1
|
Zhang Y, Li X, Dong H, Lens PNL. Pollutant removal and greenhouse gas emissions in horizontal subsurface flow constructed wetlands with iron ore treating ammonium-rich wastewater. ENVIRONMENTAL TECHNOLOGY 2024:1-12. [PMID: 39740025 DOI: 10.1080/09593330.2024.2443601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/02/2024] [Accepted: 11/23/2024] [Indexed: 01/02/2025]
Abstract
Horizontal subsurface flow constructed wetlands (HFCWs) are capable of eliminating organic matter and nitrogen while emitting less methane (CH4) and nitrous oxide (N2O) than free water surface flow wetlands. However, the simultaneous removal of pollutants and reduction of greenhouse gases (GHG) emissions from high-strength wastewater containing high levels of organic matter and ammonium nitrogen (NH4+-N) has not get been investigated. The influent COD concentration affected the efficiency of nitrogen removal, GHG emissions and the presence of iron from iron ore, but the COD and TP removal efficiencies remained unaffected. CO2 and CH4 fluxes were significantly influenced by influent COD concentrations, whereas less N2O emissions were obtained during 7d. The highest CO2 and CH4 fluxes, along with the GHG emissions, were observed in HFCWs with COD concentrations of 375.6 mg/L and NH4+-N concentrations of 159.0 mg/L at a COD/N ratio of 2.4. Conversely, the lowest CH4 (-1.72 mg/m2/h) and N2O fluxes (0.13 mg/m2/h) were recorded in HFCWs with COD concentrations of 375.6 mg/L and NH4+-N concentrations of 162.4 mg/L at a COD/N of 4.5, although nitrogen removal was weak in these HFCWs. HFCWs at a COD/N ratio of 3.6 exhibited greater removal of nitrogen and other pollutants, along with a lower global warming potential (GWP). In conclusion, the concentrations of organic matter and NH4+-N in wastewater affected both pollutant removal and GHG emissions. The simultaneous enhancement of pollutant removal and the reduction of GHG emissions can be achieved in HFCWs with a COD/N ratio of 3.6.
Collapse
Affiliation(s)
- Yan Zhang
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | - Xinhua Li
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
- Yellow River Delta Modern Agriculture Research Center, Dongying, People's Republic of China
| | - Hongyun Dong
- State Key Laboratory of Nutrient Use and Management, Jinan Key Laboratory of Technology for Agricultural Double-Carbon, Institute of Wetland Agriculture and Ecology, Shandong Academy of Agricultural Sciences, Ji'nan, People's Republic of China
| | | |
Collapse
|
2
|
Ai S, Wang X, Zhu J, Meng X, Liu Z, Yang F, Cheng K. Microbial community assemblage altered by coprecipitation of artificial humic substances and ferrihydrite: Implications for carbon fixation pathway transformation. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:174838. [PMID: 39029757 DOI: 10.1016/j.scitotenv.2024.174838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Revised: 07/10/2024] [Accepted: 07/14/2024] [Indexed: 07/21/2024]
Abstract
The suppression of soil carbon mineralization has been demonstrated to be effectively facilitated by carbon‑iron interactions, yet the specific mechanisms by which artificial humic substances (A-HS) coupled with ferrihydrite influence this process remain insufficiently explored. This study is to investigate how the A-HS, specifically artificial fulvic acid (A-FA) and artificial humic acid (A-HA), coupled with ferrihydrite, affect carbon mineralization under anaerobic system that simulates paddy flooding conditions. The object is to investigate trends in carbon emissions and to delineate microbial community structure and functional pathways. The findings indicate that A-HA and A-FA substantially reduce CO2 and CH4 emissions, with A-FA having a particularly pronounced effect on carbon fixation, halving CO2 concentrations. The low concentration of Fe(II) observed suggest that A-FA and A-HA impede the dissimilatory iron reduction (DIR) process. Detailed 16S rDNA sequencing and gene prediction analyses reveal changes in microbial community structures and functions, highlighting Methanobacterium as the dominant hydrogenotrophic methanogens. The reductive citric acid cycle, predominantly utilized by Clostridium carboxidivorans, was identified as the principal carbon fixation pathway. This work provides a novel insight into the microbial mechanisms of carbon sequestration and highlights the potential of A-HS in improving soil fertility and contributing to climate change mitigation through enhancing soil carbon storage.
Collapse
Affiliation(s)
- Shuang Ai
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xiaobin Wang
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Jiayu Zhu
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Xianghui Meng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China
| | - Zhuqing Liu
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Fan Yang
- International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China; School of Water Conservancy and Civil Engineering, Northeast Agricultural University, Harbin, China.
| | - Kui Cheng
- College of Engineering, Northeast Agricultural University, Harbin, China; International Cooperation Joint Laboratory of Health in Cold Region Black Soil Habitat of the Ministry of Education, China.
