1
|
Li Y, Kang X, You Z, He T, Su T, Zhang J, Zhuang X, Zhang Z, Ragauskas AJ, Song X, Li K. Establishment of efficient system for bagasse bargaining: Combining fractionation of saccharides, recycling of high-viscosity solvent and dismantling. BIORESOURCE TECHNOLOGY 2024; 413:131482. [PMID: 39270989 DOI: 10.1016/j.biortech.2024.131482] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Revised: 07/15/2024] [Accepted: 09/10/2024] [Indexed: 09/15/2024]
Abstract
Sugarcane bagasse (SCB) has a recalcitrant structure, which hinders its component dismantling and subsequent high value utilization. Some organic solvents are favorable to dismantle lignocellulose, but their high viscosity prevents separation of components and reuse of solvents. Herein, ethylene glycol phenyl ether (EGPE)-acid system is used as an example to develop green and efficient methods to dismantle SCB, purify polysaccharides and lignin, and reuse solvents. Results show that dismantling SCB at 130 °C, 0.5 % H2SO4, and 100 min can obtain 85.5 % cellulose recovery, 94.1 % hemicellulose removal and 83.7 % lignin removal. Different molecular weight saccharides are separated by membranes filtration and centrifugation, and lignin recovered by antisolvent precipitation. The solvent recovered by distillation, achieving high dismantling efficiency of 89.2 % cellulose recovery, 94.1 % hemicellulose removal and 94.4 % lignin removal after four recycles. Results show a promising approach for the closed-loop process of dismantling lignocellulose, fractionating saccharides, and reusing solvents in high-viscosity systems.
Collapse
Affiliation(s)
- Yihan Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China
| | - Xiheng Kang
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Zi You
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China
| | - Tieguang He
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Tianming Su
- Agricultural Resources and Environmental Research Institute, Guangxi Academy of Agricultural Sciences/Guangxi Key Laboratory of Arable Land Conservation, Nanning 530007, Guangxi, PR China
| | - Junhua Zhang
- College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, PR China
| | - Xinshu Zhuang
- Guangzhou Institute of Energy Conversion, Chinese Academy of Sciences, CAS Key Laboratory of Renewable Energy, Guangdong Provincial Key Laboratory of New and Renewable Energy Research and Development, Guangzhou 510640, PR China
| | - Zhanying Zhang
- School of Mechanical, Medical and Process Engineering, Centre for Agriculture and the Bioeconomy, Queensland University of Technology, Brisbane, Queensland 4000, Australia
| | - Arthur J Ragauskas
- Department of Chemical and Biomolecular Engineering, University of Tennessee, Knoxville, TN 37996, USA
| | - Xueping Song
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China.
| | - Kai Li
- Guangxi Key Laboratory of Clean Pulp & Papermaking and Pollution Control, College of Light Industry and Food Engineering, Guangxi University, Nanning 530004, PR China; Engineering Research Center for Sugar Industry and Comprehensive Utilization, Ministry of Education, Nanning 530004, PR China.
| |
Collapse
|
2
|
Hu Q, Xu Y, Wang Y, Gong W, Ma CY, Li S, Wen JL. Promoting the disassemble and enzymatic saccharification of bamboo shoot shells via efficient hydrated alkaline deep eutectic solvent pretreatment. Int J Biol Macromol 2024; 264:130702. [PMID: 38471607 DOI: 10.1016/j.ijbiomac.2024.130702] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Revised: 02/16/2024] [Accepted: 03/05/2024] [Indexed: 03/14/2024]
Abstract
Pretreatment is a key process restricting the development of biorefinery. This work developed a pretreatment process based on an ethanolamine/acetamide alkaline deep eutectic solvent (ADES). Under microwave assistance, pure ADES pretreatment at 100 °C for 10 min achieved 95.9 % delignification and 95.2 % hemicellulose removal of bamboo shoot shells (BSS). Further, when 75 % water was added to pure DES to prepare hydrated DES (75 %-HADES), impressive delignification (93.2 %), hemicellulose removal (92.2 %) and cellulose recovery (94.8 %) were still achieved. The cellulose digestibility of the 75 %-HADES pretreated solid residue was significantly increased from 12.2 % (the control) to 91.2 %. Meanwhile, the structural features of hemicellulose and lignin macromolecules fractionated by 75 %-HADES pretreatment were well preserved, offering opportunities for downstream utilization. Overall, this work proposes an effective pretreatment strategy with the potential to enable the utilization of all major components of bamboo shoot shells.
