1
|
Ali SS, Al-Tohamy R, Elsamahy T, Sun J. Harnessing recalcitrant lignocellulosic biomass for enhanced biohydrogen production: Recent advances, challenges, and future perspective. Biotechnol Adv 2024; 72:108344. [PMID: 38521282 DOI: 10.1016/j.biotechadv.2024.108344] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/23/2023] [Revised: 02/17/2024] [Accepted: 03/17/2024] [Indexed: 03/25/2024]
Abstract
Biohydrogen (Bio-H2) is widely recognized as a sustainable and environmentally friendly energy source, devoid of any detrimental impact on the environment. Lignocellulosic biomass (LB) is a readily accessible and plentiful source material that can be effectively employed as a cost-effective and sustainable substrate for Bio-H2 production. Despite the numerous challenges, the ongoing progress in LB pretreatment technology, microbial fermentation, and the integration of molecular biology techniques have the potential to enhance Bio-H2 productivity and yield. Consequently, this technology exhibits efficiency and the capacity to meet the future energy demands associated with the valorization of recalcitrant biomass. To date, several pretreatment approaches have been investigated in order to improve the digestibility of feedstock. Nevertheless, there has been a lack of comprehensive systematic studies examining the effectiveness of pretreatment methods in enhancing Bio-H2 production through dark fermentation. Additionally, there is a dearth of economic feasibility evaluations pertaining to this area of research. Thus, this review has conducted comparative studies on the technological and economic viability of current pretreatment methods. It has also examined the potential of these pretreatments in terms of carbon neutrality and circular economy principles. This review paves the way for a new opportunity to enhance Bio-H2 production with technological approaches.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
2
|
Sitthikitpanya N, Ponuansri C, Jomnonkhaow U, Wongfaed N, Reungsang A. Unlocking the potential of sugarcane leaf waste for sustainable methane production: Insights from microbial pre-hydrolysis and reactor optimization. Heliyon 2024; 10:e25787. [PMID: 38356542 PMCID: PMC10865077 DOI: 10.1016/j.heliyon.2024.e25787] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 01/05/2024] [Accepted: 02/02/2024] [Indexed: 02/16/2024] Open
Abstract
Sugarcane leaf waste, a byproduct of the growing global sugar industry, challenges agricultural waste management. This study explores its potential for methane production via anaerobic digestion. A microbial pre-hydrolysis, using lignocellulose-degrading bacteria, enhanced soluble chemical oxygen demand at an optimal initial substrate concentration of 40 g-volatile solid/L. Comparative analysis with untreated and bioaugmented leaves revealed the pre-hydrolyzed leaves achieved the highest methane production rate (MPR) at 14.0 ± 0.5 mL-CH4/L·d, surpassing others by 1.47 and 1.67 times. Two continuous stirred tank reactors were employed to assess the optimal hydraulic retention time (HRT). Results showed a stable methane production with an HRT of 25 days, yielding high MPRs: 88.70 ± 0.63 mL-CH4/L·d from pre-hydrolyzed sugarcane leaves and 82.57 ± 1.22 mL-CH4/L·d from microbial consortium-augmented leaves. A 25-day HRT fosters high microbial diversity with Bacteroidota, Firmicutes, Chloroflexi, and Verrucomicrobiota dominance, indicating favorable conditions. Conversely, a 20-day HRT results in lower diversity due to unfavorable factors like low pH during organic overloading, leading to increased concentrations of volatile fatty acids and lactic acid, with Firmicutes as the predominant phylum. This study highlights sugarcane leaf waste's potential as a valuable resource for sustainable methane production.
Collapse
Affiliation(s)
- Napapat Sitthikitpanya
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Chaweewan Ponuansri
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Umarin Jomnonkhaow
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Nantharat Wongfaed
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand
- Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand
- Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand
| |
Collapse
|
3
|
Li WJ, Li FF, Bai J, Liang K, Li K, Qin GQ, Zhang YL, Li XJ. Isolation and characterization of intestinal bacteria associated with cellulose degradation in grasshoppers (Orthoptera). JOURNAL OF INSECT SCIENCE (ONLINE) 2023; 23:7. [PMID: 38006418 PMCID: PMC10676120 DOI: 10.1093/jisesa/iead101] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/18/2023] [Revised: 10/20/2023] [Accepted: 11/03/2023] [Indexed: 11/27/2023]
Abstract
Insect gut bacteria play an essential role in the nutritional metabolism, growth, and development of insects. Grasshoppers (Orthoptera) are cellulose-rich plant-feeding pests. Although the biological potential of grasshopper gut microorganisms to assist cellulose decomposition is well established, microbial resources for efficient degradation of cellulose biomass are still scarce and need to be developed. In this study, we used selective media to isolate cellulose-degrading bacteria from the intestines of Atractomorpha sinensis, Trilophidia annulata, Sphingonotus mongolicus, and Calliptamus abbreviatus. Phylogenetic analysis based on the maximum likelihood method using 16S rDNA sequencing sequences to identify bacteria revealed the isolation of 11 strains belonging to 3 genera, including Klebsiella, Aeromonas, and Bacillus. The degradability of the isolates to cellulose was then determined by the DNS colorimetric method, and the results showed that Bacillus had the highest degradation rate. The elucidation of microbial cellulose degradation capacity in grasshoppers not only contributes to the understanding of multiple plant-insect-microbe interactions, but also provides a valuable microbial resource for solving the biomass conversion of cellulose species problem.
