1
|
Zhu B, Xu Y, Ge H, Wang S, Wang W, Li B, Xu H. Theoretical study of lactic acid-based deep eutectic solvents dissociation of hemicellulose with different hydrogen bonding acceptors. Int J Biol Macromol 2023; 244:125342. [PMID: 37321434 DOI: 10.1016/j.ijbiomac.2023.125342] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2023] [Revised: 06/04/2023] [Accepted: 06/10/2023] [Indexed: 06/17/2023]
Abstract
This paper explored the mechanism of dissociation of hemicellulose using lactic acid (LA)-based deep eutectic solvents (DESs) synthesized with different hydrogen bond acceptors (HBAs) via simulations. Density functional theory (DFT) calculations and molecular dynamics (MD) simulations revealed that DESs synthesized with guanidine hydrochloride (GuHCl) as hydrogen bond acceptor (HBA) demonstrated better hemicellulose solubilization compared to the conventional DESs synthesized using choline chloride (ChCl) as HBA. The best interaction with hemicellulose was achieved at GuHCl:LA = 1:1. The results showed that CL- played a dominant role in the dissolution of hemicellulose by DESs. Unlike ChCl, the guanidine group in GuHCl had the delocalized π bond, which made CL- have stronger coordination ability and promoted dissolution of hemicellulose by DESs. Moreover, multivariable analysis was employed to establish the correlation between the effects of different DESs on hemicellulose and the molecular simulation results. Additionally, the influence of different HBAs functional groups and carbon chain length on the solubilization of hemicellulose by DESs were analyzed.
Collapse
Affiliation(s)
- Baoping Zhu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China
| | - Yang Xu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China
| | - Hanwen Ge
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China
| | - Shenglin Wang
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China
| | - Weixian Wang
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China
| | - Bin Li
- CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China; Shandong Energy Institute, Qingdao 266101, China; Qingdao New Energy Shandong Laboratory, Qingdao 266101, China
| | - Huanfei Xu
- College of chemical engineering, Qingdao University of science and technology, Qingdao 266042, China; CAS Key Laboratory of Biofuels, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao 266101, China.
| |
Collapse
|
2
|
Silva JDME, Martins LHDS, Moreira DKT, Silva LDP, Barbosa PDPM, Komesu A, Ferreira NR, de Oliveira JAR. Microbial Lipid Based Biorefinery Concepts: A Review of Status and Prospects. Foods 2023; 12:2074. [PMID: 37238892 PMCID: PMC10217607 DOI: 10.3390/foods12102074] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2023] [Revised: 05/17/2023] [Accepted: 05/17/2023] [Indexed: 05/28/2023] Open
Abstract
The use of lignocellulosic biomass as a raw material for the production of lipids has gained increasing attention, especially in recent years when the use of food in the production of biofuels has become a current technology. Thus, the competition for raw materials for both uses has brought the need to create technological alternatives to reduce this competition that could generate a reduction in the volume of food offered and a consequent commercial increase in the value of food. Furthermore, the use of microbial oils has been studied in many industrial branches, from the generation of renewable energy to the obtainment of several value-added products in the pharmaceutical and food industries. Thus, this review provides an overview of the feasibility and challenges observed in the production of microbial lipids through the use of lignocellulosic biomass in a biorefinery. Topics covered include biorefining technology, the microbial oil market, oily microorganisms, mechanisms involved in lipid-producing microbial metabolism, strain development, processes, lignocellulosic lipids, technical drawbacks, and lipid recovery.