Collapse
Affiliation(s)
- Qiang Hu
- Bamboo Diseases and Pests Control and Resources Development Key Laboratory of Sichuan Province, Leshan Normal University, Leshan 614000, China; College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yanyun Wang
- College of Life Science, Leshan Normal University, Leshan 614000, China
| | - Weihua Gong
- Jishou University National and local united engineering laboratory of integrative utilization technology of Eucommia ulmoides, Jishou 416000, China
| | - Cheng-Ye Ma
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Sheng Li
- Chongqing Academy of Chinese Materia Medica, Chongqing College of Traditional Chinese Medicine, Chongqing 400065, China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| |
Collapse
|
3
|
Jia Z, Wang S, Yu H, Li W, Ye J, Hu Y, Liu C, Ye Z, Sun Y, Xu X. Novel supramolecular deep eutectic solvent pretreatment for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. BIORESOURCE TECHNOLOGY 2023; 388:129780. [PMID: 37739185 DOI: 10.1016/j.biortech.2023.129780] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/24/2023]
Abstract
In this study, β-CD was used as a receptor to prepare three novel SDES, which were used to pretreat corn stalks for obtaining fluorescent lignin and promoting biomass pyrolytic saccharification. It was found that GA-residue had a high cellulose retention ratio (94.63%) and the highest lignin removal ratio (61.78%). Besides, the yield of carbohydrates in bio-oil was increased from 0.63% to 49.37%, and fluorescent lignin was prepared for explosion detection, fluorescent film, and information encryption. It was confirmed that the weak interaction between β-CD and HBDs or dimer was mainly performed by hydrogen bond and van der Waals force. The minimum frontier orbital energy difference ΔEU (0.1976 a.u.) and high binding energy (-5456.71 kJ/mol) between molecules were calculated by DFT. Moreover, the mechanism of biomass pretreatment was explored. The green and efficient SDES developed in this study were of great significance for biomass pretreatment and efficient utilization of components.
Collapse
Affiliation(s)
- Zhiwen Jia
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Shiyang Wang
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Haipeng Yu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Wanyu Li
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Jiamin Ye
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Yihao Hu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Cong Liu
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Zijian Ye
- School of Chemistry, South China Normal University, Guangzhou 510006, China
| | - Yan Sun
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China
| | - Xiwei Xu
- Key Laboratory for Biobased Materials and Energy of Ministry of Education, College of Materials and Energy, South China Agricultural University, Guangzhou 510640, China; Lingnan Modern Agricultural Science and Technology Maoming Branch of Guangdong Provincial Laboratory, Maoming 525032, Guangdong, China.
| |
Collapse
|
4
|
Xu Y, Liu YH, Xu LH, He YT, Wen JL, Yuan TQ. Enhancing saccharification of bamboo shoot shells by rapid one-pot pretreatment of hydrated deep eutectic solvent. BIORESOURCE TECHNOLOGY 2023; 380:129090. [PMID: 37105263 DOI: 10.1016/j.biortech.2023.129090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/16/2023] [Revised: 04/17/2023] [Accepted: 04/22/2023] [Indexed: 05/14/2023]
Abstract
In this work, a rapid one-pot hydrated deep eutectic solvent (DES) pretreatment was proposed to facilitate the conversion of carbohydrates from lignocellulosic biomass to monosaccharides. Specifically, the pure and hydrated DES based on benzyl triethylammonium chloride (BTEAC), formic acid (FA) and water was used to pretreat bamboo shoot shells (BSS) by microwave heating. The pretreated solid residues were enzymatically saccharified to produce fermentable sugars, and the hydrolyzed carbohydrates and lignin remained in the hydrolyzate. The results showed that the yield of monosaccharides from the hydrated DES hydrolyzate (193.7-228.4 g/kg) was significantly higher than that (45.9-66.1 g/kg) of pure DES. The 30% hydrated DES pretreatment achieved the best glucose yield (89.03%) and a total monosaccharides yield of 555.4 g/kg, which corresponded to a conversion ratio of carbohydrates to monosaccharides of 87.0%. The proposed process is a robust method for the efficiently convert carbohydrates from BSS into monosaccharides.