| |
Collapse
|
3
|
Xiao W, Zhang Q, Zhao S, Chen D, Zhao Z, Gao N, Huang M, Ye X. Combined metabolomic and microbial community analyses reveal that biochar and organic manure alter soil C-N metabolism and greenhouse gas emissions. ENVIRONMENT INTERNATIONAL 2024; 192:109028. [PMID: 39307007 DOI: 10.1016/j.envint.2024.109028] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/19/2024] [Revised: 09/06/2024] [Accepted: 09/19/2024] [Indexed: 10/26/2024]
Abstract
The use of biochar to reduce the gas emissions from paddy soils is a promising approach. However, the manner in which biochar and soil microbial communities interact to affect CO2, CH4, and N2O emissions is not clearly understood, particularly when compared with other amendments. In this study, high-throughput sequencing, soil metabolomics, and quantitative real-time PCR were utilized to compare the effects of biochar (BC) and organic manure (OM) on soil microbial community structure, metabolomic profiles and functional genes, and ultimately CO2, CH4, and N2O emissions. Results indicated that BC and OM had opposite effects on soil CO2 and N2O emissions, with BC resulting in lower emissions and OM resulting in higher emissions, whereas BC, OM, and their combined amendments increased cumulative CH4 emissions by 19.5 %, 31.6 %, and 49.1 %, respectively. BC amendment increased the abundance of methanogens (Methanobacterium and Methanocella) and denitrifying bacteria (Anaerolinea and Gemmatimonas), resulting in an increase in the abundance of mcrA, amoA, amoB, and nosZ genes and the secretion of a flavonoid (chrysosplenetin), which caused the generation of CH4 and the reduction of N2O to N2, thereby accelerating CH4 emissions while reducing N2O emissions. Simultaneously, OM amendment increased the abundance of the methanogen Caldicoprobacter and denitrifying Acinetobacter, resulting in increased abundance of mcrA, amoA, amoB, nirK, and nirS genes and the catabolism of carbohydrates [maltotriose, D-(+)-melezitose, D-(+)-cellobiose, and maltotetraose], thereby enhancing CH4 and N2O emissions. Moreover, puerarin produced by Bacillus metabolism may contribute to the reduction in CO2 emissions by BC amendment, but increase in CO2 emissions by OM amendment. These findings reveal how BC and OM affect greenhouse gas emissions by modulating soil microbial communities, functional genes, and metabolomic profiles.
Collapse
Affiliation(s)
- Wendan Xiao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Qi Zhang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Shouping Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - De Chen
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Zhen Zhao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Na Gao
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Miaojie Huang
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China
| | - Xuezhu Ye
- State Key Laboratory for Managing Biotic and Chemical Threats to the Quality and Safety of Agro-products, Key Laboratory of Information Traceability for Agricultural Products, Institute of Agro-product Safety and Nutrition, Zhejiang Academy of Agricultural Sciences, Hangzhou 310021, China.
| |
Collapse
|
4
|
Cun D, Wang H, Jiang M, Lin R, Deng S, Chang J, Zhao Y, Duan C. Effective remediation of agricultural drainage at three influent strengths by bioaugmented constructed wetlands filled with mixture of iron‑carbon and organic solid substrates: Performance and mechanisms. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 947:174615. [PMID: 38997019 DOI: 10.1016/j.scitotenv.2024.174615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 06/18/2024] [Accepted: 07/06/2024] [Indexed: 07/14/2024]
Abstract
Agricultural drainage containing a large quantity of nutrients can cause quality deterioration and algal blooming of receiving water bodies, thus needs to be effectively remediated. In this study, iron‑carbon (FeC) composite-filled constructed wetlands (Fe-C-CWs) were employed to treat farmland drainage at three pollution levels, and organic solid substrates (walnut shells) and phosphate-accumulating denitrifying bacteria (Pseudomonas sp. DWP1) were supplemented to enhance the treatment performance. The results showed that the Fe-C-CWs exhibited notably superior removal efficiency for total nitrogen (TN, 52.0-58.2 %), total phosphorus (TP, 67.8-70.2 %) and chemical oxygen demand (COD, 56.7-70.4 %) than the control systems filled solely with gravel (28.5-32.5 % for TN, 33.2-40.5 % for TP and 30.2-55.0 % for COD) at all influent strengths, through driving autotrophic denitrification, Fe-based dephosphorization, and organic degradation processes. The addition of organic substrates and functional bacteria markedly enhanced pollutant removal in the Fe-C-CWs. Furthermore, use of FeC and organic substrates and denitrifier inoculation decreased CO2 and CH4 emissions from the CWs, and reduced global warming potential of the CWs at low influent strength. Pollutant removal efficiencies in the CWs were only marginally impacted by the increasing influent loads except for NO3--N, and pollutant removal mass was largely increased with the increase of influent strengths. The microbial community in the FeC composite-filled CWs exhibited distinct distribution patterns compared to the gravel-filled CWs regardless of the influent strengths, with obviously higher proportions of dominant genera Trichococcus, Geobacter and Ferritrophicum. Keystone taxa associated with pollutant removal in the Fe-C-filled CWs were identified to be Pseudomonas, Geobacter, Ferritrophicum, Denitratisoma and Sediminibacterium. The developed augmented Fe-C-filled CWs show great promises for remediating agricultural drainage with varied pollutant loads.
Collapse
Affiliation(s)
- Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Haoyu Wang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Nanjing Academy of Water Sciences Ruidi Technology Group Co., Ltd, Nanjing 210009, China
| | - Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Shengjiong Deng
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China.
