1
|
Zou X, Gao M, Sun H, Zhang Y, Yao Y, Guo H, Liu Y. Influence of residual anaerobic granular sludge (AnGS) from anaerobically digested molasses wastewater in aerobic granular sludge reactor. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 949:175206. [PMID: 39094659 DOI: 10.1016/j.scitotenv.2024.175206] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/28/2024] [Revised: 07/19/2024] [Accepted: 07/30/2024] [Indexed: 08/04/2024]
Abstract
This study investigated the impact of residual anaerobic granular sludge (AnGS) from anaerobic digesters treating molasses wastewater on ammonium reduction in a downstream aerobic granular sludge (AGS) reactor. Two conditions were tested: raw (high AnGS concentration) and settled (low AnGS concentration) anaerobically digested molasses wastewaters were fed into the AGS reactor. With the introduction of raw wastewater, enhanced nitrite accumulation at 30 % and improved total inorganic nitrogen (TIN) removal at 11 % were observed compared to 1 % nitrite accumulation and 8 % TIN removal with the introduction of settled wastewater. However, AnGS adversely affected other aspects of reactor performance, increasing effluent solid content and decreasing soluble chemical oxygen demand removal efficiency from 20 % in the low AnGS condition to 11 % in the high AnGS condition. Despite the observed retention of AnGS in the reactor, no significant bioaugmentation effects on the microbial community of the AGS were observed. Aerobic granular sludge was consistently observed in both conditions. The study suggests that AnGS may act as a nucleus for granule formation, helping to maintain granule stability in a disturbed environment. This study offers a systematic understanding of the impact of AnGS on subsequent nitrogen removal process using AGS, aiding in the decision making in the treatment of high solid anaerobic digestate.
Collapse
Affiliation(s)
- Xin Zou
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Mengjiao Gao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; College of Environment and Ecology, Chongqing University, Chongqing, China
| | - Huijuan Sun
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yihui Zhang
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yiduo Yao
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Hengbo Guo
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada
| | - Yang Liu
- Department of Civil and Environmental Engineering, University of Alberta, Edmonton, Alberta T6G 1H9, Canada; School of Civil & Environmental Engineering, Queensland University of Technology, Brisbane, Queensland, Australia.
| |
Collapse
|
2
|
Zhou J, Li X, Li S, Ding H, Lang Y, Xu P, Wang C, Wu Y, Liu X, Qiu S. Airborne microorganisms and key environmental factors shaping their community patterns in the core production area of the Maotai-flavor Baijiu. THE SCIENCE OF THE TOTAL ENVIRONMENT 2024; 912:169010. [PMID: 38040348 DOI: 10.1016/j.scitotenv.2023.169010] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Revised: 11/13/2023] [Accepted: 11/28/2023] [Indexed: 12/03/2023]
Abstract
Airborne microorganisms are important parts of the Moutai-flavor Baijiu brewing microbial community, which directly affects the quality of Baijiu. However, environmental factors usually shape airborne microbiomes in different distilleries, even in the different production areas of the same distillery. Unfortunately, current understanding of environmental factors shaping airborne microbiomes in distilleries is very limited. To bridge this gap, we compared airborne microbiomes in the Moutai-flavor Baijiu core production areas of different distilleries in the Chishui River Basin and systematically investigated the key environmental factors that shape the airborne microbiomes. The top abundant bacterial communities are mainly affiliated to the phyla Actinobacteriota, Firmicutes, and Proteobacteri, whereas Ascomycota and Basidiomycota are the predominant fungal communities. The Random Forest analysis indicated that the biomarkers in three distilleries are Saccharomonospora and Bacillus, Thermoactinomyces, Oceanobacillus, and Methylobacterium, which are the core functional flora contributing to the production of Daqu. The correlation and network analyses showed that the distillery age and environmental temperature have a strong regulatory effect on airborne microbiomes, suggesting that the fermentation environment has a domesticating effect on air microbiomes. Our findings will greatly help us understand the relationship between airborne microbiomes and environmental factors in distilleries and support the production of the high-quality Moutai-flavor Baijiu.
