1
|
Yang YW, Li MJ, Hung TC. Enhancing CO 2 dissolution and inorganic carbon conversion by metal-organic frameworks improves microalgal growth and carbon fixation efficiency. BIORESOURCE TECHNOLOGY 2024; 407:131113. [PMID: 39009052 DOI: 10.1016/j.biortech.2024.131113] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/17/2024] [Revised: 07/09/2024] [Accepted: 07/12/2024] [Indexed: 07/17/2024]
Abstract
Carbon supplementation strategies still have certain practical application constraints. Zn/Fe-based metal-organic frameworks (MOFs) nanoparticles that which are not toxic to Scenedesmus obliquus were successfully introduced into microalgal solutions to overcome low CO2 solubility. The maximum specific surface area of MOFs reached 342.94 m2·g-1 at a Zn/Fe molar ratio of 10/1. Under the optimal MOFs concentrations of 2.5 mg·L-1, the conversion of inorganic carbon increased by 2.6-fold. When S. obliquuswas cultured in a MOFs-modified medium with 1.50 % CO2 at 25 °C, the CO2 mass transfer coefficient and mixing time reached 9.01 × 10-3 min-1 and 55 s, respectively. The maximum chlorophyll-a content, biomass productivity, and CO2 fixation efficiency reached 32.57 mg·L-1, 0.240 g·L-1·d-1 and 21.6 %, respectively. Enriching CO2 for ribulose-1,5-bisphosphate carboxylase/oxygenase carboxylation by MOFs may be the key to improving the photosynthetic efficiency of microalgae. This strategy could serve as a reference for improving the microalgal CO2 fixation efficiency.
Collapse
Affiliation(s)
- Yi-Wen Yang
- Key Laboratory of Thermo-Fluid Science and Engineering of Ministry of Education, School of Energy and Power Engineering, Xi'an Jiaotong University, Xi'an, Shaanxi 710049, China
| | - Ming-Jia Li
- School of Mechanical Engineering, Beijing Institute of Technology, Beijing 100081, China.
| | - Tzu-Chen Hung
- Department of Mechanical Engineering, Taipei University of Technology, Taipei, China
| |
Collapse
|
2
|
Patnaik R, Kumar Bagchi S, Rawat I, Bux F. Nanotechnology for the enhancement of algal cultivation and bioprocessing: Bridging gaps and unlocking potential. BIORESOURCE TECHNOLOGY 2024; 406:131025. [PMID: 38914236 DOI: 10.1016/j.biortech.2024.131025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/15/2024] [Revised: 06/20/2024] [Accepted: 06/22/2024] [Indexed: 06/26/2024]
Abstract
Algae cultivation and bioprocessing are important due to algae's potential to effectively tackle crucial environmental challenges like climate change, soil and water pollution, energy security, and food scarcity. To realize these benefits high algal biomass production and valuable compound extraction are necessary. Nanotechnology can significantly improve algal cultivation through enhanced nutrient uptake, catalysis, CO2 utilization, real-time monitoring, cost-effective harvesting, etc. Synthetic nanoparticles are extensively used due to ease of manufacturing and targeted application. Nonetheless, there is a growing interest in transitioning to environmentally friendly options like natural and 'green' nanoparticles which are produced from renewable/biological sources by using eco-friendly solvents. Presently, natural, and 'green' nanoparticles are predominantly utilized in algal harvesting, with limited application in other areas, the reasons for which remain unclear. This review aims to critically evaluate research on nanotechnology-based algae system enhancement, identify research gaps and propose solutions using natural and 'green' nanoparticles for a sustainable future.