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China
| | - Changqun Duan
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650091, China; Yunnan Field Scientific Station for Restoration of Ecological Function in Central Yunnan of China, Yunnan University, Kunming 650091, China; Yunnan International Cooperative Center of Plateau Lake Ecological Restoration and Watershed Management & Yunnan Think Tank of Ecological Civilization, Kunming 650091, China.
| |
Collapse
|
5
|
Xian Z, Guo F, Chen M, Wang Y, Zhang Z, Wu H, Dai J, Zhang X, Chen Y. Plant-microbe involvement: How manganese achieves harmonious nitrogen-removal and carbon-reduction in constructed wetlands. BIORESOURCE TECHNOLOGY 2024; 402:130794. [PMID: 38703966 DOI: 10.1016/j.biortech.2024.130794] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 04/17/2024] [Accepted: 05/02/2024] [Indexed: 05/06/2024]
Abstract
Carbon deficits in inflow frequently lead to inefficient nitrogen removal in constructed wetlands (CWs) treating tailwater. Solid carbon sources, commonly employed to enhance denitrification in CWs, increase carbon emissions. In this study, MnO2 was incorporated into polycaprolactone substrates within CWs, significantly enhancing NH4+-N and NO3--N removal efficiencies by 48.26-59.78 % and 96.84-137.23 %, respectively. These improvements were attributed to enriched nitrogen-removal-related enzymes and increased plant absorption. Under high nitrogen loads (9.55 ± 0.34 g/m3/d), emissions of greenhouse gases (CO2, CH4, and N2O) decreased by 147.23-202.51 %, 14.53-86.76 %, and 63.36-87.36 %, respectively. N2O emissions were reduced through bolstered microbial nitrogen removal pathways by polycaprolactone and MnO2. CH4 accumulation was mitigated by the increased methanotrophs and dampened methanogenesis, modulated by manganese. Additionally, manganese-induced increases in photosynthetic pigment contents (21.28-64.65 %) fostered CO2 sequestration through plant photosynthesis. This research provides innovative perspectives on enhancing nitrogen removal and reducing greenhouse gas emissions in constructed wetlands with polymeric substrates.
Collapse
Affiliation(s)
- Zhihao Xian
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Fucheng Guo
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China; Chongqing Water & Environment Holdings Group Ltd., Chongqing 400042, PR China
| | - Mengli Chen
- Faculty of Geosciences and Environmental Engineering, Southwest Jiaotong University, Chengdu 610031, PR China
| | - Yichu Wang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Zihang Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Hao Wu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Jingyi Dai
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Xin Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China
| | - Yi Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400044, PR China; College of Environment and Ecology, Chongqing University, Chongqing 400044, PR China.
| |
Collapse
|
6
|
Zhang X, Wang R, Wang H, Xu Z, Feng C, Zhao F. CH 4 control and nitrogen removal from constructed wetlands by plant combination. CHEMOSPHERE 2024; 355:141898. [PMID: 38579951 DOI: 10.1016/j.chemosphere.2024.141898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/07/2023] [Revised: 03/19/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
Global warming trend is accelerating. This study proposes a green and economical methane (CH4) control strategy by plant combination in constructed wetlands (CWs). In this study, a single planting of Acorus calamus L. hybrid constructed wetland (HCW-A) and a mixed planting of Acorus calamus L. and Eichhornia crassipes (Mart.) Solms hybrid constructed wetland (HCW-EA) were constructed. The differences in nitrogen removal performance and CH4 emissions between HCW-A and HCW-EA were compared and analyzed. The findings indicated that HCW-EA demonstrated significant improvements over HCW-A, with NH4+-N and TN removal rates increasing by 21.61% and 16.38% respectively, and CH4 emissions decreased by 43.36%. The microbiological analysis results showed that plant combination promoted the enrichment of Proteobacteria, Alphaproteobacteria and Bacillus. More nitrifying bacteria carrying nxrA genes and denitrifying bacteria carrying nirK genes accelerated the nitrogen transformation process. In addition, the absolute abundance ratio of pmoA/mcrA increased, reducing the release of CH4.
Collapse
Affiliation(s)
- Xinwen Zhang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Rongzhen Wang
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Hongxiu Wang
- Inspur General Software Co., Ltd, Jinan, 250101, China
| | - Zhenghe Xu
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China.
| | - Chengye Feng
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| | - Fangxing Zhao
- School of Water Conservancy and Environment, University of Jinan, Jinan, 250022, China
| |
Collapse
|
7
|
Lin R, Zhao Y, Jiang M, Cun D, Xiong Y, Zhu Y, Chang J. Agricultural runoff treatment by constructed wetlands filled with iron-carbon composites in winter: Performance augmentation by organic solids and denitrifying bacteria addition. BIORESOURCE TECHNOLOGY 2023; 387:129692. [PMID: 37619820 DOI: 10.1016/j.biortech.2023.129692] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/03/2023] [Revised: 08/13/2023] [Accepted: 08/17/2023] [Indexed: 08/26/2023]
Abstract
Iron-carbon composite-filled constructed wetlands (Fe-C CWs) were employed to treat agricultural runoff in the winter season in this study, and organic substrates and phosphate-accumulating denitrifying bacteria were supplemented to improve the treatment performance. Fe-C CWs performed significantly better in pollutant removal than the control system filled with only gravel by effectively driving autotrophic denitrification, Fe-based dephosphorization and organic degradation. Organic substrate and functional bacteria addition further augmented the performance, and immobilized bacterial cells were more effective than free cells. Fe-C and organic substrates decreased the greenhouse gas emission fluxes of the CWs, and denitrifier inoculation alleviated N2O emission. The microbial community in the Fe-C substrates showed a very distinct distribution pattern compared to that in the gravel, with notably higher proportions of Trichococcus, Thauera and Dechloromonas. Bioaugmented Fe-C-based CWs are highly promising for agricultural runoff treatment, especially at low temperatures.