Collapse
Affiliation(s)
- Ying Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yi-Hui Liu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Ling-Hua Xu
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Yu-Tong He
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| | - Jia-Long Wen
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China.
| | - Tong-Qi Yuan
- Beijing Key Laboratory of Lignocellulosic Chemistry, Beijing Forestry University, Beijing 100083, PR China
| |
Collapse
|
5
|
Ying W, Li X, Lian Z, Xu Y, Zhang J. An integrated process using acetic acid hydrolysis and deep eutectic solvent pretreatment for xylooligosaccharides and monosaccharides production from wheat bran. BIORESOURCE TECHNOLOGY 2022; 363:127966. [PMID: 36113818 DOI: 10.1016/j.biortech.2022.127966] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/03/2022] [Revised: 09/08/2022] [Accepted: 09/09/2022] [Indexed: 06/15/2023]
Abstract
Organic acid hydrolysis for xylooligosaccharides (XOS) production from lignocelluloses provides the benefits of simple operation, rapid reaction and high XOS yield. However, no literature reported the XOS production from wheat bran (WB) by organic acid hydrolysis. In this paper, acetic acid (AA) hydrolysis was employed to produce XOS from WB. After AA hydrolysis (5 %, v/v, 170 °C, 20 min) of 100 g/L WB, the concentrations of X2, X3, X4, X5 and X6 were 2.4, 5.0, 1.9, 1.9 and 1.4 g/L respectively and the total XOS yield was 62.9 %, which was the highest among the previous researches. The arabinose yield reached 76.1 %. Then, AA-hydrolyzed WB was delignified by deep eutectic solvent (DES) pretreatment and the resulting residue had the glucose and xylose yields of 83.8 % and 54.8 %, respectively. This work offers a productive method for the conversion of WB into XOS, arabinose and glucose by AA hydrolysis and DES pretreatment.
Collapse
Affiliation(s)
- Wenjun Ying
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Xudong Li
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China
| | - Zhina Lian
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Yong Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China
| | - Junhua Zhang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, College of Chemical Engineering, Nanjing Forestry University, Nanjing 210037, China; Key Laboratory of Forestry Genetics & Biotechnology (Nanjing Forestry University), Ministry of Education, Nanjing 210037, China.
| |
Collapse
|
6
|
Reena R, Alphy MP, Reshmy R, Thomas D, Madhavan A, Chaturvedi P, Pugazhendhi A, Awasthi MK, Ruiz H, Kumar V, Sindhu R, Binod P. Sustainable valorization of sugarcane residues: Efficient deconstruction strategies for fuels and chemicals production. BIORESOURCE TECHNOLOGY 2022; 361:127759. [PMID: 35961508 DOI: 10.1016/j.biortech.2022.127759] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 08/03/2022] [Accepted: 08/04/2022] [Indexed: 06/15/2023]
Abstract
The global climate crisis and the ongoing increase in fossil-based fuels have led to an alternative solution of using biomass for fuel production. Sugarcane bagasse (SCB) is an agricultural residue with a global production of more than 100 million metric tons and it has various applications in a biorefinery concept. This review brings forth the composition, life cycle assessment, and various pretreatments for the deconstruction techniques of SCB for the production of valuable products. The ongoing research in the production of biofuels, biogas, and electricity utilizing the bagasse was elucidated. SCB is used in the production of carboxymethyl cellulose, pigment, lactic acid, levulinic acid, and xylooligosaccharides and it has prospective in meeting the demand for global energy and environmental sustainability.
Collapse
Affiliation(s)
- Rooben Reena
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - Maria Paul Alphy
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India
| | - R Reshmy
- Department of Science and Humanities, Providence College of Engineering, Chengannur 689 122, Kerala, India
| | - Deepa Thomas
- Post Graduate and Research Department of Chemistry, Bishop Moore College, Mavelikara 690 110, Kerala, India
| | - Aravind Madhavan
- Rajiv Gandhi Center for Biotechnology, Jagathy, Thiruvananthapuram 695 014, Kerala, India; School of Biotechnology, Amrita Vishwa Vidyapeetham, Amritapuri, Kollam, Kerala, India
| | - Preeti Chaturvedi
- Aquatic Toxicology Laboratory, Environmental Toxicology Group, CSIR Indian Institute for Toxicology Research (CSIR-IITR), 31 MG Marg, Lucknow 226 001, India
| | - Arivalagan Pugazhendhi
- Innovative Green Product Synthesis and Renewable Environment Development Research Group, Faculty of Environment and Labour Safety, Ton Duc Thang University, Ho Chi Minh City, Vietnam
| | - Mukesh Kumar Awasthi
- College of Natural Resources and Environment, Northwest A & F University, Yangling, Shaanxi 712 100, China
| | - Hector Ruiz
- Biorefinery Group, Food Research Department, Faculty of Chemistry Sciences, Autonomous University of Coahuila, Saltillo, Coahuila 25280, Mexico
| | - Vinod Kumar
- Fermentation Technology Division, CSIR - Indian Institute of Integrative Medicine (CSIR-IIIM), Jammu-180001, J & K, India
| | - Raveendran Sindhu
- Department of Food Technology, T K M Institute of Technology, Kollam-691505, Kerala, India
| | - Parameswaran Binod
- Microbial Processes and Technology Division, CSIR-National Institute for Interdisciplinary Science and Technology (CSIR-NIIST), Trivandrum 695 019, Kerala, India; Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201 002, India.