Collapse
Affiliation(s)
- Reeza Patnaik
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Sourav Kumar Bagchi
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Ismail Rawat
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa
| | - Faizal Bux
- Institute for Water and Wastewater Technology, Durban University of Technology, PO Box 1334, Durban 4000, South Africa.
| |
Collapse
|
3
|
Zhou Y, Chen X, Zhu Y, Pan X, Li W, Han J. Mechanisms of hormetic effects of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 932:172856. [PMID: 38697534 DOI: 10.1016/j.scitotenv.2024.172856] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/04/2024] [Revised: 04/23/2024] [Accepted: 04/26/2024] [Indexed: 05/05/2024]
Abstract
Antibiotics are frequently detected in surface water and pose potential threats to organisms in aquatic ecosystem such as microalgae. The occurrence of biphasic dose responses raised the possibility of stimulation of microalgal biomass by antibiotics at environmental-relevant concentration and caused potential ecological risk such as algal bloom. However, the underlying mechanisms of low concentration-induced hormetic effects are not well understood. In this study, we evaluated the hormesis of ofloxacin on Chlorella pyrenoidosa under environmental-relevant concentration and long-term exposure. Results showed the hormetic effects of ofloxacin on cell density and carbon fixation rate (RC). The predicted maximum promotion was 17.45 % by 16.84 μg/L and 20.08 % by 15.78 μg/L at 21 d, respectively. The predicted maximum concentration of non-effect on cell density and RC at 21 d was 3.24 mg/L and 1.44 mg/L, respectively. Ofloxacin induced the mobilization of pigments and antioxidant enzymes to deal with oxidative stress. PCA analysis revealed Chl-a/Chl-b could act as a more sensitive biomarker under acute exposure while chlorophyll fluorescence parameters were in favor of monitoring long-term implication. The hormesis in increased secretion of extracellular organic matters was regarded as a defensive mechanism and accelerated indirect photodegradation of ofloxacin. Bioremoval was dominant and related to biomass accumulation in the total dissipation while abiotic removal appeared slight contributions. This study provided new insights into the understanding of hormesis of microalgae induced by antibiotics.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China
| | - Xinyang Chen
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Yan Zhu
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xiangjie Pan
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Jiangang Han
- Co-Innovation Center for Sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| |
Collapse
|
4
|
Zhou Y, Yue Y, Chen X, Wu F, Li W, Li P, Han J. Physiological-biochemical responses and transcriptomic analysis reveal the effects and mechanisms of sulfamethoxazole on the carbon fixation function of Chlorella pyrenoidosa. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 917:170460. [PMID: 38286284 DOI: 10.1016/j.scitotenv.2024.170460] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Revised: 01/23/2024] [Accepted: 01/24/2024] [Indexed: 01/31/2024]
Abstract
The occurrence of sulfamethoxazole (SMX) is characterized by low concentration and pseudo-persistence. However, the toxic effects and mechanisms of SMX, especially for low concentration and long-term exposure, are still not clear. This study investigated the effects and mechanisms of SMX on carbon fixation-related biological processes of Chlorella pyrenoidosa at population, physiological-biochemical, and transcriptional levels. Results showed that 1-1000 μg/L SMX significantly inhibited the dry weight and carbon fixation rate of C. pyrenoidosa during 21 d. The upregulation of superoxide dismutase (SOD) and catalase (CAT) activities, as well as the accumulation of malondialdehyde (MDA) demonstrated that SMX posed oxidative damage to C. pyrenoidosa. SMX inhibited the activity of carbonic anhydrase (CA), and consequently stimulated the activity of Rubisco. Principal component analysis (PCA) revealed that SMX concentration was positively correlated with Rubisco and CAT while exposure time was negatively correlated with CA. Transcriptional analysis showed that the synthesis of chlorophyll-a was stabilized by regulating the diversion of protoporphyrin IX and the chlorophyll cycle. Meanwhile, multiple CO2 compensation mechanisms, including photorespiratory, C4-like CO2 compensation and purine metabolism pathways were triggered in response to the CO2 requirements of Rubisco. This study provides a scientific basis for the comprehensive assessment of the ecological risk of SMX.