Collapse
Affiliation(s)
- Rufeng Lin
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Yonggui Zhao
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Ming Jiang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China; Institute of International Rivers and Eco-security, Yunnan University, Kunming 650500, China
| | - Deshou Cun
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yanwei Xiong
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Yaosong Zhu
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China
| | - Junjun Chang
- Yunnan Key Laboratory for Plateau Mountain Ecology and Restoration of Degraded Environments, School of Ecology and Environmental Science, Yunnan University, Kunming 650500, China.
| |
Collapse
|
8
|
Zhang G, Hao Q, Ma R, Luo S, Chen K, Liang Z, Jiang C. Biochar and hematite amendments suppress emission of CH 4 and NO 2 in constructed wetlands. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 874:162451. [PMID: 36863587 DOI: 10.1016/j.scitotenv.2023.162451] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/30/2022] [Revised: 02/16/2023] [Accepted: 02/20/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are considered a widely used cost-effective technology for pollutant removal. However, greenhouse gas emissions are a non-negligible problem in CWs. In this study, four laboratory-scale CWs were established to evaluate the effects of gravel (CWB), hematite (CWFe), biochar (CWC), and hematite + biochar (CWFe-C) as substrates on pollutants removal, greenhouse gas emissions, and associated microbial characteristics. The results showed that the biochar-amended CWs (CWC and CWFe-C) enhanced the removal efficiency of pollutants, with 92.53 % and 93.66 % of COD and 65.73 % and 64.41 % of TN removal, respectively. Both single and combined inputs of biochar and hematite significantly reduced CH4 and N2O fluxes, with the lowest average of CH4 flux obtained in CWC (5.99 ± 0.78 mg CH4 m-2 h-1) and the least N2O flux in CWFe-C (287.57 ± 44.84 μg N2O m-2 h-1). The substantial reduction of global warming potentials (GWP) was obtained in the applications of CWC (80.25 %) and CWFe-C (79.5 %) in biochar-amended CWs. The presence of biochar and hematite mitigated CH4 and N2O emissions by modifying microbial communities with higher ratios of pmoA/mcrA and nosZ genes abundances, as well as increasing the abundance of denitrifying bacteria (Dechloromona, Thauera and Azospira). This study demonstrated that biochar and the combined use of biochar and hematite could be the potential candidates as functional substrates for the efficient removal of pollutants and simultaneously reducing GWP emissions in the constructed wetlands.
Collapse
Affiliation(s)
- Guosheng Zhang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Qingju Hao
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Rongzhen Ma
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Shixu Luo
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Keqin Chen
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Zhenghao Liang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China
| | - Changsheng Jiang
- Key Laboratory of Eco-environments in Three Gorges Reservoir Region (Ministry of Education), College of Resources and Environment, Southwest University, Chongqing 400715, China; Chongqing Key Laboratory of Bio-resource for Bioenergy, College of Resources and Environment, Southwest University, Chongqing 400715, China.
| |
Collapse
|
9
|
Hu S, Zhu H, Bañuelos G, Shutes B, Wang X, Hou S, Yan B. Factors Influencing Gaseous Emissions in Constructed Wetlands: A Meta-Analysis and Systematic Review. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2023; 20:3876. [PMID: 36900888 PMCID: PMC10001287 DOI: 10.3390/ijerph20053876] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 02/08/2023] [Accepted: 02/17/2023] [Indexed: 06/18/2023]
Abstract
Constructed wetlands (CWs) are an eco-technology for wastewater treatment and are applied worldwide. Due to the regular influx of pollutants, CWs can release considerable quantities of greenhouse gases (GHGs), ammonia (NH3), and other atmospheric pollutants, such as volatile organic compounds (VOCs) and hydrogen sulfide (H2S), etc., which will aggravate global warming, degrade air quality and even threaten human health. However, there is a lack of systematic understanding of factors affecting the emission of these gases in CWs. In this study, we applied meta-analysis to quantitatively review the main influencing factors of GHG emission from CWs; meanwhile, the emissions of NH3, VOCs, and H2S were qualitatively assessed. Meta-analysis indicates that horizontal subsurface flow (HSSF) CWs emit less CH4 and N2O than free water surface flow (FWS) CWs. The addition of biochar can mitigate N2O emission compared to gravel-based CWs but has the risk of increasing CH4 emission. Polyculture CWs stimulate CH4 emission but pose no influence on N2O emission compared to monoculture CWs. The influent wastewater characteristics (e.g., C/N ratio, salinity) and environmental conditions (e.g., temperature) can also impact GHG emission. The NH3 volatilization from CWs is positively related to the influent nitrogen concentration and pH value. High plant species richness tends to reduce NH3 volatilization and plant composition showed greater effects than species richness. Though VOCs and H2S emissions from CWs do not always occur, it should be a concern when using CWs to treat wastewater containing hydrocarbon and acid. This study provides solid references for simultaneously achieving pollutant removal and reducing gaseous emission from CWs, which avoids the transformation of water pollution into air contamination.