Collapse
Affiliation(s)
- Jianli Zhou
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xuanchen Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Shuaijinyi Li
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Hexia Ding
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Ying Lang
- Guizhou Wangmao Jiuqu Research Institute, Changling Road, Guiyang 550003, China
| | - Peng Xu
- College of Resource and Environmental Engineering, Guizhou University, Guiyang 550025, Guizhou, China
| | - Chunxiao Wang
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Yuangen Wu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China
| | - Xiaobo Liu
- School of Environmental and Biological Engineering, Nanjing University of Science and Technology, 200 Xiaolingwei Street, Nanjing 210094, Jiangsu, China.
| | - Shuyi Qiu
- Key Laboratory of Plant Resource Conservation and Germplasm Innovation in Mountainous Region (Ministry of Education), School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, Guizhou Province, China; Guizhou Province Key Laboratory of Fermentation Engineering and Biopharmacy, School of Liquor and Food Engineering, Guizhou University, Guiyang 550025, China.
| |
Collapse
|
3
|
Lin H, Zheng Y, Yang Y, Liu F, Yang K, Zhang B, Wen X. The role of the core microorganisms in the microbial interactions in activated sludge. ENVIRONMENTAL RESEARCH 2023; 235:116660. [PMID: 37451573 DOI: 10.1016/j.envres.2023.116660] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/08/2023] [Revised: 07/08/2023] [Accepted: 07/11/2023] [Indexed: 07/18/2023]
Abstract
In order to gain a deeper understanding of the microbial interactions in wastewater treatment plants (WWTPs) in China and clarify the role of the core community in the microbial interactions in activated sludge (AS), this study used a molecular ecological network approach based on random matrix theory to construct co-occurrence networks of the core microorganisms (CoreN), the whole AS community (WholeN) and the microbial communities without the core microorganisms (OtherN), respectively. It was shown that the WholeN had more complex and tighter connections compared with the OtherN, because of its higher total number of nodes, higher average clustering coefficient, and shorter average geodesic distance. The proportions of positive links in the CoreN, WholeN and OtherN were gradually decreased, indicating that the core microorganisms promoted cooperation between AS microorganisms. Moreover, higher robustness after random removal of 50% of the nodes of the WholeN (0.2836 ± 0.0311) was observed than the robustness of the OtherN (0.1152 ± 0.0263). In addition, the vulnerability of OtherN (0.0514) is significantly higher than WholeN (0.0225). Meanwhile, the average ratio of negative/positive cohesion, was significantly decreased when the core microorganisms were removed. These results demonstrated that core community could strengthen the stability of the ecological network in AS. By discerning the key factors affecting ecological network, AS temperature was observed to have a strong correlation with all three networks. Moreover, pollutants in wastewater shown stronger correlations with the CoreN and WholeN, supporting the point that core community play a critical role in pollutant removal in WWTPs to a certain extent.
Collapse
Affiliation(s)
- Huimin Lin
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yichen Zheng
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Yuankai Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Fengyi Liu
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Kuo Yang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China
| | - Bing Zhang
- College of Life and Environmental Sciences, Minzu University of China, Beijing, 100081, China; Research Center of Food Environment and Public Health Engineering, Minzu University of China, Beijing, 100081, China.
| | - Xianghua Wen
- Environmental Simulation and Pollution Control State Key Joint Laboratory, School of Environment, Tsinghua University, Beijing, 100084, China.
| |
Collapse
|
4
|
Wang B, Smith M, Liu Y, Pileggi V, Chang S. Microplastic isolation method for wastewater and sludge samples by removal of excess organic and inorganic interferences. CHEMOSPHERE 2023; 329:138625. [PMID: 37030345 DOI: 10.1016/j.chemosphere.2023.138625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/28/2022] [Revised: 04/01/2023] [Accepted: 04/04/2023] [Indexed: 05/03/2023]
Abstract
The isolation of microplastics from other organic and inorganic contents is a major hurdle to the effective quantification and characterization of microplastics in wastewater and biosolids samples. As a result, a well-established and standardized isolation method is vital for the analysis of microplastics. In this study, we evaluated biological hydrolysis, enzymatic hydrolysis, wet peroxidation and ethylenediaminetetraacetic acid treatment for microplastics isolation and demonstrated that the integration of these processes can effectively remove organic and inorganic contents to provide a clear microscope view for microplastics identification from wastewater and sludge samples. To the best of our knowledge, this study is the first to introduce biological hydrolysis and ethylenediaminetetraacetic acid treatment for the isolation of microplastics from environmental samples. The results reported could facilitate the establishment of a standardized procedure for microplastic isolation from wastewater and biosolid samples.