Collapse
Affiliation(s)
- Yuhao Zhou
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China
| | - Yujiao Yue
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Xinyang Chen
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Feifan Wu
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Wei Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| | - Pingping Li
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China
| | - Jiangang Han
- Co-Innovation center for sustainable Forestry in Southern China, College of Ecology and Environment, Nanjing Forestry University, Longpan Road 159, Nanjing 210037, Jiangsu, China; School of Chemical Engineering and Materials, Changzhou Institute of Technology, No. 666 Liaohe Road, Changzhou, Jiangsu 213032, China; National Positioning Observation Station of Hung-tse Lake Wetland Ecosystem in Jiangsu Province, Hongze, Jiangsu 223100, China.
| |
Collapse
|
5
|
Zhou Y, Li X, Chen J, Li W, Wang F. Carbon sequestration performance, enzyme and photosynthetic activity, and transcriptome analysis of algae-bacteria symbiotic system after antibiotic exposure. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 902:166486. [PMID: 37611703 DOI: 10.1016/j.scitotenv.2023.166486] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/11/2023] [Revised: 08/17/2023] [Accepted: 08/20/2023] [Indexed: 08/25/2023]
Abstract
Wastewater treatment technology based on algae-bacteria successfully combines pollutant purification, CO2 reduction and clean energy production to provide new insights into climate solutions. In this study, the reciprocal mechanisms between algae and bacteria were explored through physiological and biochemical levels of algae cells and differentially expressed genes (DEGs) based on the performance of immobilized algae-bacteria symbiotic particles (ABSPs) for CO2 fixation. The results showed that ABSPs promoted the CO2 fixation capacity of microalgae. The enhanced growth capacity and photosynthetic activity of algal cells in ABSPs are key to promoting CO2 uptake, and the stimulation of photosynthetic system and the promotion of Calvin cycle were the main contributors to enhanced carbon sequestration. These findings will provide guidance for carbon reduction using immobilized ABSS as well as deciphering the algae-bacteria reciprocal mechanism.
Collapse
Affiliation(s)
- Yuhang Zhou
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Xinjie Li
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Jiaqi Chen
- College of Life and Environmental Sciences, Hangzhou Normal University, Hangzhou 311121, China
| | - Wenbing Li
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| | - Fan Wang
- School of Engineering, Hangzhou Normal University, Hangzhou 311121, China.
| |
Collapse
|
6
|
Kanna Dasan Y, Lam MK, Chai YH, Lim JW, Ho YC, Tan IS, Lau SY, Show PL, Lee KT. Unlocking the potential of microalgae bio-factories for carbon dioxide mitigation: A comprehensive exploration of recent advances, key challenges, and energy-economic insights. BIORESOURCE TECHNOLOGY 2023; 380:129094. [PMID: 37100295 DOI: 10.1016/j.biortech.2023.129094] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2023] [Revised: 04/17/2023] [Accepted: 04/23/2023] [Indexed: 05/14/2023]
Abstract
Microalgae are promising alternatives to mitigate atmospheric CO2 owing to their fast growth rates, resilience in the face of adversity and ability to produce a wide range of products, including food, feed supplements, chemicals, and biofuels. However, to fully harness the potential of microalgae-based carbon capture technology, further advancements are required to overcome the associated challenges and limitations, particularly with regards to enhancing CO2 solubility in the culture medium. This review provides an in-depth analysis of the biological carbon concentrating mechanism and highlights the current approaches, including species selection, optimization of hydrodynamics, and abiotic components, aimed at improving the efficacy of CO2 solubility and biofixation. Moreover, cutting-edge strategies such as gene mutation, bubble dynamics and nanotechnology are systematically outlined to elevate the CO2 biofixation capacity of microalgal cells. The review also evaluates the energy and economic feasibility of using microalgae for CO2 bio-mitigation, including challenges and prospects for future development.
