1
|
Ao TJ, Wu J, Li K, Chandra R, Zhao XQ, Tang YQ, Liu CG, Bai FW. Cellulosic ethanol stillage for methane production by integrating single-chamber anaerobic digestion and microbial electrolysis cell system. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 951:175814. [PMID: 39197773 DOI: 10.1016/j.scitotenv.2024.175814] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/08/2024] [Revised: 08/22/2024] [Accepted: 08/24/2024] [Indexed: 09/01/2024]
Abstract
Anaerobic digestion provides a solution to the inefficient use of carbon resources caused by improper disposal of corn stover-based ethanol stillage (CES). In this regard, we developed a single-chamber anaerobic digestion integrated microbial electrolysis cells system (AD-MEC) to convert CES into biogas while simultaneously upgrading biogas in-situ by employing voltages ranging from 0 to 2.5 V. Our results demonstrated that applying 1.0 V increased the CH4 yield by 55 % and upgraded the CH4 content in-situ to 82 %. This voltage also promoted the well-formed biofilm on the electrodes, resulting in a 20-fold increase in current. However, inhibition was observed at high voltages (1.5-2.5 V), suppressing syntrophic organic acid-oxidizing bacteria (SOB). The dissociation between SOB and methanogens led to accumulation of propionic and butyric acid, which, in turn, inhibited methanogens. The degradation of CES was accelerated by unclassified_o_norank_c_Desulfuromonadia on the anode, likely leading to an increase in mixotrophic methanogenesis due to the synergistic interaction among Aminobacterium, Sedimentibacter, and Methanosarcina. Furthermore, the enrichment of electroactive bacteria (EB) such as Enterococcus and Desulfomicrobium likely facilitates direct interspecies electron transfer to Methanobacterium, thereby promoting the conversion of CO2 to CH4 through hydrogenotrophic methanogenesis. Rather than initially stimulating the EB in the bulk solution to accelerate the start-up process of AD, our study revealed that applying mild voltage up to 1.0 V tended to mitigate the negative impact on the original microorganisms, as it gradually enriched EB on the electrode, thereby enhancing biogas production.
Collapse
Affiliation(s)
- Tian-Jie Ao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China; Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada
| | - Jie Wu
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Advanced Renewable Materials Lab, Department of Wood Science, University of British Columbia, 2424 main mall, Vancouver V6T 1N4, Canada
| | - Kai Li
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Richard Chandra
- Forest Product Biotechnology, Bioenergy Group, Department of Wood Science, Faculty of Forestry, University of British Columbia, 2424 Main Mall, Vancouver, BC V6T 1Z4, Canada; Trinity Western University, 22500 University Dr, Langley, BC V2Y 1Y1, Canada.
| | - Xin-Qing Zhao
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yue-Qin Tang
- College of Architecture and Environment, Sichuan University, Chengdu 610065, China
| | - Chen-Guang Liu
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China.
| | - Feng-Wu Bai
- State Key Laboratory of Microbial Metabolism, Joint International Research Laboratory of Metabolic & Developmental Sciences, School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai 200240, China
| |
Collapse
|
2
|
O'Shea R, Yang Y, Kansagra K, Hickey DT, Kohler D, Murphy JD. Decarbonising distilled spirits: An assessment of the potential associated with anaerobic digestion of by-products at nine operational distilleries. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 329:116976. [PMID: 36535142 DOI: 10.1016/j.jenvman.2022.116976] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2022] [Revised: 12/03/2022] [Accepted: 12/03/2022] [Indexed: 06/17/2023]
Abstract
This work aims to assess the potential biogas resource of by-products from the production of distilled spirits at 9 operational distilleries in 7 countries. An additional objective was the calculation of the energy resource and Scope 1 greenhouse gas (GHG) emission savings from the use of 21 by-products from the distilleries as a feedstock for anaerobic digestion (AD). To present a holistic perspective on the integration of AD with distilleries, an overview of additional criteria to be considered was provided. The biochemical methane potential (BMP) of the by-products associated with a selection of distilled spirits was experimentally determined. The BMP ranged from 161 L methane per kg volatile solid (LCH4/kgVS) to 589 LCH4/kgVS with an average value of 332 LCH4/kgVS. Biogas could reduce distillery fossil fuel demand by 49% when produced from un-processed by-products, by 66% when produced from a mixture of separated by-products, by 16% when produced from concentrated by-products and by 13% when produced from liquid by-products. The average Scope 1 GHG emission saving when using un-processed by-products was 52%, a mix of separated by-products allowed for a reduction of 66%, liquid by-products achieved an average reduction of 14%, and the use of concentrated by-products reduced GHG emissions by 17% on average. When evaluating which distilleries are "of most interest" for the integration of AD, other criteria to be considered include: by-product properties, the size of the AD facility required, the quantity of digestate produced, and the location of the distilleries in terms of both land availability to construct the AD facility and the proximity to land on which to spread digestate.
