment, Hainan University, Haikou, 570228, China.
| | - Hongjun Han
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, China
| |
Collapse
|
6
|
Liang Z, Yi J, Cao D, Shi J, Yang D, Dai L, Dai X. High concentration powder carrier bio-fluidized bed process: A new perspective for domestic wastewater treatment. BIORESOURCE TECHNOLOGY 2022; 351:127015. [PMID: 35306133 DOI: 10.1016/j.biortech.2022.127015] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Revised: 03/10/2022] [Accepted: 03/12/2022] [Indexed: 06/14/2023]
Abstract
The nitrogen removal mechanism of the high concentration powder carrier bio-fluidized bed (HPB) process was investigated with actual domestic wastewater. The micron-size (10-70 μm) powder carriers were diatomite and Fe-C. Results showed diatomite enriched the relative abundances of ammonia-oxidizing bacteria and nitrite-oxidizing bacteria, accordingly increasing the rate of nitrification. Even a 100% increase of genes associated with the ammonia oxidation was achieved. Fe-C enhanced the rate of substrate utilization mainly by increasing the activity of the electron transfer system. Hydrocyclone separator, as a key device of HPB, was able to recover the carriers with high efficiency (recovery efficiency of 72.66 ─ 82.50% after 75 days), thus, indirectly improving the functionality of the carriers. Furthermore, it could renew the surface of microbial aggregations, consequently improving the adsorption capacity to substrates. HPB could provide the feasibility of shortening the hydraulic retention time and expanding the capacity of wastewater treatment plants.
Collapse
Affiliation(s)
- Zixuan Liang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Jing Yi
- Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, PR China
| | - Dawen Cao
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, PR China; Hunan Sanyou Environmental Protection Co. Ltd., Changsha, Hunan, PR China
| | - Juan Shi
- Shanghai University of Electric Power, Shanghai 200090, PR China
| | - Donghai Yang
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Lingling Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China
| | - Xiaohu Dai
- Tongji University, College of Environmental Science and Engineering, State Key Lab Pollution Control and Resource Reuse, Shanghai 200092, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, PR China.
| |
Collapse
|
7
|
Wei D, Zhang X, Chen Z, He Y, Dai J, Zhang S. Comparison of three anaerobic digestion reactors for low-carbon wastewater treatment. WATER ENVIRONMENT RESEARCH : A RESEARCH PUBLICATION OF THE WATER ENVIRONMENT FEDERATION 2022; 94:e10702. [PMID: 35362241 DOI: 10.1002/wer.10702] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/04/2021] [Revised: 02/05/2022] [Accepted: 02/25/2022] [Indexed: 06/14/2023]
Abstract
In this study, three anaerobic digestion reactors using up-flow anaerobic sludge blanket (UASB), anaerobic sequencing batch reactor (AnSBR), and anaerobic membrane bioreactor (AnMBR) were studied. The chemical oxygen demand (COD), gas production, sludge performance, and microbial characteristics of the anaerobic digestion process were assessed. The results showed that the average COD removal efficiencies reached 86%, 83%, and 85%, with corresponding removed rates of 2.49, 0.48, and 0.79 kg COD m-3 d-1 in UASB, AnSBR, and AnMBR, respectively. After the reactors attained stable operation, both extracellular polymeric substances and soluble microbial products decreased in all the reactors compared with the seed sludge. Methanothrix was the dominant archaea for methane production in the UASB, the relative abundance of which increased from 58.3% to 83.4%. These results identify UASB as the most suitable reactor for anaerobic digestion when treating wastewater with low carbon. Such reactors are important for the application and development of the energy self-sufficiency in sewage treatment. PRACTITIONER POINTS: UASB, SBR, and MBR were adopted to treat low-carbon wastewater using anaerobic digestion process. UASB performed the highest COD removal from low-carbon wastewater. The main microorganisms in UASB were Methanothrix, Methanomassiliicoccus, and Methanobacterium.