Collapse
Affiliation(s)
- Sile Hu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Hui Zhu
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Gary Bañuelos
- USDA, Agricultural Research Service, San Joaquin Valley Agricultural Science Center, 9611 South Riverbend Avenue, Parlier, CA 93648-9757, USA
| | - Brian Shutes
- Department of Natural Sciences, Middlesex University, Hendon, London NW4 4BT, UK
| | - Xinyi Wang
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
- College of Resources and Environment, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Shengnan Hou
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| | - Baixing Yan
- Key Laboratory of Wetland Ecology and Environment, Northeast Institute of Geography and Agroecology, Chinese Academy of Sciences, Changchun 130102, China
| |
Collapse
|
10
|
Yu G, Chen J, Wang G, Chen H, Huang J, Li Y, Wang W, Song F, Ma Y, Wang Q, Wang M, Ling T, Shu Z, Sun J, Yu Z. Recent advances in constructed wetlands methane reduction: Mechanisms and methods. Front Microbiol 2023; 14:1106332. [PMID: 36819020 PMCID: PMC9936987 DOI: 10.3389/fmicb.2023.1106332] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2022] [Accepted: 01/10/2023] [Indexed: 02/05/2023] Open
Abstract
Constructed wetlands (CWs) are artificial systems that use natural processes to treat wastewater containing organic pollutants. This approach has been widely applied in both developing and developed countries worldwide, providing a cost-effective method for industrial wastewater treatment and the improvement of environmental water quality. However, due to the large organic carbon inputs, CWs is produced in varying amounts of CH4 and have the potential to become an important contributor to global climate change. Subsequently, research on the mitigation of CH4 emissions by CWs is key to achieving sustainable, low-carbon dependency wastewater treatment systems. This review evaluates the current research on CH4 emissions from CWs through bibliometric analysis, summarizing the reported mechanisms of CH4 generation, transfer and oxidation in CWs. Furthermore, the important environmental factors driving CH4 generation in CW systems are summarized, including: temperature, water table position, oxidation reduction potential, and the effects of CW characteristics such as wetland type, plant species composition, substrate type, CW-coupled microbial fuel cell, oxygen supply, available carbon source, and salinity. This review provides guidance and novel perspectives for sustainable and effective CW management, as well as for future studies on CH4 reduction in CWs.
Collapse
Affiliation(s)
- Guanlong Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Jundan Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Guoliang Wang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Huifang Chen
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Jiajun Huang
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Yifu Li
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Wenming Wang
- Technology Center, Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha, China
| | - Fengming Song
- Technology Center, Hunan Pilot Yanghu Reclaimed Water Co., Ltd., Changsha, China
| | - Yuanjun Ma
- Technology Department, Hunan Rongantai Ecological Technology Co., Ltd., Changsha, China
| | - Qi Wang
- Technology and Information Department, CCCC-TDC Environmental Engineering Co., Ltd., Tianjin, China
| | - Miaomiao Wang
- Technology and Information Department, CCCC-TDC Environmental Engineering Co., Ltd., Tianjin, China
| | - Tao Ling
- Engineering Department, China Railway Wuju Group the First Engineering Co., Ltd., Changsha, China
| | - Zhilai Shu
- Engineering Department, China Railway Wuju Group the First Engineering Co., Ltd., Changsha, China
| | - Julong Sun
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| | - Zhi Yu
- School of Hydraulic and Environmental Engineering, Changsha University of Science & Technology, Changsha, China
- Key Laboratory of Dongting Lake Aquatic Eco-Environmental Control and Restoration of Hunan Province, Changsha University of Science and Technology, Changsha, China
| |
Collapse
|
11
|
Shen LD, Geng CY, Ren BJ, Jin JH, Huang HC, Liu X, Yang WT, Yang YL, Liu JQ, Tian MH. Detection and Quantification of Candidatus Methanoperedens-Like Archaea in Freshwater Wetland Soils. MICROBIAL ECOLOGY 2023; 85:441-453. [PMID: 35098330 DOI: 10.1007/s00248-022-01968-z] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Accepted: 01/17/2022] [Indexed: 06/14/2023]
Abstract
Candidatus Methanoperedens-like archaea, which can use multiple electron acceptors (nitrate, iron, manganese, and sulfate) for anaerobic methane oxidation, could play an important role in reducing methane emissions from freshwater wetlands. Currently, very little is known about the distribution and community composition of Methanoperedens-like archaea in freshwater wetlands, particularly based on their alpha subunit of methyl-coenzyme M reductase (mcrA) genes. Here, the community composition, diversity, and abundance of Methanoperedens-like archaea were investigated in a freshwater wetland through high-throughput sequencing and quantitative PCR on their mcrA genes. A large number of Methanoperedens-like mcrA gene sequences (119,250) were recovered, and a total of 31 operational taxonomic units (OTUs) were generated based on 95% sequence similarity cut-off. The majority of Methanoperedens-like sequences can be grouped into three distinct clusters that were closely associated with the known Methanoperedens species which can couple anaerobic methane oxidation to nitrate or iron reduction. The community composition of Methanoperedens-like archaea differed significantly among different sampling sites, and their mcrA gene abundance was 1.49 × 106 ~ 4.62 × 106 copies g-1 dry soil in the examined wetland. In addition, the community composition of Methanoperedens-like archaea was significantly affected by the soil water content, and the archaeal abundance was significantly positively correlated with the water content. Our results suggest that the mcrA gene is a good biomarker for detection and quantification of Methanoperedens-like archaea, and provide new insights into the distribution and environmental regulation of these archaea in freshwater wetlands.