Collapse
Affiliation(s)
- Wen-Jing Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Fei-Fei Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Jing Bai
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Ke Liang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Kai Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Guo-Qing Qin
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Yu-Long Zhang
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| | - Xin-Jiang Li
- The Key Laboratory of Zoological Systematics and Application, School of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, China
| |
Collapse
|
4
|
Narayanan M, Ali SS, El-Sheekh M. A comprehensive review on the potential of microbial enzymes in multipollutant bioremediation: Mechanisms, challenges, and future prospects. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 334:117532. [PMID: 36801803 DOI: 10.1016/j.jenvman.2023.117532] [Citation(s) in RCA: 42] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/22/2022] [Revised: 02/07/2023] [Accepted: 02/15/2023] [Indexed: 06/18/2023]
Abstract
Industrialization and other human activity represent significant environmental hazards. Toxic contaminants can harm a comprehensive platform of living organisms in their particular environments. Bioremediation is an effective remediation process in which harmful pollutants are eliminated from the environment using microorganisms or their enzymes. Microorganisms in the environment often create a variety of enzymes that can eliminate hazardous contaminants by using them as a substrate for development and growth. Through their catalytic reaction mechanism, microbial enzymes may degrade and eliminate harmful environmental pollutants and transform them into non-toxic forms. The principal types of microbial enzymes which can degrade most hazardous environmental contaminants include hydrolases, lipases, oxidoreductases, oxygenases, and laccases. Several immobilizations, genetic engineering strategies, and nanotechnology applications have been developed to improve enzyme performance and reduce pollution removal process costs. Until now, the practically applicable microbial enzymes from various microbial sources and their ability to degrade multipollutant effectively or transformation potential and mechanisms are unknown. Hence, more research and further studies are required. Additionally, there is a gap in the suitable approaches considering toxic multipollutants bioremediation using enzymatic applications. This review focused on the enzymatic elimination of harmful contaminants in the environment, such as dyes, polyaromatic hydrocarbons, plastics, heavy metals, and pesticides. Recent trends and future growth for effectively removing harmful contaminants by enzymatic degradation are also thoroughly discussed.
Collapse
Affiliation(s)
- Mathiyazhagan Narayanan
- Division of Research and Innovations, Department of Biotechnology, Saveetha School of Engineering, Saveetha Institute of Medical and Technical Science, Chennai, 602 105, Tamil Nadu, India
| | - Sameh Samir Ali
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt; Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mostafa El-Sheekh
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
5
|
Jin X, Wei S. Efficient short time pretreatment on lignocellulosic waste using an isolated fungus Trametes sp. W-4 for the enhancement of biogas production. Heliyon 2023; 9:e14573. [PMID: 36950623 PMCID: PMC10025918 DOI: 10.1016/j.heliyon.2023.e14573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2022] [Revised: 03/09/2023] [Accepted: 03/09/2023] [Indexed: 03/14/2023] Open
Abstract
Biological pretreatment to the lignocellulosic waste prior to anaerobic digestion is a popular method to increase biogas production. However, the long time needed for the pretreatment is not suitable to the practical application. A fungus strain, which could produce many kinds of lignocellulosic enzymes including CMCase, FPase, xylanase and laccase, was isolated from the soil of Tibet in this study. The fungus was identified as Trametes sp. W-4 by morphological and molecular characterization. The optimum culture temperature was 30 °C and the optimum nitrogen source was peptone. Under the optimum fermentation condition, the activity of CMCase, FPase, xylanase and laccase could reach 2.73 U/mL, 0.41 U/mL, 0.29 U/mL, and 1.11 U/mL, respectively. The results of pretreatment of Trametes sp. W-4 on the mixtures of high land barley straw, cow manure and pig manure for enhancement of biogas production showed that a very short time pretreatment of 3 days could obtain the highest cumulative methane production of 111.51 mL/g-VS, which was 63.81% higher than that of the control group of 68.07 mL/g-VS. The finding indicated that Trametes sp. W-4 pretreatment could be a candidate for the improving of biogas production from lignocellulosic waste.