Collapse
Affiliation(s)
- Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Yu He
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Jiaqian Dai
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| | - Shengnan Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou, China
| |
Collapse
|
8
|
Zhao Y, Zhang Q, Peng Y, Peng Y, Li X, Jiang H. Advanced nitrogen elimination from domestic sewage through two stage partial nitrification and denitrification (PND) coupled with simultaneous anaerobic ammonia oxidation and denitrification (SAD). BIORESOURCE TECHNOLOGY 2022; 343:125986. [PMID: 34653628 DOI: 10.1016/j.biortech.2021.125986] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 09/14/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
The start-up, efficient, and secure operation of Anammox treating low ammonia sewage, is an important research focus. In this study, a partial nitrification-denitrification coupled with simultaneous Anammox and denitrification (PND-SAD) process was achieved in sequencing batch reactor/up-flow anaerobic sludge bed (SBR-UASB). The key measures to maintain high efficiency PND were: (i) controlling dissolved oxygen in the SBR below 0.5 mg/L, which is not only conducive to PN, but also promotes the contribution of simultaneous nitrification and denitrification to nitrogen removal; (ii) monitoring the nitrate (NO3--N) of SBR effluent and discharging sludge to wash out nitrate oxidation bacteria when the NO3--N exceeds 1.0 mg/L. The nitrite accumulation rate reached 97.6%. SBR effluent and domestic sewage entered the UASB. Although Candidatus Brocadia only accounted for 0.8%, its contribution to nitrogen removal reached 76.8%. In PND-SAD system, the aerobic HRT was only 3.8 h, nitrogen removal efficiency up to 97.3%.
Collapse
Affiliation(s)
- Yueru Zhao
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Qiong Zhang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yi Peng
- SDIC Xinkai Water Environment Investment Co., Ltd., Beijing 101101, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| |
Collapse
|
9
|
Wang S, Yu H, Su Q, Zuo J. Exploring the role of heterotrophs in partial nitritation-anammox process treating thermal hydrolysis process - anaerobic digestion reject water. BIORESOURCE TECHNOLOGY 2021; 341:125762. [PMID: 34450441 DOI: 10.1016/j.biortech.2021.125762] [Citation(s) in RCA: 30] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/14/2021] [Revised: 08/07/2021] [Accepted: 08/10/2021] [Indexed: 06/13/2023]
Abstract
Heterotrophic bacteria (HB) are generally prevalent in anammox-based processes, but their functional and ecological roles in partial nitritation-anammox (PN/A) process treating high-organics wastewater remained unclear. This study aimed to elucidate HB activities and microbial interactions in a one-stage PN/A treating thermal hydrolysis process (THP) - anaerobic digestion (AD) reject water. The PN/A reactor achieved a satisfactory nitrogen removal rate of 0.58 ± 0.06 g N/(L·d), and around 12% of COD in the THP-AD reject water was removed. N2O emission factors of the PN/A reactor were 1.15% ± 0.18% treating synthetic wastewater, and 0.95% ± 0.06% treating reject water. A balanced symbiotic relationship was maintained between HB and functional groups (i.e., anammox bacteria and aerobic-ammonia-oxidizing bacteria) over the reactor operation. The relative abundances of Anaerolineae spp. clearly increased, while Denitratisoma, capable of denitrification, slightly decreased when treating THP-AD reject water. The preference for electron donors of heterotrophs explained discrepant growth trends.
Collapse
Affiliation(s)
- Sike Wang
- Department of Material and Environmental Engineering, Shenzhen Polytechnic, Shenzhen 518055, China; State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China
| | - Heng Yu
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; College of Chemistry and Chemical Engineering, Xi'an Shiyou University, Xi'an, Shaanxi Province 710065, China
| | - Qingxian Su
- Department of Environmental Engineering, Technical University of Denmark, Kgs., Lyngby 2800, Denmark
| | - Jiane Zuo
- State Key Joint Laboratory of Environmental Simulation and Pollution Control, School of Environment, Tsinghua University, Beijing 100084, China; Shenzhen International Graduate School, Tsinghua University, Shenzhen 518055, China.
| |
Collapse
|
10
|
Zhang X, Zhang H, Chen Z, Wei D, Song Y, Ma Y, Zhang H. Achieving biogas production and efficient pollutants removal from nitrogenous fertilizer wastewater using combined anaerobic digestion and autotrophic nitrogen removal process. BIORESOURCE TECHNOLOGY 2021; 339:125659. [PMID: 34333336 DOI: 10.1016/j.biortech.2021.125659] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/01/2021] [Revised: 07/21/2021] [Accepted: 07/22/2021] [Indexed: 06/13/2023]
Abstract
Nitrogenous fertilizer was massively utilized during agricultural production process, which led to the discharge of large amount of nitrogenous wastewater with low C/N ratio. In this study, anaerobic digestion combined with subsequent Completely autotrophic nitrogen removal over nitrite (CANON) process was adopted for treating nitrogenous fertilizer wastewater. The reactor performances and the microbial community structure were analyzed. Results showed that COD was mainly removed by anaerobic digestion, with the COD removal efficiency as 98.4%, and nitrogen was effectively removed via CANON integrating with partial denitrification, with the removal efficiency as 96.3%. The COD, ammonia and total nitrogen in the effluent of the combined process were 3.7, 2.9 and 7.4 mg L-1, respectively. Methanothrix (43.2%) and Methanomassiliicoccus (34.0%) were detected as the dominant methane production archaea, while Nitrosomanas (10.4%), Candidatus Kuenenia (13.8%) and Truepera (2.8%) were detected as the functional bacteria for nitrogen removal, when treated the nitrogenous fertilizer wastewater.