Collapse
Affiliation(s)
- Bei Wang
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Megan Smith
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Yi Liu
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada
| | - Vince Pileggi
- Water Standards Section, Technical Assessment and Standards Development Branch, Ontario Ministry of Environment, Conservation, and Parks, Canada
| | - Sheng Chang
- School of Engineering, University of Guelph, Guelph, Ontario, N1G 2W1, Canada.
| |
Collapse
|
5
|
Shi S, Cao M, Zhang Y, Fan X, Liu S, Chen J, Zhou J. Enhanced hydrolysis/acidogenesis and potential mechanism in thermal-alkali-biofilm synergistic pretreatment of high-solid and low-organic-content sludge. BIORESOURCE TECHNOLOGY 2023; 378:128988. [PMID: 37001699 DOI: 10.1016/j.biortech.2023.128988] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/16/2023] [Revised: 03/25/2023] [Accepted: 03/28/2023] [Indexed: 06/19/2023]
Abstract
Improving the anaerobic digestion (AD) of high-solid and low-organic-content sludge is imperative for sustainable waste activated sludge (WAS) management. Here, a thermal-alkali-biofilm pretreatment (TAB) was established to treat high-solid and low-organic-content sludge and compared with thermal and thermal-alkali methods. The results showed that TAB drastically improved WAS reduction, hydrolysis/acidogenesis efficiency, and biochemical methane potential. TAB possessed the lowest sludge particle size and the highest surface charge due to the stimulated proteolysis and WAS solubilization, supported by the protease activity test and secondary substrate identification. In addition, the biofilm assistance noticeably accelerated the elimination of autochthonous bacteria in WAS (e.g., Proteobacteria) and facilitated the enrichment of specialized fermentative microorganisms (e.g., Firmicutes) along with relevant functional genes, lying molecular foundation for the enhanced hydrolysis/acidogenesis in TAB. These findings could expand the application of biofilm in the AD of WAS and provide new insight into the pretreatment strategy of high-solid and low-organic-content sludge.
Collapse
Affiliation(s)
- Shuohui Shi
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Meng Cao
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Ying Zhang
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Xing Fan
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Shihu Liu
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jiahao Chen
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China
| | - Jian Zhou
- Key Laboratory of the Three Gorges Reservoir Region's Eco-Environment, Ministry of Education, Chongqing University, Chongqing 400045, China.
| |
Collapse
|
6
|
Li B, Xu D, Feng L, Liu Y, Zhang L. Ecotoxic side-effects of allelochemicals on submerged plant and its associated microfloras effectively relieved by sustained-release microspheres. THE SCIENCE OF THE TOTAL ENVIRONMENT 2023; 871:161888. [PMID: 36731566 DOI: 10.1016/j.scitotenv.2023.161888] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/27/2022] [Revised: 01/09/2023] [Accepted: 01/25/2023] [Indexed: 06/18/2023]
Abstract
Harmful algae bloom caused by water eutrophication is a burning question worldwide. Allelochemicals sustained-release microspheres (ACs-SMs) exhibited remarkable inhibition effect on algae, however, few studies have focused on the ecotoxic side-effects of ACs-SMs on submerged plant and its associated microfloras. Herein the effects of different exposure situations including single high-concentration ACs (15 mg/L, SH-ACs), repeated low-concentration ACs (3 × 5 mg/L, RL-ACs) and ACs-SMs containing 15 mg/L ACs on morphological indexes, chlorophyll content, lipid peroxidation, enzymatic activity, and chlorophyll fluorescence indexes of submerged plant Vallisneria natans and the richness and diversity of its associated microfloras (epibiotic microbes and sediment microbes) were studied. The results showed that pure ACs (RL-ACs and SH-ACs groups) had negative effects on plant height, mean leaf number and area of V. natans, but promoted the increase of mean leaf length. In addition, pure ACs caused lipid peroxidation, activated the antioxidant defense system, decreased chlorophyll content, and damaged photosynthetic system in leaves. Interestingly, ACs-SMs not only had barely negative effects on above indexes of V. natans, but had certain positive effects at the later experiment stage (days 50-60). Pure ACs and ACs-SMs all reduced the richness and diversity of microfloras in each group, and promoted the increase of relative abundance of dominant bacteria Pseudomonas, leading to a simpler community structure. Significantly, V. natans leaves diminished the effects of pure ACs and ACs-SMs on epibiotic microbes, and the plant rhizosphere was beneficial to the increase of dominant bacteria that promoted plant growth. Thus, sustained-release microspherification technology can effectively relieve the ecotoxic side-effects of pure ACs on submerged plant and its associated microfloras. This study fills the gap on the ecological safety knowledge of ACs-SMs and provides primary data for evaluating the feasibility and commercialization prospects of ACs-SMs as algae inhibitor in aquatic ecosystem.