| |
Collapse
|
7
|
Ling R, Wei W, Jin Y. Pretreatment of sugarcane bagasse with acid catalyzed ethylene glycol-water to improve the cellulose enzymatic conversion. BIORESOURCE TECHNOLOGY 2022; 361:127723. [PMID: 35914671 DOI: 10.1016/j.biortech.2022.127723] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Revised: 07/27/2022] [Accepted: 07/28/2022] [Indexed: 06/15/2023]
Abstract
In this work, HCl catalyzed ethylene glycol-water pretreatment (HCl/EG-H2O) of sugarcane bagasse (SCB) was explored with response surface methodology (RSM) and single factor analysis, which aim to investigate the influence of pretreatment variable on pretreated solid cellulose enzymatic conversion. The result showed that HCl/EG-H2O pretreatment could selectively extract ∼89.9 % xylan and ∼61.2 % lignin in SCB, meanwhile maintain a relatively high cellulose retention (∼86.8 %). Pretreatment of SCB at 120 °C for 60 min with 1.00 % HCl and 90 % EG obtained the pretreated solid having maximum cellulose enzymatic conversion of 88.7 % under 10 FPU/g enzyme dosage, this enhancement of cellulose enzymatic conversion mainly attributed to structure change of SCB in pretreatment. The adding of enzymatic additives into the hydrolysis process could not only improve hydrolysis efficiency but also lower the enzyme dosage. Besides, the linear relationship between substrate characteristic parameters (such cellulose content, lignin removal rate etc.) and cellulose conversion were observed.
Collapse
Affiliation(s)
- Rongxin Ling
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China
| | - Yongcan Jin
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, No. 159 Longpan Road, Nanjing 210037, China.
| |
Collapse
|
8
|
Enhanced Enzymatic Saccharification of Tomato Stalk by Combination Pretreatment with NaOH and ChCl:Urea-Thioure in One-Pot Manner. Processes (Basel) 2022. [DOI: 10.3390/pr10101905] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
In this study, the mixture of NaOH and deep eutectic solvent (DES) ChCl:UA-TA was firstly used to pretreat waste tomato stalk (TS). The effects of pretreatment time, pretreatment temperature, NaOH dosage, and DES dose were investigated, and the synergistic effects of dilute NaOH and DES combination pretreatment were tested on the influence of enzymatic saccharification. It was found that the relationship between delignification and saccharification rate had a significant linear correction. When TS was pretreated with NaOH (7 wt%)–ChCl:UA-TA (8 wt%) in a solid-to-liquid ratio of 1:10 (wt:wt) at 75 °C for 60 min, the delignification reached 82.1%. The highest yield of reducing sugars from NaOH–ChCl:UA-TA-treated TS could reach 62.5% in an acetate buffer (50 mM, pH 4.8) system containing cellulase (10.0 FPU/g TS) and xylanase (30.0 CBU/g TS) at 50 °C. In summary, effective enzymatic saccharification of TS was developed by a combination pretreatment with dilute NaOH and ChCl:UA-TA, which has potential application in the future.