Collapse
Affiliation(s)
- Yaleeni Kanna Dasan
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Man Kee Lam
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia.
| | - Yee Ho Chai
- Chemical Engineering Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Jun Wei Lim
- HICoE-Centre for Biofuel and Biochemical Research, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia; Fundamental and Applied Sciences Department, Universiti Teknologi PETRONAS, 32610 Seri Iskandar, Perak, Malaysia
| | - Yeek Chia Ho
- Centre for Urban Resource Sustainability, Civil and Environmental Engineering Department, Institute of Self-Sustainable Building, Universiti Teknologi PETRONAS, Seri Iskandar 32610, Perak, Malaysia
| | - Inn Shi Tan
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Sie Yon Lau
- Department of Chemical and Energy Engineering, Faculty of Engineering and Science, Curtin University Malaysia, CDT 250, 98009 Miri, Sarawak, Malaysia
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China; Department of Chemical and Environmental Engineering, Faculty of Science and Engineering, University of Nottingham Malaysia, Jalan Broga, 43500 Semenyih, Selangor, Malaysia; Department of Sustainable Engineering, Saveetha School of Engineering, SIMATS, Chennai 602105, India
| | - Keat Teong Lee
- School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Penang, Nibong Tebal 14300, Malaysia
| |
Collapse
|
7
|
Wei S, Li F, Zhu N, Wei X, Wu P, Dang Z. Biomass production of Chlorella pyrenoidosa by filled sphere carrier reactor: Performance and mechanism. BIORESOURCE TECHNOLOGY 2023:129195. [PMID: 37207699 DOI: 10.1016/j.biortech.2023.129195] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/03/2023] [Revised: 05/14/2023] [Accepted: 05/15/2023] [Indexed: 05/21/2023]
Abstract
Microalgae-based Carbon Capture, Utilization and Storage is vital for mitigating global climate change. A filled sphere carrier reactor was developed to achieve high biomass production and carbon sequestration rate of Chlorella pyrenoidosa. By introducing air (0.04% CO2) into the reactor, the dry biomass production achieved 8.26 g/L with the optimized parameters of polyester carrier, 80% packing density, 5-fold concentrated nutrient combining 0.2 mol/L phosphate buffer. At simulated flue gas CO2 concentration of 7%, the dry biomass yield and carbon sequestration rate reached up to 9.98 g/L and 18.32 g/L/d in one day, which were as high as 249.5 and 79.65 times comparing with those of suspension culture at day 1, respectively. The mechanism was mainly attributed to the obvious intensification of electron transfer rate and remarkable increase of RuBisCO enzyme activity in the photosynthetic chloroplast matrix. This work provided a novel approach for potential microalgae-based carbon capture and storage.
Collapse
Affiliation(s)
- Sijing Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Fei Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Nengwu Zhu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China; Guangdong Provincial Key Laboratory of Solid Wastes Pollution Control and Recycling, Guangzhou 510006, PR China.
| | - Xiaorong Wei
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China
| | - Pingxiao Wu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| | - Zhi Dang
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, PR China; The Key Laboratory of Pollution Control and Ecosystem Restoration in Industry Clusters of Ministry of Education, Guangzhou 510006, PR China; Guangdong Environmental Protection Key Laboratory of Solid Waste Treatment and Recycling, Guangzhou 510006, PR China
| |
Collapse
|
8
|
Ren H, Ni J, Shen M, Zhou D, Sun F, Loke Show P. Enhanced carbon dioxide fixation of Chlorella vulgaris in microalgae reactor loaded with nanofiber membrane carried iron oxide nanoparticles. BIORESOURCE TECHNOLOGY 2023; 382:129176. [PMID: 37187334 DOI: 10.1016/j.biortech.2023.129176] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/13/2023] [Revised: 05/11/2023] [Accepted: 05/12/2023] [Indexed: 05/17/2023]
Abstract
To improve the CO2 dissolution and carbon fixation in the process of microalgae capturing CO2 from flue gas, a nanofiber membrane containing iron oxide nanoparticles (NPsFe2O3) for CO2 adsorption was prepared, and coupled with microalgae utilization to achieve carbon removal. The performance test results showed that the largest specific surface area and pore size were 8.148 m2 g-1 and 27.505 Å, respectively, when the nanofiber membrane had 4% NPsFe2O3. Through CO2 adsorption experiments, it was found that the nanofiber membrane could prolong the CO2 residence time and increase CO2 dissolution. Then, the nanofiber membrane was used as a CO2 adsorbent and semifixed culture carrier in the Chlorella vulgaris culture process. The results showed that compared with the group without nanofiber membrane (0 layer), the biomass productivity, CO2 fixation efficiency and carbon fixation efficiency of Chlorella vulgaris with 2 layers of membranes increased by 1.4 times.