Collapse
Affiliation(s)
- Li-Dong Shen
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China.
| | - Cai-Yu Geng
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Bing-Jie Ren
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jing-Hao Jin
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - He-Chen Huang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Xin Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Wang-Ting Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Yu-Ling Yang
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Jia-Qi Liu
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| | - Mao-Hui Tian
- Institute of Ecology, School of Applied Meteorology, Nanjing University of Information Science and Technology, Nanjing, 210044, China
| |
Collapse
|
12
|
Kuang B, Xiao R, Hu Y, Wang Y, Zhang L, Wei Z, Bai J, Zhang K, Acuña JJ, Jorquera MA, Pan W. Metagenomics reveals biogeochemical processes carried out by sediment microbial communities in a shallow eutrophic freshwater lake. Front Microbiol 2023; 13:1112669. [PMID: 36713194 PMCID: PMC9874162 DOI: 10.3389/fmicb.2022.1112669] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2022] [Accepted: 12/19/2022] [Indexed: 01/12/2023] Open
Abstract
Introduction As the largest shallow freshwater lake in the North China Plain, Baiyangdian lake is essential for maintaining ecosystem functioning in this highly populated region. Sediments are considered to record the impacts of human activities. Methods The abundance, diversity and metabolic pathways of microbial communities in sediments were studied by metagenomic approach to reveal patterns and mechanism of C, N, P and S cycling under the threat of lake eutrophication. Results Many genera, with plural genes encoding key enzymes involved in genes, belonging to Proteobacteria and Actinobacteria which were the most main phylum in bacterial community of Baiyangdian sediment were involved in C, N, S, P cycling processes, such as Nocardioides (Actinobacteria), Thiobacillus, Nitrosomonas, Rhodoplanes and Sulfuricaulis (Proteobacteria).For instance, the abundance of Nocardioides were positively correlated to TN, EC, SOC and N/P ratio in pathways of phytase, regulation of phosphate starvation, dissimilatory sulfate reduction and oxidation, assimilatory sulfate reduction, assimilatory nitrate reduction and reductive tricarboxylic acid (rTCA) cycle. Many key genes in C, N, P, S cycling were closely related to the reductive citrate cycle. A complete while weaker sulfur cycle between SO4 2- and HS- might occur in Baiyangdian lake sediments compared to C fixation and N cycling. In addition, dissimilatory nitrate reduction to ammonia was determined to co-occur with denitrification. Methanogenesis was the main pathway of methane metabolism and the reductive citrate cycle was accounted for the highest proportion of C fixation processes. The abundance of pathways of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling in sediments with higher TN content was higher than those with lower TN content. Besides, Nocardioides with plural genes encoding key enzymes involved in nasAB and nirBD gene were involved in these pathways. Discussion Nocardioides involved in the processes of assimilatory nitrate reduction, denitrification and dissimilatory nitrate reduction of nitrogen cycling may have important effects on nitrogen transformation.
Collapse
Affiliation(s)
- Bo Kuang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Rong Xiao
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China,*Correspondence: Rong Xiao, ✉
| | - Yanping Hu
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Yaping Wang
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| | - Ling Zhang
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Zhuoqun Wei
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Junhong Bai
- State Key Laboratory of Water Environment Simulation, School of Environment, Beijing Normal University, Beijing, China
| | - Kegang Zhang
- Department of Environmental Science and Engineering, North China Electric Power University, Baoding, China
| | - Jacquelinne J. Acuña
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Milko A. Jorquera
- Department of Chemical Sciences and Natural Resources, University of La Frontera, Temuco, Chile
| | - Wenbin Pan
- College of Environment and Safety Engineering, Fuzhou University, Fuzhou, China
| |
Collapse
|
13
|
Sun S, Zhang M, Gu X, He S, Tang L. Microbial response mechanism of plants and zero valent iron in ecological floating bed: Synchronous nitrogen, phosphorus removal and greenhouse gas emission reduction. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 324:116326. [PMID: 36182841 DOI: 10.1016/j.jenvman.2022.116326] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 08/26/2022] [Accepted: 09/16/2022] [Indexed: 06/16/2023]
Abstract
Iron-based ecological floating beds (EFBs) are often used to treat the secondary effluent from wastewater treatment plant to enhance the denitrification process. However, the impact and necessity of plants on iron-based EFBs have not been systematically studied. In this research, two iron-based EFBs with and without plants (EFB-P and EFB) were performed to investigate the response of plants on nutrient removal, GHG emissions, microbial communities and functional genes. Results showed the total nitrogen and total phosphorus removal in EFB-P was 45-79% and 48-72%, respectively, while that in EFB was 31-67% and 44-57%. Meanwhile, plants could decrease CH4 emission flux (0-3.89 mg m-2 d-1) and improve CO2 absorption (4704-22321 mg m-2 d-1). Plants could increase the abundance of Nitrosospira to 1.6% which was a kind of nitrifying bacteria dominant in plant rhizosphere. Among all denitrification related genera, Simplicispira (13.08%) and Novosphingobium (6.25%) accounted for the highest proportion of plant rhizosphere and iron scrap, respectively. Anammox bacteria such as Candidatus_Brocadia was more enriched on iron scraps with the highest proportion was 1.21% in EFB-P, and 2.20% in EFB. Principal co-ordinates analysis showed that plants were the critical factor determining microbial community composition. TN removal pathways were mixotrophic denitrification and anammox in EFB-P while TP removal pathways were plant uptake and phosphorus-iron coprecipitation. In general, plants play an important directly or indirectly role in iron-based EFBs systems, which could not only improve nutrients removal, but also minimize the global warming potential and alleviate the greenhouse effect to a certain extent.