Collapse
Affiliation(s)
- Jonilson de Melo e Silva
- Program of Food Science and Technology, Federal University of Pará (UFPA), Belém 66075-110, PA, Brazil
| | | | | | - Leonardo do Prado Silva
- Department of Food Science and Nutrition, Faculty of Food Engineering (FEA), State University of Campinas (UNICAMP), Campinas 13083-862, SP, Brazil
| | | | - Andrea Komesu
- Department of Marine Sciences (DCMar), Federal University of São Paulo (UNIFESP), Santos 11070-100, SP, Brazil
| | - Nelson Rosa Ferreira
- Faculty of Food Engineering, Technology Institute, Federal University of Pará (UFPA), Belém 66077-000, PA, Brazil;
| | | |
Collapse
|
3
|
D’Orsi R, Di Fidio N, Antonetti C, Raspolli Galletti AM, Operamolla A. Isolation of Pure Lignin and Highly Digestible Cellulose from Defatted and Steam-Exploded Cynara cardunculus. ACS SUSTAINABLE CHEMISTRY & ENGINEERING 2023; 11:1875-1887. [PMID: 36778524 PMCID: PMC9906737 DOI: 10.1021/acssuschemeng.2c06356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/24/2022] [Revised: 01/09/2023] [Indexed: 06/18/2023]
Abstract
In this work, a three-step approach to isolate the main components of lignocellulosic cardoon, lignin and cellulose, was investigated. The raw defatted biomass, Cynara cardunculus, after steam explosion was subjected to a mild organosolv treatment to extract soluble lignin (L1). Then, enzymatic hydrolysis was performed to achieve decomposition of the saccharidic portion into monosaccharides and isolate residual lignin (L2). The fractionation conditions were optimized to obtain a lignin as less degraded as possible and to maximize the yield of enzymatic hydrolysis. Furthermore, the effect of the use of aqueous ammonia as an extraction catalyst on both fractions was studied. Each fraction was characterized by advanced techniques, such as elemental analysis and 31P nuclear magnetic resonance (NMR), 13C-1H two-dimensional (2D)-NMR, attenuated total reflectance-Fourier transform infrared (ATR-FTIR), and UV-vis spectroscopies for lignin and X-ray diffraction (XRD), Klason compositional analysis, elemental analysis, and ATR-FTIR spectroscopy for cellulose-rich fractions. The impact of the cellulose-rich fraction composition and crystallinity was also correlated to the efficiency of the hydrolysis step, performed using the enzymatic complex Cellic CTec3.
Collapse
Affiliation(s)
- Rosarita D’Orsi
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Nicola Di Fidio
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Claudia Antonetti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Anna Maria Raspolli Galletti
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| | - Alessandra Operamolla
- Dipartimento
di Chimica e Chimica Industriale, Università
di Pisa, via Giuseppe Moruzzi 13, I-56124Pisa, Italy
- Interuniversity
Consortium of Chemical Reactivity and Catalysis (CIRCC), I-70126Bari, Italy
| |
Collapse
|
4
|
Arhin SG, Cesaro A, Di Capua F, Esposito G. Recent progress and challenges in biotechnological valorization of lignocellulosic materials: Towards sustainable biofuels and platform chemicals synthesis. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 857:159333. [PMID: 36220479 DOI: 10.1016/j.scitotenv.2022.159333] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/03/2022] [Revised: 10/04/2022] [Accepted: 10/05/2022] [Indexed: 06/16/2023]
Abstract
Lignocellulosic materials (LCM) have garnered attention as feedstocks for second-generation biofuels and platform chemicals. With an estimated annual production of nearly 200 billion tons, LCM represent an abundant source of clean, renewable, and sustainable carbon that can be funneled to numerous biofuels and platform chemicals by sustainable microbial bioprocessing. However, the low bioavailability of LCM due to the recalcitrant nature of plant cell components, the complexity and compositional heterogeneity of LCM monomers, and the limited metabolic flexibility of wild-type product-forming microorganisms to simultaneously utilize various LCM monomers are major roadblocks. Several innovative strategies have been proposed recently to counter these issues and expedite the widespread commercialization of biorefineries using LCM as feedstocks. Herein, we critically summarize the recent advances in the biological valorization of LCM to value-added products. The review focuses on the progress achieved in the development of strategies that boost efficiency indicators such as yield and selectivity, minimize carbon losses via integrated biorefinery concepts, facilitate carbon co-metabolism and carbon-flux redirection towards targeted products using recently engineered microorganisms, and address specific product-related challenges, to provide perspectives on future research needs and developments. The strategies and views presented here could guide future studies in developing feasible and economically sustainable LCM-based biorefineries as a crucial node in achieving carbon neutrality.