Collapse
Affiliation(s)
- Hongyan Ren
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Jing Ni
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Mingwei Shen
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Duan Zhou
- School of Environment Science and Civil Engineering, Jiangnan University, Wuxi 214122, China; Jiangsu Engineering Laboratory for Biomass Energy and Carbon Reduction Technology, Wuxi 214122, China
| | - Fubao Sun
- Key Laboratory of Carbohydrate Chemistry and Biotechnology, Ministry of Education, School of Biotechnology, Jiangnan University, Wuxi 214122, China
| | - Pau Loke Show
- Department of Chemical Engineering, Khalifa University, P.O. Box 127788, Abu Dhabi, United Arab Emirates; Zhejiang Provincial Key Laboratory for Subtropical Water Environment and Marine Biological Resources Protection, Wenzhou University, Wenzhou 325035, China.
| |
Collapse
|
9
|
Nayak S, Goveas LC, Selvaraj R, Vinayagam R, Manickam S. Advances in the utilisation of carbon-neutral technologies for a sustainable tomorrow: A critical review and the path forward. BIORESOURCE TECHNOLOGY 2022; 364:128073. [PMID: 36216285 DOI: 10.1016/j.biortech.2022.128073] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2022] [Revised: 09/29/2022] [Accepted: 10/01/2022] [Indexed: 06/16/2023]
Abstract
Global industrialisation and overexploitation of fossil fuels significantly impact greenhouse gas emissions, resulting in global warming and other environmental problems. Hence, investigations on capturing, storing, and utilising atmospheric CO2 create novel technologies. Few microorganisms, microalgae, and macroalgae utilise atmospheric CO2 for their growth and reduce atmospheric CO2 levels. Activated carbon and biochar from biomasses also capture CO2. Nanomaterials such as metallic oxides, metal-organic frameworks, and MXenes illustrate outstanding adsorption characteristics, and convert CO2 to carbon-neutral fuels, creating a balance between CO2 production and elimination, thus zeroing the carbon footprint. The need for a paradigm shift from fossil fuels and promising technologies on renewable energies, carbon capture mechanisms, and carbon sequestration techniques that help reduce CO2 emissions for a better tomorrow are reviewed to achieve the world's sustainable development goals. The challenges and possible solutions with future perspectives are also discussed.
Collapse
Affiliation(s)
- Sneha Nayak
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Louella Concepta Goveas
- Nitte (Deemed to be University), NMAM Institute of Technology (NMAMIT), Department of Biotechnology Engineering, Nitte, Karnataka 574110, India
| | - Raja Selvaraj
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Ramesh Vinayagam
- Department of Chemical Engineering, Manipal Institute of Technology, Manipal Academy of Higher Education, Manipal, Karnataka 576104, India
| | - Sivakumar Manickam
- Petroleum and Chemical Engineering, Faculty of Engineering, Universiti Teknologi Brunei, Jalan Tungku Link Gadong, Bandar Seri Begawan BE1410, Brunei Darussalam.