Collapse
|
6
|
Al-Tohamy R, Ali SS, Zhang M, Elsamahy T, Abdelkarim EA, Jiao H, Sun S, Sun J. Environmental and Human Health Impact of Disposable Face Masks During the COVID-19 Pandemic: Wood-Feeding Termites as a Model for Plastic Biodegradation. Appl Biochem Biotechnol 2023; 195:2093-2113. [PMID: 36370247 PMCID: PMC9652579 DOI: 10.1007/s12010-022-04216-9] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/21/2022] [Indexed: 11/14/2022]
Abstract
The ongoing COVID-19 pandemic has resulted in an unprecedented form of plastic pollution: personal protective equipment (PPE). On the eve of the COVID-19 pandemic, there is a tremendous increase in the production of plastic-based PPE. To control the spread of the virus, face masks (FMs) are used as primary PPE. Thus, the production and usage of FM significantly increased as the COVID-19 pandemic was still escalating. The primary raw materials for the manufacturing of FMs are non-biodegradable synthetic polymers derived from petrochemicals. This calls for an urgent need to develop novel strategies for the efficient degradation of plastics. Furthermore, most of these masks contain plastic or other derivatives of plastic. The extensive usage of FM generates millions of tons of plastic waste for the environment in a short span of time. However, their degradation in the environment and consequences are poorly understood. Therefore, the potential impacts of disposable FM on the environment and human health during the COVID-19 pandemic are clarified in the present study. Despite structural and recalcitrance variations, lignocellulose and plastic polymers have physicochemical features, including carbon skeletons with comparable chemical bonds as well as hydrophobic properties in amorphous and crystalline regions. In this review, we argue that there is much to be learned from termites by transferring knowledge from research on lignocellulose degradation by termites to that on plastic waste.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Meng Zhang
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Esraa A Abdelkarim
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sarina Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
7
|
Wongfaed N, O-Thong S, Sittijunda S, Reungsang A. Taxonomic and enzymatic basis of the cellulolytic microbial consortium KKU-MC1 and its application in enhancing biomethane production. Sci Rep 2023; 13:2968. [PMID: 36804594 PMCID: PMC9941523 DOI: 10.1038/s41598-023-29895-0] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2022] [Accepted: 02/13/2023] [Indexed: 02/22/2023] Open
Abstract
Lignocellulosic biomass is a promising substrate for biogas production. However, its recalcitrant structure limits conversion efficiency. This study aims to design a microbial consortium (MC) capable of producing the cellulolytic enzyme and exploring the taxonomic and genetic aspects of lignocellulose degradation. A diverse range of lignocellulolytic bacteria and degrading enzymes from various habitats were enriched for a known KKU-MC1. The KKU-MC1 was found to be abundant in Bacteroidetes (51%), Proteobacteria (29%), Firmicutes (10%), and other phyla (8% unknown, 0.4% unclassified, 0.6% archaea, and the remaining 1% other bacteria with low predominance). Carbohydrate-active enzyme (CAZyme) annotation revealed that the genera Bacteroides, Ruminiclostridium, Enterococcus, and Parabacteroides encoded a diverse set of cellulose and hemicellulose degradation enzymes. Furthermore, the gene families associated with lignin deconstruction were more abundant in the Pseudomonas genera. Subsequently, the effects of MC on methane production from various biomasses were studied in two ways: bioaugmentation and pre-hydrolysis. Methane yield (MY) of pre-hydrolysis cassava bagasse (CB), Napier grass (NG), and sugarcane bagasse (SB) with KKU-MC1 for 5 days improved by 38-56% compared to non-prehydrolysis substrates, while MY of prehydrolysed filter cake (FC) for 15 days improved by 56% compared to raw FC. The MY of CB, NG, and SB (at 4% initial volatile solid concentration (IVC)) with KKU-MC1 augmentation improved by 29-42% compared to the non-augmentation treatment. FC (1% IVC) had 17% higher MY than the non-augmentation treatment. These findings demonstrated that KKU-MC1 released the cellulolytic enzyme capable of decomposing various lignocellulosic biomasses, resulting in increased biogas production.
Collapse
Affiliation(s)
- Nantharat Wongfaed
- grid.9786.00000 0004 0470 0856Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002 Thailand
| | - Sompong O-Thong
- grid.440406.20000 0004 0634 2087International College, Thaksin University, Songkhla, 90000 Thailand
| | - Sureewan Sittijunda
- grid.10223.320000 0004 1937 0490Faculty of Environment and Resource Studies, Mahidol University, Nakhon Pathom, 73170 Thailand
| | - Alissara Reungsang
- Department of Biotechnology, Faculty of Technology, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Research Group for Development of Microbial Hydrogen Production Process from Biomass, Khon Kaen University, Khon Kaen, 40002, Thailand. .,Academy of Science, Royal Society of Thailand, Bangkok, 10300, Thailand.