Collapse
Affiliation(s)
- Samuel Gyebi Arhin
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy.
| | - Alessandra Cesaro
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| | - Francesco Di Capua
- School of Engineering, University of Basilicata, via dell'Ateneo Lucano 10, 85100 Potenza, Italy
| | - Giovanni Esposito
- Department of Civil, Architectural and Environmental Engineering, University of Naples Federico II, Via Claudio 21, 80125 Naples, Italy
| |
Collapse
|
5
|
Di Fidio N, Tozzi F, Martinelli M, Licursi D, Fulignati S, Antonetti C, Raspolli Galletti AM. Sustainable valorisation and efficient downstream processing of giant reed by high‐pressure carbon dioxide pretreatment. Chempluschem 2022; 87:e202200189. [DOI: 10.1002/cplu.202200189] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 07/31/2022] [Indexed: 11/12/2022]
Affiliation(s)
- Nicola Di Fidio
- University of Pisa: Universita degli Studi di Pisa Department of Chemistry and Industrial Chemistry Via Giuseppe Moruzzi 13 56124 Pisa ITALY
| | - Federico Tozzi
- Università di Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Marco Martinelli
- University of Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Domenico Licursi
- University of Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Sara Fulignati
- University of Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | - Claudia Antonetti
- University of Pisa: Universita degli Studi di Pisa Dipartimento di Chimica e Chimica Industriale ITALY
| | | |
Collapse
|
6
|
Deeba F, Kiran Kumar K, Ali Wani S, Kumar Singh A, Sharma J, Gaur NA. Enhanced biodiesel and β-carotene production in Rhodotorula pacifica INDKK using sugarcane bagasse and molasses by an integrated biorefinery framework. BIORESOURCE TECHNOLOGY 2022; 351:127067. [PMID: 35351564 DOI: 10.1016/j.biortech.2022.127067] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 03/22/2022] [Accepted: 03/23/2022] [Indexed: 06/14/2023]
Abstract
Dependency on fossil fuels raises an economic and ecological concern that has urged to look for alternative sources of energy. Bio-refinery concept is one of the alternate frameworks for the biomass conversion into biofuel and other value-added by-products. The present work illustrates importance of an oleaginous yeast Rhodotorula pacifica INDKK in an integrated bio-refinery field by utilizing renewable sugars generated from lignocellulosic biomass. The maximum 11.8 g/L lipid titer, 210.4 mg/L β-carotene and 7.1 g animal feed were produced by R. pacifica INDKK in bioreactor containing 5% (v/v) molasses supplemented with enzymatically hydrolyzed and alkali-pretreated sugarcane bagasse hydrolysate (35% v/v). Furthermore, xylooligosaccharides (20.6 g/L), a beneficial prebiotics were also produced from the hemicellulosic fraction separated after alkali pretreatment of bagasse. This novel concept of integrated yeast bio-refinery for concomitant production of biodiesel and multiple value-added products with minimum waste generation is proposed as a sustainable and profitable process.
Collapse
Affiliation(s)
- Farha Deeba
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Kukkala Kiran Kumar
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Shahid Ali Wani
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Anup Kumar Singh
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Juhi Sharma
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India
| | - Naseem A Gaur
- Yeast Biofuel Group, DBT-ICGEB Centre for Advanced Bioenergy Research, International Centre for Genetic Engineering and Biotechnology, New Delhi 110067, India.