Collapse
Affiliation(s)
- Benhang Li
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Dandan Xu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Li Feng
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Yongze Liu
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China
| | - Liqiu Zhang
- Beijing Key Lab for Source Control Technology of Water Pollution, Engineering Research Center for Water Pollution Source Control and Eco-remediation, Beijing Forestry University, Beijing 100083, China.
| |
Collapse
|
7
|
Zhao J, Li Y, Zhang Z. Hydraulic retention time and pressure affect anaerobic digestion process treating synthetic glucose wastewater. BIORESOURCE TECHNOLOGY 2023; 370:128531. [PMID: 36574891 DOI: 10.1016/j.biortech.2022.128531] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 12/19/2022] [Accepted: 12/22/2022] [Indexed: 06/17/2023]
Abstract
High-pressure anaerobic digestion (HPAD) can directly upgrade biogas (CH4 content to 90 %) within a reactor. Understanding of how HPAD-related microbiomes are constructed by operational parameters (hydraulic retention time (HRT) and pressure) and their interactions within the biochemical process remain underexplored. In this study, an HPAD reactor was operated at five different HRT (from 40 to 13 d), with pressure around 10-13 bar. In HPAD, pressure was the driving force behind CH4 content. Low HRTs (13-20 d) for HPAD led to volatile fatty acids accumulation, which occurred earlier than that in normal-pressure digestion. HRT mainly affected the archaeal community, whereas pressure mostly affected the bacterial community. Hydrogenotrophic methanogen Methanobacterium prevailed at low HRTs (13-20 d). When operating continuous HPAD, attention should be paid to HRT optimization, as low HRTs (e.g., 13 d) impaired the activity of CH4-synthesizing enzyme Methyl-coenzyme M reductase.
Collapse
Affiliation(s)
- Jing Zhao
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; Center for Water and Ecology, School of Environment, Tsinghua University, Beijing 100084, China
| | - Yu Li
- Faculty of Science and Engineering, University of Groningen, Nijenborgh 4, 9747 AG Groningen, Netherlands; College of Engineering, China Agricultural University, Beijing 100083, China.
| | - Zhenhua Zhang
- Department of Genetics, University Medical Center Groningen, Groningen, Netherlands
| |
Collapse
|
8
|
Zhao L, Wu Y, Zhao Y, Li X, Zhang M, Li X, Ma J, Gu S. Deciphering the intra- and inter-kingdom networks of microbiota in the pit mud of Chinese strong-flavor liquor. Lebensm Wiss Technol 2022. [DOI: 10.1016/j.lwt.2022.113703] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/25/2022]
|
9
|
Zhang P, He J, Zou X, Zhong Y, Pan X, Zhang J, Pang H. Impact of magnesium ions on lysozyme-triggered disintegration and solubilization of waste activated sludge. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 315:115148. [PMID: 35512601 DOI: 10.1016/j.jenvman.2022.115148] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/10/2021] [Revised: 04/07/2022] [Accepted: 04/21/2022] [Indexed: 06/14/2023]
Abstract
Lysozyme can efficiently accelerate solubilization and hydrolysis of waste activated sludge (WAS) for anerobic digestion. However, the effect of lysozyme was easily to be inhibited by metal ions in WAS. The impact of magnesium ions (Mg2+) on lysozyme catalyze WAS disintegration was investigated in this study. The effect of lysozyme on WAS hydrolysis could be hindered by Mg2+. Relatively high concentrations (>50 mg/L) of Mg2+ in sludge significantly reduced the release of soluble polysaccharides and proteins from WAS, while sulfate ions or chloride ions caused no such effect. Proteins were difficult to be extracted from extracellular polymeric substances (EPS) of WAS in the presence of Mg2+ (>10 mg/L) due to the divalent cation bridging (DCB) behavior, while the extraction of polysaccharides was not significantly affected. The polysaccharides and proteins in the inner EPS layer were transferred to the outer layer during the lysozyme treatment, and total quantities of both components maintained constantly. At least 23.1% lysozymes were trapped in the liquid phase of 100 mg Mg2+/L in the first hour. Mg2+ could significantly affect the transfer of lysozyme from liquid phase to the inner layer of sludge. Mg2+ neutralized the negative surface charge of the sludge particles, which hindered the absorption of positively charged lysozyme molecules by sludge flocs from the liquid phase. The proteins of TB-EPS had higher ratios of α-helixes and tighter structures than those in LB-EPS, which could impede the lysozyme transfer to the cell wall.