Collapse
Affiliation(s)
- Richard O'Shea
- Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; MaREI - SFI Research Centre for Energy Climate and Marine, Ireland.
| | - Yan Yang
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | - Komal Kansagra
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | - Daniel T Hickey
- MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| | | | - Jerry D Murphy
- Civil, Structural and Environmental Engineering, School of Engineering, University College Cork, Ireland; MaREI - SFI Research Centre for Energy Climate and Marine, Ireland
| |
Collapse
|
3
|
Kee WC, Wong YS, Ong SA, Lutpi NA, Sam ST, Chai A, Eng KM. Photocatalytic Degradation of Sugarcane Vinasse Using ZnO Photocatalyst: Operating Parameters, Kinetic Studies, Phytotoxicity Assessments, and Reusability. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH 2022; 16:3. [PMID: 34899925 PMCID: PMC8650741 DOI: 10.1007/s41742-021-00382-6] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/28/2021] [Revised: 10/21/2021] [Accepted: 11/11/2021] [Indexed: 05/05/2023]
Abstract
ABSTRACT Photocatalytic degradation performance is highly related to optimized operating parameters such as initial concentration, pH value, and catalyst dosage. In this study, the impact of various parameters on the photocatalytic degradation of anaerobically digested vinasse (AnVE) has been determined through decolourization and chemical oxygen demand (COD) reduction efficiency using zinc oxide (ZnO) photocatalyst. In this context, the application of photocatalytic degradation in treating sugarcane vinasse using ZnO is yet to be explored. The COD reduction efficiency and decolourization achieved 83.40% and 99.29%, respectively, under the conditions of 250 mg/L initial COD concentration, pH 10, and 2.0 g/L catalyst dosage. The phytotoxicity assessment was also conducted to determine the toxicity of AnVE before and after treatment using mung bean (Vigna radiata). The reduction of root length and the weight of mung bean indicated that the sugarcane vinasse contains enormous amounts of organic substances that affect the plant's growth. The toxicity reduction in the AnVE solution can be proved by UV-Vis absorption spectra. Furthermore, the catalyst recovery achieved 93% in the reusability test. However, the COD reduction efficiency and decolourization were reduced every cycle. It was due to the depletion of the active sites in the catalyst with the adsorption of organic molecules. Thus, it can be concluded that the photocatalytic degradation in the treatment of AnVE was effective in organic degradation, decolorization, toxicity reduction and can be reused after the recovery process.
Collapse
Affiliation(s)
- Wei-Chin Kee
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Yee-Shian Wong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Soon-An Ong
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Nabilah Aminah Lutpi
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
- Research and Environmental Sustainability Growth, Centre of Excellence (WAREG), Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Sung-Ting Sam
- Faculty of Chemical Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Audrey Chai
- Faculty of Civil Engineering Technology, Universiti Malaysia Perlis (UniMAP), Arau, 02600 Perlis, Malaysia
| | - Kim-Mun Eng
- Kenep Resources (Asia) Sdn. Bhd, No. 31 & 33, Persiaran Jelapang Maju 2, Taman Perindustrian Ringan Jelapang Maju, 30020 Ipoh, Perak Malaysia
| |
Collapse
|
4
|
Collivignarelli MC, Abbà A, Caccamo FM, Calatroni S, Torretta V, Katsoyiannis IA, Carnevale Miino M, Rada EC. Applications of Up-Flow Anaerobic Sludge Blanket (UASB) and Characteristics of Its Microbial Community: A Review of Bibliometric Trend and Recent Findings. INTERNATIONAL JOURNAL OF ENVIRONMENTAL RESEARCH AND PUBLIC HEALTH 2021; 18:10326. [PMID: 34639629 PMCID: PMC8508386 DOI: 10.3390/ijerph181910326] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 09/08/2021] [Revised: 09/27/2021] [Accepted: 09/28/2021] [Indexed: 11/21/2022]
Abstract
The interest in research on up-flow anaerobic sludge blanket (UASB) reactors is growing. The meta-analysis of bibliometric data highlighted the growing interest in four diverse topics: (i) energy recovery production; (ii) combination with other treatments; (iii) the study of processes for the removal of specific pollutants and, (iv) characterization of microbial community and granular sludge composition. In particular, the papers published in the first 6 months of 2021 on this process were selected and critically reviewed to highlight and discuss the results, the gaps in the literature and possible ideas for future research. Although the state of research on UASB is to be considered advanced, there are still several points that will be developed in future research such as the consolidation of the results obtained on a semi-industrial or real scale, the use of real matrices instead of synthetic ones and a more in-depth study of the effect of substances such as antibiotics on the microbiota and microbiome of UASB granular biomass. To date, few and conflicting data about the environmental footprint of UASB are available and therefore other studies on this topic are strongly suggested.
Collapse
Affiliation(s)
- Maria Cristina Collivignarelli
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
- Interdepartmental Centre for Water Research, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy
| | - Alessandro Abbà
- Department of Civil, Environmental, Architectural Engineering and Mathematics, University of Brescia, Via Branze 43, 25123 Brescia, Italy;
| | - Francesca Maria Caccamo
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Silvia Calatroni
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Vincenzo Torretta
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy;
| | - Ioannis A. Katsoyiannis
- Laboratory of Chemical and Environmental Technology, Department of Chemistry, Aristotle University of Thessaloniki, 54124 Thessaloniki, Greece;
| | - Marco Carnevale Miino
- Department of Civil Engineering and Architecture, University of Pavia, Via Ferrata 3, 27100 Pavia, Italy; (M.C.C.); (F.M.C.); (S.C.); (M.C.M.)
| | - Elena Cristina Rada
- Department of Theoretical and Applied Sciences, Insubria University of Varese, Via G.B. Vico 46, 21100 Varese, Italy;
| |
Collapse
|