| |
Collapse
|
8
|
Al-Tohamy R, Ali SS, Zhang M, Sameh M, Mahmoud YAG, Waleed N, Okasha KM, Sun S, Sun J. Can wood-feeding termites solve the environmental bottleneck caused by plastics? A critical state-of-the-art review. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2023; 326:116606. [PMID: 36403319 DOI: 10.1016/j.jenvman.2022.116606] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/08/2022] [Revised: 10/08/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
The abundance of synthetic polymers has become an ever-increasing environmental threat in the world. The excessive utilization of plastics leads to the accumulation of such recalcitrant pollutants in the environment. For example, during the COVID-19 pandemic, unprecedented demand for personal protective equipment (PPE) kits, face masks, and gloves made up of single-use items has resulted in the massive generation of plastic biomedical waste. As secondary pollutants, microplastic particles (<5 mm) are derived from pellet loss and degradation of macroplastics. Therefore, urgent intervention is required for the management of these hazardous materials. Physicochemical approaches have been employed to degrade synthetic polymers, but these approaches have limited efficiency and cause the release of hazardous metabolites or by-products into the environment. Therefore, bioremediation is a proper option as it is both cost-efficient and environmentally friendly. On the other hand, plants evolved lignocellulose to be resistant to destruction, whereas insects, such as wood-feeding termites, possess diverse microorganisms in their guts, which confer physiological and ecological benefits to their host. Plastic and lignocellulose polymers share a number of physical and chemical properties, despite their structural and recalcitrance differences. Among these similarities are a hydrophobic nature, a carbon skeleton, and amorphous/crystalline regions. Compared with herbivorous mammals, lignocellulose digestion in termites is accomplished at ordinary temperatures. This unique characteristic has been of great interest for the development of a plastic biodegradation approach by termites and their gut symbionts. Therefore, transferring knowledge from research on lignocellulosic degradation by termites and their gut symbionts to that on synthetic polymers has become a new research hotspot and technological development direction to solve the environmental bottleneck caused by synthetic plastic polymers.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- Biofuels Institute, School of the Environmnt and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Sameh S Ali
- Biofuels Institute, School of the Environmnt and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Meng Zhang
- Biofuels Institute, School of the Environmnt and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Mariam Sameh
- Clinical Pharmacy Practice Department, Faculty of Pharmacy, The British University in Egypt, El-Sherouk City, Cairo, Egypt
| | - Yehia A-G Mahmoud
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
| | - Nadeen Waleed
- Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Kamal M Okasha
- Internal Medicine and Nephrology Department, Faculty of Medicine, Tanta University, Tanta, 31527, Egypt
| | - Sarina Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China.
| | - Jianzhong Sun
- Biofuels Institute, School of the Environmnt and Safety Engineering, Jiangsu University, Zhenjiang, 212013, China.
| |
Collapse
|
9
|
Li J, Wang S, Zhao J, Dong Z, Shao T. Gut Microbiota of Ostrinia nubilalis Larvae Degrade Maize Cellulose. Front Microbiol 2022; 13:816954. [PMID: 35495661 PMCID: PMC9039043 DOI: 10.3389/fmicb.2022.816954] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2021] [Accepted: 02/25/2022] [Indexed: 12/04/2022] Open
Abstract
Most arthropod guts harbor diverse microbiota for symbiotic digestion. The European corn borer (ECB), Ostrinia nubilalis (Hübner), is a devastating pest that feeds the lignocellulose-rich tissues of maize plants. However, the potential role of ECB gut microbes in degrading maize cellulose remains largely unexplored. Here, we investigated the gut microbiota of ECB fed with different diets and their potential function in maize lignocellulose degradation. The diversity and composition of gut bacterial communities varied dramatically between the ECB larva fed with artificial diets (ECB-D) and maize plants (ECB-M). Draft genomes of the microbial consortia from ECB-D and ECB-M showed that the principal degraders of cellulose mainly belonged to Firmicutes or Proteobacteria and they were primarily found in the midgut. The cellulolytic microbial consortia contained genes encoding various carbohydrate-active enzymes (CAZyme). Furthermore, scanning electron microscopy revealed significant breakdown of lignocellulose in maize treated by the two microbial consortia for 9 days in vitro. Metabolomic analyses show that maize particles treated by two microbial consortia generate distinctive metabolomic profiles, with enrichment for different monosaccharides (i.e., Glucose, Rhamnofuranose, Isomaltose, and Cellobiose) and amino acids (i.e., Threonine, Histidine, and Lysine). The results indicated that the diet of the host impacted the composition and function of its gut microbiota and ECB exploited specific gut microbes to digest maize lignocellulose with distinctive products. Our study provides valuable microbiota resources for lignocellulose bioconversion.