Collapse
|
9
|
Wang B, Qi J, Xie M, Wang X, Xu J, Yu Z, Zhao W, Xiao Y, Wei W. Enhancement of sugar release from sugarcane bagasse through NaOH-catalyzed ethylene glycol pretreatment and water-soluble sulfonated lignin. Int J Biol Macromol 2022; 221:38-47. [PMID: 36070818 DOI: 10.1016/j.ijbiomac.2022.08.193] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 08/19/2022] [Accepted: 08/30/2022] [Indexed: 11/15/2022]
Abstract
In this work, five different NaOH-catalyzed ethylene glycol (EG) pretreatments together with water-soluble sulfonated lignin (SL) were used for enhancing sugarcane bagasse (SCB) enzymatic digestion. The results showed that the coupling of NaOH and EG into a one-pot pretreatment (10%NaOH/EG) was more beneficial to improve SCB enzymatic hydrolysis than that of single 10%NaOH or EG pretreatment, or the two-step pretreatment of NaOH and EG in different sequence (10%NaOH+EG and EG + 10%NaOH, respectively). The highest glucose yield of this work was 91.2 %, mainly released from the SCB that pretreated with 10%NaOH/EG at 130 °C for 60 min and 72 h enzymatic hydrolysis. The adding of SL into the enzymatic hydrolysis step could significantly lower the cellulase dosage and hydrolysis time from 20 FPU/g and 72 h to 10 FPU/g and 24 h, respectively, meanwhile keeping a high glucose yield of 90.4 %. The characterization of various pretreated or un-pretreated SCB confirmed that the improvement of hydrolysis efficiency of SCB after 10%NaOH/EG pretreatment was closely related to the removal of various components barriers in SCB and the fragmentation of pretreated solid. It can be concluded that the developed NaOH-catalyzed ethylene glycol pretreatment was an efficiency way to enhance the sugar release from SCB.
Collapse
Affiliation(s)
- Baoxian Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jun Qi
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Mengya Xie
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaoxiang Wang
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Jingwen Xu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Zhihao Yu
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Wang Zhao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Yongchang Xiao
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China; Joint International Research Lab of Lignocellulosic Functional Materials, Nanjing Forestry University, Nanjing 210037, China.
| |
Collapse
|
10
|
Zhang X, Zhou Y, Xiong W, Wei W, Jiang W. Co-production of xylose, lignin, and ethanol from eucalyptus through a choline chloride-formic acid pretreatment. BIORESOURCE TECHNOLOGY 2022; 359:127502. [PMID: 35724907 DOI: 10.1016/j.biortech.2022.127502] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/07/2022] [Revised: 06/15/2022] [Accepted: 06/16/2022] [Indexed: 06/15/2023]
Abstract
A choline chloride-formic acid (ChCl-FA) pretreatment followed by enzymatic hydrolysis and fermentation were developed in this work for co-produce bioethanol, xylose, and lignin from eucalyptus. Results showed that ChCl-FA pretreatment can simultaneously degrade the xylan (∼95.2%) and lignin (∼74.4%) in eucalyptus, and obtained the pretreated eucalyptus having high glucan content and a numbers of cracks and holes, which was conducive to follow-up cellulase attacking. The hydrolysis experiments showed the maximum yield of glucose of 100 g eucalyptus was 35.3 g, which was equivalent to 90.3% of glucan in eucalyptus feedstock. The fermentation of enzymatic hydrolysate finally achieved the ethanol yield of 16.5 g, which corresponded to 74.5% theoretical ethanol yield from initial glucan in eucalyptus. In addition, 12.1 g xylose and 23.9 g lignin also could be obtained in pretreated liquid or/and hydrolysis residue, which represented for 61.4% xylan and 80.7% lignin in eucalyptus feedstock, respectively.
Collapse
Affiliation(s)
- Xiaohua Zhang
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China.