| |
Collapse
|
7
|
Zhang L, Lee JTE, Ok YS, Dai Y, Tong YW. Enhancing microbial lipids yield for biodiesel production by oleaginous yeast Lipomyces starkeyi fermentation: A review. BIORESOURCE TECHNOLOGY 2022; 344:126294. [PMID: 34748983 DOI: 10.1016/j.biortech.2021.126294] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Revised: 10/31/2021] [Accepted: 11/01/2021] [Indexed: 06/13/2023]
Abstract
The enhanced production of microbial lipids suitable for manufacturing biodiesel from oleaginous yeast Lipomyces starkeyi is critically reviewed. Recent advances in several aspects involving the biosynthetic pathways of lipids, current conversion efficiencies using various carbon sources, intensification strategies for improving lipid yield and productivity in L. starkeyi fermentation, and lipid extraction approaches are analyzed from about 100 papers for the past decade. Key findings on strategies are summarized, including (1) optimization of parameters, (2) cascading two-stage systems, (3) metabolic engineering strategies, (4) mutagenesis followed by selection, and (5) co-cultivation of yeast and algae. The current technical limitations are analyzed. Research suggestions like examination of more gene targets via metabolic engineering are proposed. This is the first comprehensive review on the latest technical advances in strategies from the perspective of process and metabolic engineering to further increase the lipid yield and productivity from L. starkeyi fermentation.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Jonathan T E Lee
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore
| | - Yong Sik Ok
- Korea Biochar Research Center & Division of Environmental Science and Ecological Engineering, Korea University, Seoul 02841, Republic of Korea
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 CREATE Way, Singapore 138602, Singapore; Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore.
| |
Collapse
|
8
|
Zhang X, Liu L, Peng J, Yuan F, Li J, Wang J, Chen J, Wang H, Tyagi RD. Heavy metal impact on lipid production from oleaginous microorganism cultivated with wastewater sludge. BIORESOURCE TECHNOLOGY 2022; 344:126356. [PMID: 34822989 DOI: 10.1016/j.biortech.2021.126356] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/10/2021] [Revised: 11/10/2021] [Accepted: 11/11/2021] [Indexed: 06/13/2023]
Abstract
Using municipal wastewater sludge to produce microbial lipid is an effective way of resource recycling. Sludge contains heavy metals and may lead to negative impact on lipid production. However, relative study has not been reported. In this study, metal impact on Lipomyces starkeyi lipid accumulation was conducted. Results showed that Cd2+ had great impact on lipid accumulation, but other metals had no much impact. The maximum lipid content of L. starkeyi cultivated in 0.55 mg/L of Cd2+ was only 41% w/w, which was lower than the control (51% w/w). The inhibition on acetyl-CoA formation was observed when Cd2+ was in the medium. After removing metals from sludge, the lipid accumulation was only around half of the one without metal removal. It would be due to that not only the toxic metals in the sludge were removed as well as the metals such as Zn2+ which can enhance lipid accumulation.
Collapse
Affiliation(s)
- Xiaolei Zhang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Lu Liu
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Juan Peng
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Fang Yuan
- Shenzhen Environmental Technology Group Co. LTD, Shenzhen 518010, PR China
| | - Ji Li
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - Jiawen Wang
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, PR China
| | - Jiaxin Chen
- Department of Civil and Environmental Engineering, Shantou University, Shantou, Guangdong 515063, PR China.
| | - Hongjie Wang
- School of Civil and Environmental Engineering, Harbin Institute of Technology, Shenzhen, Shenzhen, Guangdong 518055, PR China
| | - R D Tyagi
- INRS Eau, Terre et Environnement, 490, rue de la Couronne, Québec G1K 9A9, Canada
| |
Collapse
|
9
|
Cutaneotrichosporon oleaginosus: A Versatile Whole-Cell Biocatalyst for the Production of Single-Cell Oil from Agro-Industrial Wastes. Catalysts 2021. [DOI: 10.3390/catal11111291] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022] Open
Abstract
Cutaneotrichosporon oleaginosus is an oleaginous yeast with several favourable qualities: It is fast growing, accumulates high amounts of lipids and has a very broad substrate spectrum. Its resistance to hydrolysis by-products makes it a promising biocatalyst for custom tailored microbial oils. C. oleaginosus can accumulate up to 60 wt.% of its biomass as lipids. This species is able to grow by using several compounds as a substrate, such as acetic acid, biodiesel-derived glycerol, N-acetylglucosamine, lignocellulosic hydrolysates, wastepaper and other agro-industrial wastes. This review is focused on state-of-the-art innovative and sustainable biorefinery schemes involving this promising yeast and second- and third-generation biomasses. Moreover, this review offers a comprehensive and updated summary of process strategies, biomass pretreatments and fermentation conditions for enhancing lipid production by C. oleaginosus as a whole-cell biocatalyst. Finally, an overview of the main industrial applications of single-cell oil is reported together with future perspectives.