| |
Collapse
|
10
|
Wong YY, Rawindran H, Lim JW, Tiong ZW, Liew CS, Lam MK, Kiatkittipong W, Abdelfattah EA, Oh WD, Ho YC. Attached microalgae converting spent coffee ground into lipid for biodiesel production and sequestering atmospheric CO2 simultaneously. ALGAL RES 2022. [DOI: 10.1016/j.algal.2022.102780] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
11
|
Gopalan J, Buthiyappan A, Raman AAA. Insight into metal-impregnated biomass based activated carbon for enhanced carbon dioxide adsorption: A review. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.06.026] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/27/2022]
|
12
|
Li S, Li X, Ho SH. How to enhance carbon capture by evolution of microalgal photosynthesis? Sep Purif Technol 2022. [DOI: 10.1016/j.seppur.2022.120951] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
|
13
|
Benner P, Meier L, Pfeffer A, Krüger K, Oropeza Vargas JE, Weuster-Botz D. Lab-scale photobioreactor systems: principles, applications, and scalability. Bioprocess Biosyst Eng 2022; 45:791-813. [PMID: 35303143 PMCID: PMC9033726 DOI: 10.1007/s00449-022-02711-1] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2021] [Accepted: 02/14/2022] [Indexed: 12/20/2022]
Abstract
Phototrophic microorganisms that convert carbon dioxide are being explored for their capacity to solve different environmental issues and produce bioactive compounds for human therapeutics and as food additives. Full-scale phototrophic cultivation of microalgae and cyanobacteria can be done in open ponds or closed photobioreactor systems, which have a broad range of volumes. This review focuses on laboratory-scale photobioreactors and their different designs. Illuminated microtiter plates and microfluidic devices offer an option for automated high-throughput studies with microalgae. Illuminated shake flasks are used for simple uncontrolled batch studies. The application of illuminated bubble column reactors strongly emphasizes homogenous gas distribution, while illuminated flat plate bioreactors offer high and uniform light input. Illuminated stirred-tank bioreactors facilitate the application of very well-defined reaction conditions. Closed tubular photobioreactors as well as open photobioreactors like small-scale raceway ponds and thin-layer cascades are applied as scale-down models of the respective large-scale bioreactors. A few other less common designs such as illuminated plastic bags or aquarium tanks are also used mainly because of their relatively low cost, but up-scaling of these designs is challenging with additional light-driven issues. Finally, this review covers recommendations on the criteria for photobioreactor selection and operation while up-scaling of phototrophic bioprocesses with microalgae or cyanobacteria.
Collapse
Affiliation(s)
- Philipp Benner
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Lisa Meier
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Annika Pfeffer
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Konstantin Krüger
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - José Enrique Oropeza Vargas
- Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany
| | - Dirk Weuster-Botz
- Department of Energy and Process Engineering, Chair of Biochemical Engineering, Technical University of Munich, TUM School of Engineering and Design, Boltzmannstraße 15, 85748, Garching, Germany.
- Technical University of Munich, TUM-AlgaeTec Center, 85521, Taufkirchen, Germany.
| |
Collapse
|
14
|
Simultaneous Application of Mixotrophic Culture and Magnetic Fields as a Strategy to Improve Spirulina sp. LEB 18 Phycocyanin Synthesis. Curr Microbiol 2021; 78:4014-4022. [PMID: 34595548 DOI: 10.1007/s00284-021-02666-8] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2021] [Accepted: 09/20/2021] [Indexed: 11/27/2022]
Abstract
Spirulina is a filamentous microalga which is considered a promising alternative source of essential nutrients and active biomolecules. High production cost and the space required to install a photobioreactor are two of the greatest challenges in the industrial application of microalga-based products. Thus, this study aimed to improve Spirulina sp. LEB 18 biomass and phycocyanin content by combining the application of mixotrophic culture and magnetic fields (MF). Zarrouk medium was modified with 1 and 3 g/L liquid molasses and the application of 30 mT for 1·h/d was investigated. Mixotrophic culture with 1 g/L molasses showed the highest biomass concentration (1.62 g/L), carbohydrate content (25.6%), and lipid contents (8.7%) after 15 days. Although the combination of 30 mT and 1 g/L liquid molasses decreased biomass production (1.44 g/L), there was increase in protein yield (76.9%) and protein productivity (73.8 mg/L·d). The proposed method increased phycocyanin production by 145% and its purity from 0.584 in the control culture to 0.627. Data described by this study show that the combination of mixotrophic culture and MF application is a promising alternative to increase microalga protein and phycocyanin production.
Collapse
|