Collapse
Affiliation(s)
| | | | | | | | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
10
|
Ali SS, Al-Tohamy R, Mohamed TM, Mahmoud YAG, Ruiz HA, Sun L, Sun J. Could termites be hiding a goldmine of obscure yet promising yeasts for energy crisis solutions based on aromatic wastes? A critical state-of-the-art review. BIOTECHNOLOGY FOR BIOFUELS AND BIOPRODUCTS 2022; 15:35. [PMID: 35379342 PMCID: PMC8981686 DOI: 10.1186/s13068-022-02131-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/08/2021] [Accepted: 03/13/2022] [Indexed: 12/26/2022]
Abstract
Biodiesel is a renewable fuel that can be produced from a range of organic and renewable feedstock including fresh or vegetable oils, animal fats, and oilseed plants. In recent years, the lignin-based aromatic wastes, such as various aromatic waste polymers from agriculture, or organic dye wastewater from textile industry, have attracted much attention in academia, which can be uniquely selected as a potential renewable feedstock for biodiesel product converted by yeast cell factory technology. This current investigation indicated that the highest percentage of lipid accumulation can be achieved as high as 47.25% by an oleaginous yeast strain, Meyerozyma caribbica SSA1654, isolated from a wood-feeding termite gut system, where its synthetic oil conversion ability can reach up to 0.08 (g/l/h) and the fatty acid composition in yeast cells represents over 95% of total fatty acids that are similar to that of vegetable oils. Clearly, the use of oleaginous yeasts, isolated from wood-feeding termites, for synthesizing lipids from aromatics is a clean, efficient, and competitive path to achieve "a sustainable development" towards biodiesel production. However, the lacking of potent oleaginous yeasts to transform lipids from various aromatics, and an unknown metabolic regulation mechanism presented in the natural oleaginous yeast cells are the fundamental challenge we have to face for a potential cell factory development. Under this scope, this review has proposed a novel concept and approach strategy in utilization of oleaginous yeasts as the cell factory to convert aromatic wastes to lipids as the substrate for biodiesel transformation. Therefore, screening robust oleaginous yeast strain(s) from wood-feeding termite gut system with a set of the desirable specific tolerance characteristics is essential. In addition, to reconstruct a desirable metabolic pathway/network to maximize the lipid transformation and accumulation rate from the aromatic wastes with the applications of various "omics" technologies or a synthetic biology approach, where the work agenda will also include to analyze the genome characteristics, to develop a new base mutation gene editing technology, as well as to clarify the influence of the insertion position of aromatic compounds and other biosynthetic pathways in the industrial chassis genome on the expressional level and genome stability. With these unique designs running with a set of the advanced biotech approaches, a novel metabolic pathway using robust oleaginous yeast developed as a cell factory concept can be potentially constructed, integrated and optimized, suggesting that the hypothesis we proposed in utilizing aromatic wastes as a feedstock towards biodiesel product is technically promising and potentially applicable in the near future.
Collapse
Affiliation(s)
- Sameh S. Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | - Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| | - Tarek M. Mohamed
- Biochemistry Division, Chemistry Department, Faculty of Science, Tanta University, Tanta, 31527 Egypt
| | | | - Héctor A. Ruiz
- Biorefinery Group, Food Research Department, School of Chemistry, Autonomous University of Coahuila, 25280 Saltillo, Coahuila Mexico
| | - Lushan Sun
- Institute of Textiles and Clothing, The Hong Kong Polytechnic University, Hong Kong, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Zhenjiang, 212013 China
| |
Collapse
|
11
|
Microbial Consortia Are Needed to Degrade Soil Pollutants. Microorganisms 2022; 10:microorganisms10020261. [PMID: 35208716 PMCID: PMC8874626 DOI: 10.3390/microorganisms10020261] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2021] [Revised: 12/30/2021] [Accepted: 01/07/2022] [Indexed: 12/10/2022] Open
Abstract
Soil pollution is one of the most serious environmental problems globally due to the weak self-purification ability, long degradation time, and high cost of cleaning soil pollution. The pollutants in the soil can be transported into the human body through water or dust, causing adverse effects on human health. The latest research has shown that the clean-up of soil pollutants through microbial consortium is a very promising method. This review provides an in-depth discussion on the efficient removal, bio-adsorption, or carbonated precipitation of organic and inorganic pollutants by the microbial consortium, including PAHs, BPS, BPF, crude oil, pyrene, DBP, DOP, TPHP, PHs, butane, DON, TC, Mn, and Cd. In view of the good degradation ability of the consortium compared to single strains, six different synergistic mechanisms and corresponding microorganisms are summarized. The microbial consortium obtains such activities through enhancing synergistic degradation, reducing the accumulation of intermediate products, generating the crude enzyme, and self-regulating, etc. Furthermore, the degradation efficiency of pollutants can be greatly improved by adding chemical materials such as the surfactants Tween 20, Tween 80, and SDS. This review provides insightful information regarding the application of microbial consortia for soil pollutant removal.
Collapse
|
12
|
Ali MM, Mustafa AM, Zhang X, Zhang X, Danhassaan UA, Lin H, Choe U, Wang K, Sheng K. Combination of ultrasonic and acidic pretreatments for enhancing biohythane production from tofu processing residue via one-stage anaerobic digestion. BIORESOURCE TECHNOLOGY 2022; 344:126244. [PMID: 34732374 DOI: 10.1016/j.biortech.2021.126244] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/07/2021] [Revised: 10/24/2021] [Accepted: 10/26/2021] [Indexed: 06/13/2023]
Abstract
Tofu processing residues (TPR) have received more attention as a source of bioenergy. However, their low solubility has hindered biohythane generation. Consequently, the ultrasonic and H2SO4 pretreatments were combined and compared for the first time to improve the hydrolysis of organic matter and carbohydrate and increase free amino nitrogen generation from TPR. Besides, the impact of pretreatments on biohythane generation was investigated. Under the optimal conditions of 7.54% substrate level, 8% H2SO4 concentration, 80 °C and 50 min, the coincident ultrasonic-H2SO4 pretreatment enriched the contents of soluble chemical oxygen demand, reducing sugar, and free amino nitrogen to 49675 mg/L, 26 g/L, and 1721 mg/L, respectively, greater than individual pretreatments. Also, Biohythane yield increased by 4.24-13.61% over control (389.42 ± 23.7 ml/g-VSfed). Furthermore, hydrogen yield at 42.5 ± 2.08 and 28.1 ± 1.07 ml/g-VSfed and sulfate removal efficiency at 93 and 92% were significantly improved with ultrasonic-H2SO4 and H2SO4 pretreatments, respectively, indicating acidogenic and sulfidogenic activity enhancement.