Collapse
Affiliation(s)
- Shanshan Sun
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Manping Zhang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Xushun Gu
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China
| | - Shengbing He
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai, 200240, PR China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai, 20092, PR China; Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China.
| | - Li Tang
- Shanghai Engineering Research Center of Landscape Water Environment, Shanghai, 200031, PR China; Shanghai Landscape Architecture Design Institute, Shanghai, 200031, PR China
| |
Collapse
|
14
|
Yang C, Wang B, Wang H, He Z, Pi Y, Zhou J, Liang T, Chen M, He T, Fu T. Removal of organochlorine pesticides and metagenomic analysis by multi-stage constructed wetland treating landfill leachate. CHEMOSPHERE 2022; 301:134761. [PMID: 35490759 DOI: 10.1016/j.chemosphere.2022.134761] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 04/07/2022] [Accepted: 04/25/2022] [Indexed: 06/14/2023]
Abstract
Constructed wetlands (CWs) can effectively treat landfill leachate (LL). However, there is limited research on the removal of organochlorine pesticides (OCPs) refractory organics during LL treatment in CWs. In this study, multi-stage subsurface flow CWs was used to treat LL, and the removal fate of hexachlorocyclohexane (HCH) and dichlorodiphenyltrichloroethane (DDT) in CWs was investigated. The structural differences between plant roots and substrate microbial communities were compared and the Kyoto Encyclopedia of Genes and Genomes (KEGG) metabolic pathway of organic matter was analyzed based on metagenomic analysis. The results showed that substrate adsorption (50.55%-72.74%) and microbial degradation (20.38%-27.89%) were the main ways to remove OCPs. The Proteobacteria occupied a dominant position in the CWs system, among which Betaproteobacteria (34.37%-35.90%) were contained in the substrate, and Alphaproteobacteria (21.19%-23.84%) was a more dominant microorganism in plant roots. Formaldehyde assimilation and serine pathway were the main pathways of methane metabolism. This study provides a reference for the removal mechanism of OCPs to promote the application of CWs technology in LL treatment.
Collapse
Affiliation(s)
- Cen Yang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Institute of New Rural Development of Guizhou University, Guiyang, 550025, China
| | - Bing Wang
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Hu Wang
- Guizhou Chuyang Ecological Environmental Protection Technology Company, Guiyang, 550003, China
| | - Zhao He
- Guizhou Chuyang Ecological Environmental Protection Technology Company, Guiyang, 550003, China
| | - Yongfei Pi
- Guizhou Chuyang Ecological Environmental Protection Technology Company, Guiyang, 550003, China
| | - Jiajia Zhou
- Guizhou Chuyang Ecological Environmental Protection Technology Company, Guiyang, 550003, China
| | - Tianchang Liang
- Guizhou Chuyang Ecological Environmental Protection Technology Company, Guiyang, 550003, China
| | - Miao Chen
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China
| | - Tengbing He
- Institute of New Rural Development of Guizhou University, Guiyang, 550025, China
| | - Tianling Fu
- College of Resources and Environmental Engineering, Guizhou University, Guiyang, 550025, China; Institute of New Rural Development of Guizhou University, Guiyang, 550025, China.
| |
Collapse
|
15
|
Su W, Xiao L. Manganese-doped ferrihydrite/cellulose/polyvinyl alcohol composite membrane: Easily recyclable adsorbent for simultaneous removal of arsenic and cadmium from soil. THE SCIENCE OF THE TOTAL ENVIRONMENT 2022; 815:152748. [PMID: 34995607 DOI: 10.1016/j.scitotenv.2021.152748] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 12/12/2021] [Accepted: 12/24/2021] [Indexed: 06/14/2023]
Abstract
Simultaneous removal of arsenic (As) and cadmium (Cd) from soil has been a matter of great concern. In this study, manganese-doped ferrihydrite/cellulose/polyvinyl alcohol composite membranes were prepared via loading manganese-doped ferrihydrite on cellulose mesh and then wrapping with polyvinyl alcohol. The obtained composite membranes exhibited excellent mechanical properties and could be easily separated from soil. The adsorption capacities of Cd(II) and As(III) on the composite membrane were 11.11 mg/g and 72.08 mg/g respectively. After mixing the composite membrane with polluted soil at dosage of 0.3% (w/w), the removal efficiency of the toxicity characteristic leaching procedure leachable As and Cd reached 65% and 69% respectively with one cycle. The stability and reusability of composite membrane were demonstrated by no decrease in tensile strength and the retention of 94% and 96% of As(III) and Cd(II) removal efficiency respectively after four adsorption cycles. The prepared composite membrane had application prospect in the remediation of As and Cd co-polluted soil.