Collapse
Affiliation(s)
- Xiaojing Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China.
| | - Hongli Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Zhao Chen
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Denghui Wei
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yali Song
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Yongpeng Ma
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| | - Hongzhong Zhang
- Henan Collaborative Innovation Center of Environmental Pollution Control and Ecological Restoration, Department of Material and Chemical Engineering, Zhengzhou University of Light Industry, Zhengzhou 450001, China
| |
Collapse
|
11
|
Jiang H, Wang Z, Ren S, Qiu J, Li X, Peng Y. Culturing sludge fermentation liquid-driven partial denitrification in two-stage Anammox process to realize advanced nitrogen removal from mature landfill leachate. JOURNAL OF HAZARDOUS MATERIALS 2021; 415:125568. [PMID: 33773256 DOI: 10.1016/j.jhazmat.2021.125568] [Citation(s) in RCA: 24] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/01/2021] [Revised: 02/16/2021] [Accepted: 02/27/2021] [Indexed: 06/12/2023]
Abstract
The two-stage partial nitrification (PN)-Anammox process, during long term treatment of high-ammonia nitrogen leachate, faces challenges such as the adaptation of nitrite oxidation bacteria (NOB) and failure of real-time control of pH. Resultant instabilities including NH4+-N and NO3--N accumulation were overcome by culturing sludge fermentation liquid (SFL)-driven partial denitrification (PD) in situ in the Anammox process. Biodegradation of slowly biodegradable organics (SBO) in SFL created organics restriction condition, which limited the activity of denitrification bacteria and achieved its balance with Anammox bacteria. Produced NO3--N is reduced to NO2--N through PD, which further improved the removal of NH4+-N through Anammox. NO2--N was utilized timely by Anammox bacteria, which avoid further reduction of NO2--N to N2, and result in a high nitrate to nitrite transformation ratio (NTR) of 93.3%. Satisfactory nitrogen removal efficiency (NRE) and nitrogen removal rate (NRR) of 99.6% and 822.0 ± 9.0 g N/(m3∙d) were obtained, respectively. Key genera related to degradation of SBO, PD and Anammox were enriched. The value of narG/(nirK+nirS) increased from 0.05 on day 1-0.15 on day 250. Combining SFL-driven PD with two-stage Anammox process provided a novel insight for applying this process to realize advanced nitrogen removal in practical engineering.
Collapse
Affiliation(s)
- Hao Jiang
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Zhong Wang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150090, PR China
| | - Shang Ren
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Jingang Qiu
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Xiyao Li
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China
| | - Yongzhen Peng
- National Engineering Laboratory for Advanced Municipal Wastewater Treatment and Reuse Technology, Engineering Research Center of Beijing, Beijing University of Technology, Beijing 100124, PR China.
| |
Collapse
|
12
|
Application of Anammox-Based Processes in Urban WWTPs: Are We on the Right Track? Processes (Basel) 2021. [DOI: 10.3390/pr9081334] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The application of partial nitritation and anammox processes (PN/A) to remove nitrogen can improve the energy efficiency of wastewater treatment plants (WWTPs) as well as diminish their operational costs. However, there are still several limitations that are preventing the widespread application of PN/A processes in urban WWTPs such as: (a) the loss of performance stability of the PN/A units operated at the sludge line, when the sludge is thermally pretreated to increase biogas production; (b) the proliferation of nitrite-oxidizing bacteria (NOB) in the mainstream; and (c) the maintenance of a suitable effluent quality in the mainstream. In this work, different operational strategies to overcome these limitations were modelled and analyzed. In WWTPs whose sludge is thermically hydrolyzed, the implementation of an anerobic treatment before the PN/A unit is the best alternative, from an economic point of view, to maintain the stable performance of this unit. In order to apply the PN/A process in the mainstream, the growth of ammonia-oxidizing bacteria (AOB) should be promoted in the sludge line by supplying extra sludge to the anaerobic digesters. The AOB generated would be applied to the water line to partially oxidize ammonia, and the anammox process would then be carried out. Excess nitrate generated by anammox bacteria and/or NOB can be removed by recycling a fraction of the WWTP effluent to the biological reactor to promote its denitrification.
Collapse
|