Collapse
Affiliation(s)
- Mahmoud M Ali
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Biological Engineering Department, Agricultural Engineering Research Institute, Giza, Egypt
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Recourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Ximing Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Xin Zhang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Umar A Danhassaan
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Hongjian Lin
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Ungyong Choe
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China; Faculty of Environmental Science, University of Science, Yusheng Scientist Road, Unjong 13 District, Pyongyang 00850, Democratic People's Republic of Korea
| | - Kaiying Wang
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China
| | - Kuichuan Sheng
- College of Biosystems Engineering and Food Science, Zhejiang University, Hangzhou 310058, China.
| |
Collapse
|
13
|
Al-Tohamy R, Sun J, Khalil MA, Kornaros M, Ali SS. Wood-feeding termite gut symbionts as an obscure yet promising source of novel manganese peroxidase-producing oleaginous yeasts intended for azo dye decolorization and biodiesel production. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:229. [PMID: 34863263 PMCID: PMC8645103 DOI: 10.1186/s13068-021-02080-z] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/27/2021] [Accepted: 11/18/2021] [Indexed: 05/06/2023]
Abstract
BACKGROUND The ability of oxidative enzyme-producing micro-organisms to efficiently valorize organic pollutants is critical in this context. Yeasts are promising enzyme producers with potential applications in waste management, while lipid accumulation offers significant bioenergy production opportunities. The aim of this study was to explore manganese peroxidase-producing oleaginous yeasts inhabiting the guts of wood-feeding termites for azo dye decolorization, tolerating lignocellulose degradation inhibitors, and biodiesel production. RESULTS Out of 38 yeast isolates screened from wood-feeding termite gut symbionts, nine isolates exhibited high levels of extracellular manganese peroxidase (MnP) activity ranged between 23 and 27 U/mL after 5 days of incubation in an optimal substrate. Of these MnP-producing yeasts, four strains had lipid accumulation greater than 20% (oleaginous nature), with Meyerozyma caribbica SSA1654 having the highest lipid content (47.25%, w/w). In terms of tolerance to lignocellulose degradation inhibitors, the four MnP-producing oleaginous yeast strains could grow in the presence of furfural, 5-hydroxymethyl furfural, acetic acid, vanillin, and formic acid in the tested range. M. caribbica SSA1654 showed the highest tolerance to furfural (1.0 g/L), 5-hydroxymethyl furfural (2.5 g/L) and vanillin (2.0 g/L). Furthermore, M. caribbica SSA1654 could grow in the presence of 2.5 g/L acetic acid but grew moderately. Furfural and formic acid had a significant inhibitory effect on lipid accumulation by M. caribbica SSA1654, compared to the other lignocellulose degradation inhibitors tested. On the other hand, a new MnP-producing oleaginous yeast consortium designated as NYC-1 was constructed. This consortium demonstrated effective decolorization of all individual azo dyes tested within 24 h, up to a dye concentration of 250 mg/L. The NYC-1 consortium's decolorization performance against Acid Orange 7 (AO7) was investigated under the influence of several parameters, such as temperature, pH, salt concentration, and co-substrates (e.g., carbon, nitrogen, or agricultural wastes). The main physicochemical properties of biodiesel produced by AO7-degraded NYC-1 consortium were estimated and the results were compared to those obtained from international standards. CONCLUSION The findings of this study open up a new avenue for using peroxidase-producing oleaginous yeasts inhabiting wood-feeding termite gut symbionts, which hold great promise for the remediation of recalcitrant azo dye wastewater and lignocellulosic biomass for biofuel production.