| | - Yaohong Zhou
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Wanming Xiong
- College of Chemistry and Materials, Jiangxi Agricultural University, Nanchang 330045, China
| | - Weiqi Wei
- Jiangsu Co-Innovation Center of Efficient Processing and Utilization of Forest Resources, Nanjing Forestry University, Nanjing 210037, China
| | - Weikun Jiang
- State Key Laboratory of Bio-based Material and Green Papermaking, Key Laboratory of Pulp & Paper Science and Technology of Shandong Province/Ministry of Education, Qilu University of Technology/Shandong Academy of Sciences, Jinan 250353, China
| |
Collapse
|
11
|
Sharma V, Tsai ML, Chen CW, Sun PP, Patel AK, Singhania RR, Nargotra P, Dong CD. Deep eutectic solvents as promising pretreatment agents for sustainable lignocellulosic biorefineries: A review. BIORESOURCE TECHNOLOGY 2022; 360:127631. [PMID: 35850394 DOI: 10.1016/j.biortech.2022.127631] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/18/2022] [Revised: 07/10/2022] [Accepted: 07/13/2022] [Indexed: 06/15/2023]
Abstract
Increasing reliance on non-renewable fuels has shifted research attention to environmentally friendly and sustainable energy sources.The inherently recalcitrant nature of lignocellulosic biomass (LCB) makes downstream processing of the bioprocess challenging. Deep eutectic solvents (DESs) are popular and inexpensive green liquids found effective for LCB valorisation. DESs have negligible vapor-pressure and are non-flammable, recyclable, cost-economic, and thermochemically stable. This review provides a detailed overview on the DESs types, properties and their role in effective delignification and enzymatic digestibility of polysaccharides for cost-effective conversion of LCB into biofuels and bioproducts. The conglomeration of DESs with assistive pretreatment techniques can augment the process of biomass deconstruction. The current challenges in upscaling the DESs-based pretreatment technology up to commercial scale is summarized, with possible solutions and future directions. These insights would fill the knowledge-gaps to towards development of lignocellulosic biorefineries and to address the global energy crisis and environment issues.
Collapse
Affiliation(s)
- Vishal Sharma
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Mei-Ling Tsai
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Chiu-Wen Chen
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Pei-Pei Sun
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Centre for Energy and Environmental Sustainability, Lucknow 226 029, India
| | | | - Cheng-Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan; Institute of Aquatic Science and Technology, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|
12
|
Sánchez Muñoz S, Rocha Balbino T, Mier Alba E, Gonçalves Barbosa F, Tonet de Pier F, Lazuroz Moura de Almeida A, Helena Balan Zilla A, Antonio Fernandes Antunes F, Terán Hilares R, Balagurusamy N, César Dos Santos J, Silvério da Silva S. Surfactants in biorefineries: Role, challenges & perspectives. BIORESOURCE TECHNOLOGY 2022; 345:126477. [PMID: 34864172 DOI: 10.1016/j.biortech.2021.126477] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/15/2021] [Revised: 11/26/2021] [Accepted: 11/28/2021] [Indexed: 06/13/2023]
Abstract
The use of lignocellulosic biomass (LCB) as feedstock has received increasing attention as an alternative to fossil-based refineries. Initial steps such as pretreatment and enzymatic hydrolysis are essential to breakdown the complex structure of LCB to make the sugar molecules available to obtain bioproducts by fermentation. However, these steps increase the cost of the bioproduct and often reduces its competitiveness against synthetic products. Currently, the use of surfactants has shown considerable potential to enhance lignocellulosic biomass processing. This review addresses the main mechanisms and role of surfactants as key molecules in various steps of biorefinery processes, viz., increasing the removal of lignin and hemicellulose during the pretreatments, increasing enzymatic stability and enhancing the accessibility of enzymes to the polymeric fractions, and improving the downstream process during fermentation. Further, technical advances, challenges in application of surfactants, and future perspectives to augment the production of several high value-added bioproducts have been discussed.
Collapse
Affiliation(s)
- Salvador Sánchez Muñoz
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Thércia Rocha Balbino
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Edith Mier Alba
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernanda Gonçalves Barbosa
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Fernando Tonet de Pier
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Alexandra Lazuroz Moura de Almeida
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ana Helena Balan Zilla
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Felipe Antonio Fernandes Antunes
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Ruly Terán Hilares
- Laboratório de Materiales, Universidad Católica de Santa María - UCSM. Urb. San José, San José s/n, Yanahuara, Arequipa, Perú
| | - Nagamani Balagurusamy
- Bioremediation laboratory. Faculty of Biological Sciences, Autonomous University of Coahuila (UA de C), Torreón Campus, 27000 Coah, México
| | - Júlio César Dos Santos
- Biopolymers, bioreactors, and process simulation laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil
| | - Silvio Silvério da Silva
- Bioprocesses and sustainable products laboratory. Department of Biotechnology, Engineering School of Lorena, University of São Paulo (EEL-USP), 12.602.810. Lorena, SP, Brazil.