Collapse
|
10
|
Zhang L, Lim EY, Loh KC, Dai Y, Tong YW. Two-Stage Fermentation of Lipomyces starkeyi for Production of Microbial Lipids and Biodiesel. Microorganisms 2021; 9:microorganisms9081724. [PMID: 34442803 PMCID: PMC8399642 DOI: 10.3390/microorganisms9081724] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/30/2021] [Revised: 08/09/2021] [Accepted: 08/11/2021] [Indexed: 11/16/2022] Open
Abstract
The high operating cost is currently a limitation to industrialize microbial lipids production by the yeast Lipomyces starkeyi. To explore economic fermentation technology, the two-stage fermentation of Lipomyces starkeyi using yeast extract peptone dextrose (YPD) medium, orange peel (OP) hydrolysate medium, and their mixed medium were investigated for seven days by monitoring OD600 values, pH values, cell growth status, C/N ratios, total carbon concentration, total nitrogen concentration, residual sugar concentration, lipid content, lipid titer, and fatty acids profiles of lipids. The results showed that two-stage fermentation with YPD and 50% YPD + 50% OP medium contributed to lipid accumulation, leading to larger internal lipid droplets in the yeast cells. However, the cells in pure OP hydrolysate grew abnormally, showing skinny and angular shapes. Compared to the one-stage fermentation, the two-stage fermentation enhanced lipid contents by 18.5%, 27.1%, and 21.4% in the flasks with YPD medium, OP medium, and 50%YPD + 50%OP medium, and enhanced the lipid titer by 77.8%, 13.6%, and 63.0%, respectively. The microbial lipids obtained from both one-stage and two-stage fermentation showed no significant difference in fatty acid compositions, which were mainly dominated by palmitic acid (33.36–38.43%) and oleic acid (46.6–48.12%). Hence, a mixture of commercial medium and lignocellulosic biomass hydrolysate could be a promising option to balance the operating cost and lipid production.
Collapse
Affiliation(s)
- Le Zhang
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; (L.Z.); (K.-C.L.)
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; (E.Y.L.); (Y.D.)
| | - Ee Yang Lim
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; (E.Y.L.); (Y.D.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Kai-Chee Loh
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; (L.Z.); (K.-C.L.)
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; (E.Y.L.); (Y.D.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
| | - Yanjun Dai
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; (E.Y.L.); (Y.D.)
- School of Mechanical Engineering, Shanghai Jiao Tong University, Shanghai 200240, China
| | - Yen Wah Tong
- NUS Environmental Research Institute, National University of Singapore, 1 Create Way, Create Tower #15-02, Singapore 138602, Singapore; (L.Z.); (K.-C.L.)
- Energy and Environmental Sustainability for Megacities (E2S2) Phase II, Campus for Research Excellence and Technological Enterprise (CREATE), 1 Create Way, Singapore 138602, Singapore; (E.Y.L.); (Y.D.)