Collapse
Affiliation(s)
- Rania Al-Tohamy
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China
| | - Jianzhong Sun
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
| | - Maha A Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, University Campus, 1 Karatheodori Str, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Sameh Samir Ali
- School of the Environment and Safety Engineering, Biofuels Institute, Jiangsu University, Xuefu Road 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| |
Collapse
|
14
|
Li J, Wang S, Zhao J, Dong Z, Liu Q, Dong D, Shao T. Two novel screened microbial consortia and their application in combination with Lactobacillus plantarum for improving fermentation quality of high-moisture alfalfa. J Appl Microbiol 2021; 132:2572-2582. [PMID: 34839576 DOI: 10.1111/jam.15388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2021] [Revised: 11/02/2021] [Accepted: 11/24/2021] [Indexed: 11/29/2022]
Abstract
AIMS To enrich lignocellulolytic microbial consortia and evaluate whether a combination of these consortia and Lactobacillus plantarum can facilitate degradation of structural carbohydrates and improve fermentation quality of high-moisture alfalfa silage. METHODS AND RESULTS Two novel microbial consortia (CL and YL) with high lignocellulolytic potential were enriched, and had higher enzyme activities at slightly acidic conditions (pH 3.5-6.5). Two consortia were inoculated with and without combined L. plantarum (LP) to alfalfa for up to 120 days of ensiling. The two consortia alone or combined with LP significantly (p < 0.05) increased lactic-to-acetic acid ratios and decreased contents of volatile organic acids and NH3 -N as compared to the control. Treatments that combining microbial consortia and LP further resulted in the higher contents of lactic acid (LA), water soluble carbohydrates (WSC) and crude protein, dry matter (DM) recovery, and lower neutral detergent fibre, acid detergent lignin and cellulose contents, with YLP silage showing the lowest pH (4.41) and highest LA content (76.72 g kg-1 DM) and the conversion of WSC into LA (184.03%). CONCLUSIONS The addition of lignocellulolytic microbial consortia (CL or YL) to alfalfa silages as attractive silage inoculants could improve fermentation quality, and that their combination with L. plantarum appeared more effective on the degradation of structural carbohydrates and conversion of soluble carbohydrates into LA. SIGNIFICANCE AND IMPACT OF THE STUDY High-moisture alfalfa is difficult to ensile due to its high buffering capacity and low readily fermentable carbohydrate contents. Microbial consortia (CL and YL) can encode a broad selection of multi-functional CAZymes, and their combination with LP could be promising for the degradation of structural carbohydrates simultaneously with improvement fermentation quality, with high performance in LA production.
Collapse
Affiliation(s)
- Junfeng Li
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Siran Wang
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Jie Zhao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Zhihao Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Qinhua Liu
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Dong Dong
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| | - Tao Shao
- Institute of Ensiling and Processing of Grass, College of Agro-Grassland Science, Nanjing Agricultural University, Nanjing, China
| |
Collapse
|
15
|
Ali SS, Mustafa AM, Sun J. Wood‑feeding termites as an obscure yet promising source of bacteria for biodegradation and detoxification of creosote-treated wood along with methane production enhancement. BIORESOURCE TECHNOLOGY 2021; 338:125521. [PMID: 34273631 DOI: 10.1016/j.biortech.2021.125521] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/20/2021] [Revised: 07/02/2021] [Accepted: 07/04/2021] [Indexed: 06/13/2023]
Abstract
This study aims to explore distinct bacterial strains from wood-feeding termites and to construct novel bacterial consortium for improving the methane yield during anaerobic digestion by degrading birchwood sawdust (BSD) and removing creosote (CRO) compounds simultaneously. A novel bacterial consortium CTB-4 which stands for the molecularly identified species Burkholderia sp., Xanthomonas sp., Shewanella sp., and Pseudomonas mosselii was successfully developed. The CTB-4 consortium showed high efficiency in the removal of naphthalene and phenol. It also revealed reduction in lignin, hemicellulose, and cellulose by 19.4, 52.5, and 76.8%, respectively. The main metabolites after the CRO degradation were acetic acid, succinate, pyruvate, and acetaldehyde. Pretreatment of treated BSD mixed with CRO enhanced the total methane yield (162 L/kg VS) by 82.7% and biomass reduction by 54.7% compared to the untreated substrate. CRO showed a toxicity decrease of >90%, suggesting the efficiency of constructed bacterial consortia in bioremediation and biofuel production.
Collapse
Affiliation(s)
- Sameh S Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Ahmed M Mustafa
- Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt; State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
16
|
Ali SS, Jiao H, Mustafa AM, Koutra E, El-Sapagh S, Kornaros M, Elsamahy T, Khalil M, Bulgariu L, Sun J. Construction of a novel microbial consortium valued for the effective degradation and detoxification of creosote-treated sawdust along with enhanced methane production. JOURNAL OF HAZARDOUS MATERIALS 2021; 418:126091. [PMID: 34118544 DOI: 10.1016/j.jhazmat.2021.126091] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/15/2020] [Revised: 04/29/2021] [Accepted: 05/10/2021] [Indexed: 06/12/2023]
Abstract
Lignocellulosic biomass represents an unlimited and ubiquitous energy source, which can effectively address current global challenges, including climate change, greenhouse gas emissions, and increased energy demand. However, lignocellulose recalcitrance hinders microbial degradation, especially in case of contaminated materials such as creosote (CRO)-treated wood, which necessitates appropriate processing in order to eliminate pollution. This study might be the first to explore a novel bacterial consortium SST-4, for decomposing birchwood sawdust, capable of concurrently degrading lignocellulose and CRO compounds. Afterwards, SST-4 which stands for molecularly identified bacterial strains Acinetobacter calcoaceticus BSW-11, Shewanella putrefaciens BSW-18, Bacillus cereus BSW-23, and Novosphingobium taihuense BSW-25 was evaluated in terms of biological sawdust pre-treatment, resulting in effective lignocellulose degradation and 100% removal of phenol and naphthalene. Subsequently, the maximum biogas production observed was 18.7 L/kg VS, while cumulative methane production was 162.8 L/kg VS, compared to 88.5 without microbial pre-treatment. The cumulative energy production from AD-I and AD-II through biomethanation was calculated as 3177.1 and 5843.6 KJ/kg, respectively. The pretreatment process exhibited a significant increase in the energy yield by 83.9%. Lastly, effective CRO detoxification was achieved with EC50 values exceeding 90%, showing the potential for an integrated process of effective contaminated wood management and bioenergy production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China; Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt.