Collapse
Affiliation(s)
- Weicheng Su
- School of Resource and Environmental Science, Key Laboratory of Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, PR China
| | - Ling Xiao
- School of Resource and Environmental Science, Key Laboratory of Biomass-Resource Chemistry and Environmental Biotechnology of Hubei Province, Wuhan University, Wuhan 430072, PR China.
| |
Collapse
|
16
|
Huo J, Hu X, Cheng S, Xie H, Hu Z, Wu H, Liang S. Effects and mechanisms of constructed wetlands with different substrates on N 2O emission in wastewater treatment. ENVIRONMENTAL SCIENCE AND POLLUTION RESEARCH INTERNATIONAL 2022; 29:19045-19053. [PMID: 34713400 DOI: 10.1007/s11356-021-17219-6] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Accepted: 10/21/2021] [Indexed: 06/13/2023]
Abstract
Nitrous oxide (N2O) emissions from constructed wetlands (CWs) are accompanying problems and have attracted much attention in recent years. CWs filled with different substrates (gravel, biochar, zeolite, and pyrite) were constructed to investigate the nitrogen removal performance and N2O emissions, which named C-CWs, B-CWs, Z-CWs, and P-CWs, respectively. C-CWs showed the poorest nitrogen removal performance in all CWs. Although B-CWs exhibited the highest fluxes of N2O emissions, the percentage of N2O emissions in nitrogen removal (0.15%) was smaller than that of C-CWs (0.18%). In addition, microbiological analysis showed that compared with C-CWs, CWs filled with biochar, zeolite, and pyrite had higher abundance of nitrifying and denitrifying microorganisms and lower abundance of N2O producing bacteria. In conclusion, biochar, zeolite, and pyrite were more favorable kinds of substrate than the conventional substrates of gravel for the nitrogen removal and reduction of N2O emissions from CWs.
Collapse
Affiliation(s)
- Junyu Huo
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Xiaojin Hu
- Environment Research Institute, Shandong University, Qingdao, 266237, China
| | - Shiyi Cheng
- Environment Research Institute, Shandong University, Qingdao, 266237, China
- Jiangsu Ecological Environmental Monitoring Co., Ltd., Nanjing, 320100, China
| | - Huijun Xie
- Environment Research Institute, Shandong University, Qingdao, 266237, China.
| | - Zhen Hu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Haiming Wu
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| | - Shuang Liang
- Shandong Key Laboratory of Water Pollution Control and Resource Reuse, School of Environmental Science & Engineering, Shandong University, Qingdao, 266237, China
| |
Collapse
|
17
|
Luo D, Meng X, Zheng N, Li Y, Yao H, Chapman SJ. The anaerobic oxidation of methane in paddy soil by ferric iron and nitrate, and the microbial communities involved. THE SCIENCE OF THE TOTAL ENVIRONMENT 2021; 788:147773. [PMID: 34029806 DOI: 10.1016/j.scitotenv.2021.147773] [Citation(s) in RCA: 28] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 05/11/2021] [Accepted: 05/12/2021] [Indexed: 06/12/2023]
Abstract
The anaerobic oxidation of methane (AOM) mediated by microorganisms is a key process in the reduction of methane emissions, and AOM-coupled electron acceptors have been shown to regulate methane emissions into the atmosphere in marine systems. Paddy fields are a significant source of methane and account for 20% of global methane emissions, but the effect of electron acceptors on the methane emission process in flooded paddy fields has been poorly characterized. This study aimed to determine whether the electron acceptors ferric iron and nitrate, and biochar, acting as an electron shuttle, can regulate the AOM process in paddy soil, with or without interaction between biochar and these two electron acceptors. We also aimed to characterize which microorganisms are actively involved. Here, we added 13C-labeled CH4 (13CH4) into anaerobic microcosms to evaluate the role of electron acceptors by measuring the methane oxidation rate and the enrichment of 13C-labeled CO2 (13CO2). We then combined DNA-stable isotope probing with amplicon sequencing to study the active microorganisms. We found for the first time that, in addition to nitrate, ferric iron can also effectively promote AOM in paddy soil. However, there was no significant effect of biochar. Ferric iron-dependent AOM was mainly carried out by iron-reducing bacteria (Geobacter, Ammoniphilus and Clostridium), and nitrate-dependent AOM was mainly by nitrate-reducing bacteria (Rhodanobacter, Paenibacillus and Planococcus). Our results demonstrate that the AOM process, regulated by the electron acceptors ferric iron and nitrate, can alleviate methane emission from paddy soil. The potentially active microorganisms related to electron acceptor reduction may be crucial for this methane sink and deserve further research.
Collapse
Affiliation(s)
- Dan Luo
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Xiangtian Meng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Ningguo Zheng
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; University of Chinese Academy of Sciences, Beijing 100049, People's Republic of China
| | - Yaying Li
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China
| | - Huaiying Yao
- Key Laboratory of Urban Environment and Health, Institute of Urban Environment, Chinese Academy of Sciences, Xiamen 361021, People's Republic of China; Zhejiang Key Laboratory of Urban Environmental Processes and Pollution Control, Ningbo Urban Environment Observation and Research Station-NUEORS, Institute of Urban Environment, Chinese Academy of Sciences, Ningbo 315800, People's Republic of China; Research Center for Environmental Ecology and Engineering, School of Environmental Ecology and Biological Engineering, Wuhan Institute of Technology, Wuhan 430073, People's Republic of China.
| | | |
Collapse
|