- Department of Chemical and Biomolecular Engineering, National University of Singapore, 4 Engineering Drive 4, Singapore 117585, Singapore
- Correspondence: ; Tel.: +65-6516-8467
| |
Collapse
|
11
|
Cao X, Pan Y, Wei W, Yuan T, Wang S, Xiang L, Yuan Y. Single cell oil production by Trichosporon sp.: Effects of fermentation conditions on fatty acid composition and applications in synthesis of structured triacylglycerols. Lebensm Wiss Technol 2021. [DOI: 10.1016/j.lwt.2021.111691] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
|
12
|
Jayakumar M, Karmegam N, Gundupalli MP, Bizuneh Gebeyehu K, Tessema Asfaw B, Chang SW, Ravindran B, Kumar Awasthi M. Heterogeneous base catalysts: Synthesis and application for biodiesel production - A review. BIORESOURCE TECHNOLOGY 2021; 331:125054. [PMID: 33832828 DOI: 10.1016/j.biortech.2021.125054] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/28/2021] [Revised: 03/18/2021] [Accepted: 03/19/2021] [Indexed: 06/12/2023]
Abstract
Recently, much research has been carried out to find a suitable catalyst for the transesterification process during biodiesel production where heterogeneous catalysts play a crucial role. As homogenous catalysts present drawbacks such as slow reaction rate, high-cost due to the use of food grade oils, problems associated with separation process, and environmental pollution, heterogenous catalysts are more preferred. Animal shells and bones are the biowastes suitably calcined for the synthesis of heterogenous base catalyst. The catalysts synthesized using organic wastes are environmentally friendly, and cost-effective. The present review is dedicated to synthesis of heterogeneous basic catalysts from the natural resources or biowastes in biodiesel production through transesterification of oils. Use of calcined catalysts for converting potential feedstocks (vegetable oils and animal fat) into biodiesel/FAME is effective and safe, and the yield could be improved over 98%. There is a vast scope for biowaste-derived catalysts in green production of biofuel.
Collapse
Affiliation(s)
- Mani Jayakumar
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Natchimuthu Karmegam
- Department of Botany, Government Arts College (Autonomous), Salem-636007, Tamil Nadu, India
| | - Marttin Paulraj Gundupalli
- The Sirindhorn International Thai-German Graduate School of Engineering, King Mongkut's University of Technology North Bangkok, Bangsue, Bangkok 10800, Thailand
| | - Kaleab Bizuneh Gebeyehu
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Belete Tessema Asfaw
- Department of Chemical Engineering, Haramaya Institute of Technology, Haramaya University, Haramaya, Dire Dawa, Ethiopia
| | - Soon Woong Chang
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea
| | - Balasubramani Ravindran
- Department of Environmental Energy and Engineering, Kyonggi University, Youngtong - Gu, Suwon, 16227, South Korea; Center for Environmental Nuclear Research, Directorate of Research, SRM Institute of Science and Technology, SRM Nagar, Kattankulathur 603203, Kanchipuram, Chennai, Tamil Nadu, India
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A&F University, Taicheng Road 3#, Yangling, Shaanxi 712100, PR China.
| |
Collapse
|
13
|
Oleaginous Yeasts as Cell Factories for the Sustainable Production of Microbial Lipids by the Valorization of Agri-Food Wastes. FERMENTATION-BASEL 2021. [DOI: 10.3390/fermentation7020050] [Citation(s) in RCA: 31] [Impact Index Per Article: 7.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
The agri-food industry annually produces huge amounts of crops residues and wastes, the suitable management of these products is important to increase the sustainability of agro-industrial production by optimizing the entire value chain. This is also in line with the driving principles of the circular economy, according to which residues can become feedstocks for novel processes. Oleaginous yeasts represent a versatile tool to produce biobased chemicals and intermediates. They are flexible microbial factories able to grow on different side-stream carbon sources such as those deriving from agri-food wastes, and this characteristic makes them excellent candidates for integrated biorefinery processes through the production of microbial lipids, known as single cell oils (SCOs), for different applications. This review aims to present an extensive overview of research progress on the production and use of oleaginous yeasts and present discussions on the current bottlenecks and perspectives of their exploitation in different sectors, such as foods, biofuels and fine chemicals.
Collapse
|