| |
Collapse
|
13
|
Ajala EO, Ighalo JO, Ajala MA, Adeniyi AG, Ayanshola AM. Sugarcane bagasse: a biomass sufficiently applied for improving global energy, environment and economic sustainability. BIORESOUR BIOPROCESS 2021; 8:87. [PMID: 38650274 PMCID: PMC10991612 DOI: 10.1186/s40643-021-00440-z] [Citation(s) in RCA: 16] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 08/28/2021] [Indexed: 11/10/2022] Open
Abstract
Sugarcane (Saccharum officinarum) bagasse (SCB) is a biomass of agricultural waste obtained from sugarcane processing that has been found in abundance globally. Due to its abundance in nature, researchers have been harnessing this biomass for numerous applications such as in energy and environmental sustainability. However, before it could be optimally utilised, it has to be pre-treated using available methods. Different pre-treatment methods were reviewed for SCB, both alkaline and alkali-acid process reveal efficient and successful approaches for obtaining higher glucose production from hydrolysis. Procedures for hydrolysis were evaluated, and results indicate that pre-treated SCB was susceptible to acid and enzymatic hydrolysis as > 80% glucose yield was obtained in both cases. The SCB could achieve a bio-ethanol (a biofuel) yield of > 0.2 g/g at optimal conditions and xylitol (a bio-product) yield at > 0.4 g/g in most cases. Thermochemical processing of SCB also gave excellent biofuel yields. The plethora of products obtained in this regard have been catalogued and elucidated extensively. As found in this study, the SCB could be used in diverse applications such as adsorbent, ion exchange resin, briquettes, ceramics, concrete, cement and polymer composites. Consequently, the SCB is a biomass with great potential to meet global energy demand and encourage environmental sustainability.
Collapse
Affiliation(s)
- E O Ajala
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria.
- Unilorin Sugar Research Institute, University of Ilorin, Ilorin, Nigeria.
| | - J O Ighalo
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
- Department of Chemical Engineering, Nnamdi Azikiwe University, Awka, Nigeria
| | - M A Ajala
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - A G Adeniyi
- Department of Chemical Engineering, University of Ilorin, Ilorin, Nigeria
| | - A M Ayanshola
- Department of Water Resources and Environmental Engineering, University of Ilorin, Ilorin, Nigeria
| |
Collapse
|
14
|
Agrawal R, Verma A, Singhania RR, Varjani S, Di Dong C, Kumar Patel A. Current understanding of the inhibition factors and their mechanism of action for the lignocellulosic biomass hydrolysis. BIORESOURCE TECHNOLOGY 2021; 332:125042. [PMID: 33813178 DOI: 10.1016/j.biortech.2021.125042] [Citation(s) in RCA: 67] [Impact Index Per Article: 22.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Revised: 03/16/2021] [Accepted: 03/18/2021] [Indexed: 06/12/2023]
Abstract
Biorefining of lignocellulosic biomass is a relatively new concept but it has strong potential to develop and partially replace the fossil derived fuels and myriad of value products to subsequently reduce the greenhouse gas emissions. However, the energy and cost intensive process of releasing the entrapped fermentable sugars is a major challenge for its commercialization. Various factors playing a detrimental role during enzymatic hydrolysis of biomass are inherent recalcitrance of lignocellulosic biomass, expensive enzymes, sub-optimal enzyme composition, lack of synergistic activity and enzyme inhibition caused by various inhibitors. The current study investigated the mechanism of enzyme inhibition during lignocellulosic biomass saccharification especially at high solid loadings. These inhibition factors are categorized into physio-chemical factors, water-soluble and -insoluble enzyme inhibitors, oligomers and enzyme-lignin binding. Furthermore, different approaches are proposed to alleviate the challenges and improve the enzymatic hydrolysis efficiency such as supplementation with surfactants, synergistic catalytic/non-catalytic proteins, and bioprocess modifications.
Collapse
Affiliation(s)
- Ruchi Agrawal
- The Energy and Resources Institute, TERI Gram, Gwal Pahari, Gurugram, Haryana, India
| | - Amit Verma
- College of Basic Science and Humanities, Sardarkrushinagar Dantiwada Agricultural University, Sardarkrushinagar - 385506 (Banaskantha), Gujarat, India
| | - Reeta Rani Singhania
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Sunita Varjani
- Gujarat Pollution Control Board, Gandhinagar, Gujarat 382010, India
| | - Cheng Di Dong
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan
| | - Anil Kumar Patel
- Department of Marine Environmental Engineering, National Kaohsiung University of Science and Technology, Kaohsiung City, Taiwan.
| |
Collapse
|