Collapse
Affiliation(s)
- Pengfei Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China.
| | - Junguo He
- School of Civil Engineering, Guangzhou University, Guangzhou, 510006, PR China
| | - Xiang Zou
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Yijie Zhong
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Xinlei Pan
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Jie Zhang
- School of Environment, Harbin Institute of Technology, Harbin, 150090, PR China; State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China
| | - Heliang Pang
- State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin, 150090, PR China; School of Environmental and Municipal Engineering, Xi'an University of Architecture and Technology, Xi'an, 710055, China
| |
Collapse
|
10
|
Zhang H, Zhang X, Liu J, Zhang L, Li G, Zhang Z, Gong Y, Li H, Li J. Coal gangue modified bioretention system for runoff pollutants removal and the biological characteristics. JOURNAL OF ENVIRONMENTAL MANAGEMENT 2022; 314:115044. [PMID: 35427943 DOI: 10.1016/j.jenvman.2022.115044] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/12/2022] [Revised: 04/05/2022] [Accepted: 04/06/2022] [Indexed: 06/14/2023]
Abstract
In this study, coal gangue (CG) was applied as media in bioretention system to remove runoff pollutant. CG modified bioretention systems show good removal efficiency towards runoff pollutant due to the high adsorption capacity of CG. The removal of total phosphorus (TP), total nitrogen (TN), ammonia (NH4+-N) and chemical oxygen demand (COD) by CG modified bioretention systems was influenced by diverse rainfall conditions including rainfall concentration, recurrence period and drying period, and their removal rate ranged 94-99%, 30-70%, 83-97% and 33-86%, respectively. The effluent concentration of Zn, Pb and Cu was as low as 3.14-10.99 μg/L, 0.66-2.56 μg/L and 0.60-3.15 μg/L, respectively. In addition, CG could promote the plant heavy metal uptake and thus decrease their accumulation in soil to a certain extent. Meanwhile, Malondialdehyde (MDA) content and peroxidases (POD) activities of plants in CG modified bioretention were lower than that in tradition bioretention, indicating that CG could help plants recovery and lessened the oxidative stress for the negative impact of high heavy metals accumulation. CG-based media alleviated the inhibitory effect of rainwater runoff pollutant accumulation (especially heavy metals) on microbial diversity and the enhancement of the dominant bacteria (such as Proteobacteria and Bacteroidota) could conduce the nutrients removal in the bioretention systems. In overall, this study demonstrated that the CG modified bioretention systems show an excellent removal performance combine with biological effects.
Collapse
Affiliation(s)
- Huakang Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Xiaoran Zhang
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China.
| | - Junfeng Liu
- Department of Water Conservancy and Civil Engineering, Beijing Vocational College of Agriculture, Beijing, 102442, China
| | - Liming Zhang
- Shanxi Water Affairs Group Construction Investment Co., Ltd, Taiyuan, 030000, China
| | - Guodong Li
- Shanxi Water Affairs Group Construction Investment Co., Ltd, Taiyuan, 030000, China
| | - Ziyang Zhang
- Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Yongwei Gong
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China
| | - Haiyan Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| | - Junqi Li
- Key Laboratory of Urban Stormwater System and Water Environment, Ministry of Education, Beijing University of Civil Engineering and Architecture, Beijing, 102616, China; Beijing Engineering Research Center of Sustainable Urban Sewage System Construction and Risk Control, Beijing University of Civil Engineering and Architecture, Beijing, 100044, China
| |
Collapse
|
11
|
Wang J, Wang H, Zhang R, Wei L, Cao R, Wang L, Lou Z. Variations of nitrogen-metabolizing enzyme activity and microbial community under typical loading conditions in full-scale leachate anoxic/aerobic system. BIORESOURCE TECHNOLOGY 2022; 351:126946. [PMID: 35248710 DOI: 10.1016/j.biortech.2022.126946] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 02/28/2022] [Accepted: 03/01/2022] [Indexed: 06/14/2023]
Abstract
Influent loading determines the performance of leachate treatment plant (LTP) facing the dynamic conditions, but enzyme expression in microbial community is unclear. Here, six nitrogen-metabolizing enzymes were detected during nitrification failures (NF), high loading (HL), low loading (LL), and low carbon/nitrogen (LCN) in a 500 m3/d LTP. Nitrogen removal in LL was 15 ± 5% higher than that in HL. The activity of hydroxylamine oxidoreductase decreased by 90% as the influent total nitrogen increased from 2450 mg/L to 3100 mg/L, which might be a critical enzyme causing the nitrification failure. Denitrifying enzyme abated by 1.3% as the carbon/nitrogen dropped by 1% in LCN. With the influent chemical oxygen demand decreased from 22000 mg/L to 12000 mg/L, the relative abundance of norank_f_Saprospiraceae dropped from 33.66% to 11.94%, and finally disappeared, which seems to be an indicator of the high load operation. These findings provide the basis for improving the efficiency of LTPs.