| | - Haixin Jiao
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Ahmed M Mustafa
- State Key Laboratory of Pollution Control and Resourses Reuse, College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China; Department of Agricultural Engineering, Faculty of Agriculture, Suez Canal University, Ismailia 41522, Egypt
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Shimaa El-Sapagh
- Botany Department, Faculty of Science, Tanta University, Tanta 31527, Egypt
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, Patras 26504, Greece; INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, Patras 26504, Greece
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China
| | - Maha Khalil
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif 21944, Saudi Arabia
| | - Laura Bulgariu
- Department of Environmental Engineering and Management, Cristofor Simionescu Faculty of Chemical Engineering and Environmental Protection, Gheorghe Asachi Technical University of Iasi, 700050 Iasi, Romania
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Zhenjiang 212013, China.
| |
Collapse
|
17
|
Ali SS, Al-Tohamy R, Koutra E, Kornaros M, Khalil M, Elsamahy T, El-Shetehy M, Sun J. Coupling azo dye degradation and biodiesel production by manganese-dependent peroxidase producing oleaginous yeasts isolated from wood-feeding termite gut symbionts. BIOTECHNOLOGY FOR BIOFUELS 2021; 14:61. [PMID: 33685508 PMCID: PMC7938474 DOI: 10.1186/s13068-021-01906-0] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/12/2020] [Accepted: 02/16/2021] [Indexed: 05/14/2023]
Abstract
BACKGROUND Textile industry represents one prevalent activity worldwide, generating large amounts of highly contaminated and rich in azo dyes wastewater, with severe effects on natural ecosystems and public health. However, an effective and environmentally friendly treatment method has not yet been implemented, while concurrently, the increasing demand of modern societies for adequate and sustainable energy supply still remains a global challenge. Under this scope, the purpose of the present study was to isolate promising species of yeasts inhabiting wood-feeding termite guts, for combined azo dyes and textile wastewater bioremediation, along with biodiesel production. RESULTS Thirty-eight yeast strains were isolated, molecularly identified and subsequently tested for desired enzymatic activity, lipid accumulation, and tolerance to lignin-derived metabolites. The most promising species were then used for construction of a novel yeast consortium, which was further evaluated for azo dyes degradation, under various culture conditions, dye levels, as well as upon the addition of heavy metals, different carbon and nitrogen sources, and lastly agro-waste as an inexpensive and environmentally friendly substrate alternative. The novel yeast consortium, NYC-1, which was constructed included the manganese-dependent peroxidase producing oleaginous strains Meyerozyma caribbica, Meyerozyma guilliermondii, Debaryomyces hansenii, and Vanrija humicola, and showed efficient azo dyes decolorization, which was further enhanced depending on the incubation conditions. Furthermore, enzymatic activity, fatty acid profile and biodiesel properties were thoroughly investigated. Lastly, a dye degradation pathway coupled to biodiesel production was proposed, including the formation of phenol-based products, instead of toxic aromatic amines. CONCLUSION In total, this study might be the first to explore the application of MnP and lipid-accumulating yeasts for coupling dye degradation and biodiesel production.
Collapse
Affiliation(s)
- Sameh Samir Ali
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt.
| | - Rania Al-Tohamy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Eleni Koutra
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Michael Kornaros
- Laboratory of Biochemical Engineering & Environmental Technology (LBEET), Department of Chemical Engineering, University of Patras, 1 Karatheodori Str., University Campus, 26504, Patras, Greece
- INVALOR: Research Infrastructure for Waste Valorization and Sustainable Management, University Campus, 26504, Patras, Greece
| | - Maha Khalil
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Biology, College of Science, Taif University, P.O. Box 11099, Taif, 21944, Saudi Arabia
| | - Tamer Elsamahy
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China
| | - Mohamed El-Shetehy
- Botany Department, Faculty of Science, Tanta University, Tanta, 31527, Egypt
- Department of Plant Science, University of Manitoba, Winnipeg, MB, R3T 2N2, Canada
| | - Jianzhong Sun
- Biofuels Institute, School of the Environment and Safety Engineering, Jiangsu University, Xuefu Rd. 301, Zhenjiang, 212013, China.
| |
Collapse
|