Collapse
Affiliation(s)
- Jing Wang
- School of College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Hui Wang
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Ruina Zhang
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200323, China
| | - Liu Wei
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China
| | - Ruijie Cao
- Shanghai Environmental Sanitation Engineering Design Institute Co., Ltd, Shanghai 200323, China
| | - Luochun Wang
- School of College of Environmental and Chemical Engineering, Shanghai University of Electric Power, Shanghai 200090, China
| | - Ziyang Lou
- School of Environmental Science and Engineering, Shanghai Jiao Tong University, Shanghai Engineering Research Center of Solid Waste Treatment and Resource Recovery, Shanghai 200240, China; Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China; China Institute for Urban Governance, Shanghai Jiao Tong University, Shanghai 200240, China.
| |
Collapse
|
12
|
Ma S, Luo H, Zhao D, Qiao Z, Zheng J, An M, Huang D. Environmental factors and interactions among microorganisms drive microbial community succession during fermentation of Nongxiangxing daqu. BIORESOURCE TECHNOLOGY 2022; 345:126549. [PMID: 34902488 DOI: 10.1016/j.biortech.2021.126549] [Citation(s) in RCA: 57] [Impact Index Per Article: 19.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/10/2021] [Revised: 12/06/2021] [Accepted: 12/07/2021] [Indexed: 06/14/2023]
Abstract
Nongxiangxing daqu (daqu), which is produced by the open fermentation of wheat, is the fermentation starter of baijiu. This work reports the occurrence and driving factors of microbial community succession (MCS), which determines daqu quality, during daqu fermentation. The co-occurrence networks of the 2 stages of the MCS showed that module 2 of stage P1 contained Mucoromycota and Actinobacteriota and was affected by temperature, humidity, CO2, and moisture; module 8 of stage P2 contained Mucoromycota and Saccharomycetes and was influenced by acidity and moisture. Twenty-two genera were thebiomarkers of the MCS. The MCS was driven by temperature, humidity, CO2, O2, acidity,moisture and interactions between the biomarkes and Lactobacillales, Saccharomycetales, and Acetobacter. The main driving factors of the bacterial community succession were acidity, moisture, and temperature, and that of the fungal community succession was moisture. These results guide the control of MCS during daqu fermentation.
Collapse
Affiliation(s)
- Shiyuan Ma
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Huibo Luo
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Key Laboratory of Brewing Biotechnology and Application, Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China
| | - Dong Zhao
- Wuliangye Yibin Co., Ltd, 150# Minjiang West Road, Cuiping District, Yibin, Sichuan 644007, China
| | - Zongwei Qiao
- Wuliangye Yibin Co., Ltd, 150# Minjiang West Road, Cuiping District, Yibin, Sichuan 644007, China
| | - Jia Zheng
- Wuliangye Yibin Co., Ltd, 150# Minjiang West Road, Cuiping District, Yibin, Sichuan 644007, China
| | - Mingzhe An
- Wuliangye Yibin Co., Ltd, 150# Minjiang West Road, Cuiping District, Yibin, Sichuan 644007, China
| | - Dan Huang
- College of Bioengineering, Sichuan University of Science & Engineering, Zigong 643000, China; Key Laboratory of Brewing Biotechnology and Application, Sichuan Province, Sichuan University of Science & Engineering, Zigong 643000, China.
| |
Collapse
|